Basic Bayesian Ideas

Petter Mostad

Bayesian paradigm

- Probability dis tributions are used to model uncertain knowledge
- The goal of statistics is to investigate how this model changes when new information ("data') is received
- Examples:
- Is a hypothes is true or not? Hypotheses that are initially unlikely needs more evidence
- Knowledge about a value before and after it has been measured

Updating knowledge

- Knowledge is updated when new information limits the possible 's tates of the world"
- The prior probability is rescaled to a smaller set.
- Often: We formulate our model so that θ represents what we want to know about, and y the "data" we will observe. Knowledge is represented as a joint probability dis tribution on both.
- The use of Bayes formula is a consequence of this setup.

Bayes formula: Bayesian modelling
 - Bayes formula: $\pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)}$

- θ : The parameter of interest (may have two possible values, many possible values, or be a continuous variable with one or more dimensions)
- y:The observed data
- $\quad(y \|)$: The probability of data y for a value of θ (likelihood)
$-\pi(\theta)$: The prior, initial dis tribution for θ.
$-\pi(\theta \mid y)$: The posterior dis tribution for θ, given the data
$-\pi(y)$: The total probability for the given data y.
- Example, when θ is either 0 or 1:

$$
\pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y \mid \theta=1) \pi(\theta=1)+\pi(y \mid \theta=0) \pi(\theta=0)}
$$

Example: Hemofiliac disease

- $\Theta=1$ or 0 : A mother (M) is a carrier of hemofiliac disease or not.
- Known: Mother of M is carrier, husband of M is healthy, son of M is healthy.
- Bayesian formulation:
- Prior, given that mother of M is carrier: $p(\theta=1)=0.5$
- Likelihood: p (healthy son $\mid \theta=1$) $=0.5, p($ healthy $\operatorname{son} \mid \theta=0)=1$.
- Find posterior for θ
- Find predictions of health for second child.

Example with two possible values for θ

- Assume about half of all people have trait A, but it is hard to observe directly. We know that 99\% of all people with trait A also have trait B, whereas only 90% of all people without trait A have trait B. Given a person with trait B, what is the probability he has trait A?
- We code the information as
$-\pi(A=1)=\pi(A=0)=0.5$
- $\pi(B=1 \mid A=1)=0.99$
- $\pi(B=1 \mid A=0)=0.90$
- Solution:
$\pi(A=1 \mid B=1)=\frac{\pi(B=1 \mid A=1) \pi(A=1)}{\pi(B=1 \mid A=1) \pi(A=1)+\pi(B=1 \mid A=0) \pi(A=0)}=\frac{0.99 \cdot 0.5}{0.99 \cdot 0.5+0.90 \cdot 0.5}=0.52$

Bayes formula with continuous θ

$\pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)}$

- Now, $\pi(\theta \mid y)$ and $\pi(\theta)$ are continuous probability dis tributions
and
for θ, is the likelihood function
- Fixing y we get $\pi(\theta \mid y) \propto \pi(y \mid \theta) \pi(\theta)$ meaning that the two sides are proportional as functions of θ.

Examples

prior
first and second likelihoods

C ombining information from different sources

- In general the knowledge about θ is held in a probability dis tribution.
- This probability dis tribution is updated when new data is considered, by multiplying it with the likelihood function, and scaling it so that it integrates to 1.
- The resulting posterior distribution can then be used as a new prior distribution which can be updated with further data.

Example: The Beta distribution

- The Beta dis tribution Beta(a, B) is a dis tribution for numbers in the interval $[0,1]$.
- The probability dis tribution for θ when it is Beta (α, B) is proportional to

$$
\theta^{\alpha-1}(1-\theta)^{\beta-1}
$$

- Expectation $\mathrm{a} /(\mathrm{a}+\mathrm{B})$, variance a $B /((a$ $\left.+B)^{2}(a+B+1)\right)$
- R -functions dbeta and rbeta

Beta(1,1)

Beta(1/2, 1/3)

Using the Beta dis tribution for probabilities

- Ifp has a Beta distribution and you make a new observation whose probability for "success" is p, then the posterior distribution for ply is also Beta.
- More precisely, if the prior for p is Beta(α, B) and y is "success", then the posterior for p is Beta $(a+1, B)$, if y is a 'failure", then the posterior is Beta $(a, B+1)$
- More generally, observing x successes and y failures gives the posterior Beta $(a+x, B+y)$.
posterior after 3 successes, 1 failure posterior after 14 successes, 2 failures

possible prior

Example: Estimating a probability

- Assume you want to learn about the probability p for individuals from your species to have a certain contition. You investigate 3 individuals, and they all have the condition. What can you say about p?
- If you believe that, apriori, any value of p is as likely as any other, use a Beta $(1,1)$ prior. The posterior for p becomes Beta(4,1). The expected value for p is now $4 / 5$ $=0.8$.
- Another approach is to make an estimate p0 for p, as p0 $=3 \beta=1$. When is this a reasonable guess?
- Several other priors for p are reasonable, and used in many situations.

Example: Allele database

- DNA 'fingerprinting" is dependent on establis hing a database of the frequencies of different alleles at different genetical loci. This should be done separately for separate populations.
- It is then customary to say estimate the probability of observing an allele in this population is equal to its frequency in the database.
- If an allele has not been observed yet in the population, is it reasonable to say that the probability of observing it is zero?
- One solution: Use a prior for the probabilities assigning some low probability for each possible allele, and then update it with information from database

Comparis on with classical statistics

- In classical statistics, we have
- An unknown parameter of interest
- A model for how data depends on the parameter
- A way to estimate the parameter from data
- 'Confidence intervals"for estimates, p-values for hypotheses
- Example: Getting an estimate, with confidence interval, from measurements.
- Classical methods can generally be described in the Bayesian setting, and vice versa
- 'Bayesian methods': Applying Bayesian paradigm to situations where combination of information from different sources is central.

