Basic Bayesian Ideas

Petter Mostad

Bayesian paradigm

* Probability distributions are used to model
uncertain knowledge

* The goal of statistics is to investigate how this

model changes when new information ("data”) is
received

* Examples:

— Is a hypothesis true or not? Hypotheses that are
initially unlikely needs more evidence

— Knowledge about a value before and after it has been
measured



Updating knowledge

* Knowledge is updated when new information
limits the possible "states of the world”

* The prior probability is rescaled to a smaller
set.

 Often: We formulate our model so that §
represents what we want to know about, and
y the "data” we will observe. Knowledge is
represented as a joint probability distribution
on both.

* The use of Bayes formula is a consequence
of this setup.

Bayes formula: Bayesian

modelling
m(y16)m(0)

TI(y)

— 0 : The parameter of interest (may have two possible values,
many possible values, or be a continuous variable with one or
more dimensions)

y : The observed data
7 (y]0) : The probability of data y for a value of 0 (likelihood)
7 (0) : The prior, initial distribution for §.
(0 y) : The posterior distribution for 0, given the data
— 7 (y) : The total probability for the given data y.
* Example, when § is either 0 or 1:

m(y160)m(6)
myl@=)m@=1)+mn(yl8=0)ml=0)

* Bayes formula:  71(@1Yy) =

nmlly) =



Example: Hemofiliac disease

* ©®=1 or 0: A mother (M) is a carrier of
hemofiliac disease or not.

* Known: Mother of M is carrier, husband of M
Is healthy, son of M is healthy.

* Bayesian formulation:

— Prior, given that mother of M is carrier:
p(H=1)=0.5

— Likelihood: p(healthy son| () =1)=0.5, p(healthy
son| §=0)=1.

— Find posterior for §

— Find predictions of health for second child.

Example with two possible values
for 0

* Assume about half of all people have trait A, but it is hard to
observe directly. We know that 99% of all people with trait A
also have trait B, whereas only 90% of all people without trait A
have trait B. Given a person with trait B, what is the probability
he has trait A?
* We code the information as
- 7(A=1) =71 (A=0)=0.5
- 7 (B=1JA=1)=0.99
- 7 (B=1JA=0) = 0.90

* Solution:

nB=11A=DmA=1) - 0.9900.5
nB=11A=)mA=D)+mB=1A=0)m(A=0) 0.99[0.5+0.90[.5

MA=11B=1)= =0.52



Bayes formula with continuous 0

7y 10)1m(9)
7i(y)

* Now, m@ly)andm(6)
are continuous
probabilit

rooanility

distribut for 0,

and &'ﬂé))r is
the likelihood function

mely) =

* Fixing y we get
@y 0myl8)m6)
meaning that the two

sides are proportional
as functions of {.
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Combining information from different
sources

* In general the knowledge about § is held in a
probability distribution.

* This probability distribution is updated when new
data is considered, by multiplying it with the
likelihood function, and scaling it so that it
integrates to 1.

* The resulting posterior distribution can then be
used as a new prior distribution which can be
updated with further data.

Example: The Beta distribution

Beta(3,5) Beta(20,50)
* The Beta distribution \

Beta(«, B)isa

distribution for numbers in .| ]

the interval [0,1]. i i
* The probability

distribution for 6 whenit T
is Beta(c, f)is :
proportional to

6 (1-6)"" ] iy

* Expectation o/(ac+B), .| d
variance « B /((« . S
+B)2(a+ F+1)) o4 / — g

* R-functions dbeta and AR
rbeta Beta(1,1) Beta(1/2, 1/3)




Using the Beta distribution for
probabilities

N terior after 3 , 1 fail
¢ If p has a Beta distribution and posterioratier o stccesses, 1 farure

you make a new observation posterior after 14 successes, 2 failures
whose probability for "success” o AW
is p, then the posterior
distribution for ply is also Beta. .
* More precisely, if the prior for p [
is Beta(«, B) and y is
"success”, then the posterior 7

for pis Beta(o +1,7),ifyisa

"failure”, then the posterior is o |

Beta(«, B +1) \
* More generally, observing x

successes and y failures gives
the posterior Beta(« +X, f +y).
possible prior 1

Example: Estimating a probability

* Assume you want to learn about the probability p for
individuals from your species to have a certain contition.
You investigate 3 individuals, and they all have the
condition. What can you say about p?

* If you believe that, apriori, any value of p is as likely as
any other, use a Beta(1,1) prior. The posterior for p
becomes Beta(4,1). The expected value for p is now 4/5
=0.8.

* Another approach is to make an estimate pO for p, as p0
= 3/3 = 1. When is this a reasonable guess?

* Several other priors for p are reasonable, and used in
many situations.



Example: Allele database

DNA "fingerprinting” is dependent on establishing a
database of the frequencies of different alleles at
different genetical loci. This should be done separately
for separate populations.

It is then customary to say estimate the probability of
observing an allele in this population is equal to its
frequency in the database.

If an allele has not been observed yet in the population,
is it reasonable to say that the probability of observing it
is zero?

One solution: Use a prior for the probabilities assigning
some low probability for each possible allele, and then
update it with information from database

Comparison with classical
statistics

In classical statistics, we have

— An unknown parameter of interest

— A model for how data depends on the parameter

— A way to estimate the parameter from data

— "Confidence intervals” for estimates, p-values for hypotheses
Example: Getting an estimate, with confidence interval,
from measurements.

Classical methods can generally be described in the
Bayesian setting, and vice versa

"Bayesian methods”: Applying Bayesian paradigm to
situations where combination of information from
different sources is central.



