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Bayesian paradigm

• Probability distributions are used to model 
uncertain knowledge

• The goal of statistics is  to investigate how this 
model changes when new information (”data”) is 
received

• Examples: 
– Is a hypothesis true or not?  Hypotheses that are 

initially unlikely needs more evidence
– Knowledge about a value before and after it has been 

measured



Updating knowledge

• Knowledge is updated when new information 
limits the possible ”states of the world”

• The prior probability is rescaled to a smaller 
set. 

• Often: We formulate our model so that θ  
represents what we want to know about, and 
y the ”data” we will observe. Knowledge is 
represented as a joint probability distribution 
on both. 

• The use of Bayes formula is a consequence 
of this setup. 



Bayes formula: Bayesian 
modelling

• Bayes formula: 

– θ  : The parameter of interest (may have two possible values, 
many possible values, or be a continuous variable with one or 
more dimensions)

– y : The observed data
– π (y|θ ) : The probability of data y for a value of θ  (likelihood)
– π (θ ) : The prior, initial distribution for θ . 
– π (θ |y) : The posterior distribution for θ , given the data
– π (y) : The total probability for the given data y. 

• Example, when θ  is either 0 or 1: 
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Example: Hemofiliac disease

• Θ =1 or 0: A mother (M) is a carrier of 
hemofiliac disease or not. 

• Known: Mother of M is carrier, husband of M 
is healthy, son of M is healthy. 

• Bayesian formulation: 
– Prior, given that mother of M  is carrier: 

p(θ =1)=0.5
– Likelihood: p(healthy son| θ =1)=0.5, p(healthy 

son| θ =0)=1. 
– Find posterior for θ
– Find predictions of health for second child.  



Example with two possible values 
for θ

• Assume about half of all people have trait A, but it is  hard to 
observe directly. We know that 99%  of all people with trait A 
also have trait B, whereas only 90%  of all people without trait A 
have trait B. Given a person with trait B, what is  the probability 
he has trait A?  

• We code the information as
– π (A=1) =π (A=0) = 0.5
– π (B=1|A=1) = 0.99
– π (B=1|A=0) = 0.90

• S olution: 
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Bayes formula with continuous θ

• Now,              and        
  are continuous 
probability 
distributions for θ , 
and                        is  
the likelihood function

• Fixing y we get

    meaning that the two 
sides are proportional 
as functions of θ .
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Examples
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Combining information from different 
sources

• In general the knowledge about θ  is held in a 
probability distribution. 

• This probability distribution is updated when new 
data is considered, by multiplying it with the 
likelihood function, and scaling it so that it 
integrates to 1. 

• The resulting posterior distribution can then be 
used as a new prior distribution which can be 
updated with further data. 



Example: The Beta distribution

• The Beta distribution 
Beta(α , β ) is a 
distribution for numbers in 
the interval [0,1]. 

• The probability 
distribution for θ  when it 
is  Beta(α , β ) is 
proportional to 

• Expectation α /(α +β ), 
variance α β /((α
+β )²(α +β +1))

• R-functions dbeta and 
rbeta
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Using the Beta distribution for 
probabilities

• If p has a Beta distribution and 
you make a new observation 
whose probability for ”success” 
is  p, then the posterior 
distribution for p|y is also Beta. 

• More precisely, if the prior for p 
is  Beta(α ,β ) and y is  
”success”, then the posterior 
for p is  Beta(α +1,β ), if y is  a 
”failure”, then the posterior is  
Beta(α ,β +1) 

• More generally, observing x 
successes and y failures gives 
the posterior Beta(α +x,β +y). 
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Example: E stimating a probability

• Assume you want to learn about the probability p for 
individuals from your species to have a certain contition. 
You investigate 3 individuals, and they all have the 
condition. What can you say about p?  

• If you believe that, apriori, any value of p is as likely as 
any other, use a Beta(1,1) prior. The posterior for p 
becomes Beta(4,1). The expected value for p is now 4/5 
= 0.8. 

• Another approach is to make an estimate p0 for p, as p0 
= 3/3 = 1. When is this a reasonable guess?  

• S everal other priors for p are reasonable, and used in 
many situations. 



Example: Allele database
• DNA ”fingerprinting” is dependent on establishing a 

database of the frequencies of different alleles at 
different genetical loci. This should be done separately 
for separate populations. 

• It is then customary to say estimate the probability of 
observing an allele in this population is equal to its 
frequency in the database. 

• If an allele has not been observed yet in the population, 
is  it reasonable to say that the probability of observing it 
is  zero?  

• One solution: Use a prior for the probabilities assigning 
some low probability for each possible allele, and then 
update it with information from database



Comparison with classical 
statistics

• In classical statistics, we have
– An unknown parameter of interest
– A model for how data depends on the parameter
– A way to estimate the parameter from data
– ”Confidence intervals” for estimates, p-values for hypotheses

• Example: Getting an estimate, with confidence interval, 
from measurements. 

• Classical methods can generally be described in the 
Bayesian setting, and vice versa

• ”Bayesian methods”: Applying Bayesian paradigm to 
situations where combination of information from 
different sources is central.  


