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The multiple testing problem

e "Rejecting a hypothesis at 5% significance
evel”: There is a 5% chance of rejecting a true
nypothesis.

e Rejecting 10 hypotheses at 5%: There may be
up to 50% chance of an incorrect rejection



High-throughput experiments:
The problem becomes acute

Microarray data: 10.000s of hypotheses —»
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Example: Using co-expressed gene clusters aiigzee
to hunt for cis-regulatory elements .
(Nelander 2005) !

Bonferroni P- Cluster Dataset

valua mvenrge  cverage
1.ONF+I0 43% (3/7) | (56/9561) |mentar adivity
1O00E+00) 20% (/%) | (10/9561) |actn filanent
LO0E 100 20% (2/7) | (23/9561) |muscle cevelepment
LO0E+00 29% (2/7) | (24/9501) |structurzl constituent of cytoskeleton

Cluster Dataset

coverage coverage

1 |MAODB3:SRF 86% (6/7) | 1% (83/9561)

7 |MO118R GRF MO0715 SRF AR (5/7) | 1% (114/9561)|<7 5%
- - 3 |MOD15Z:5RT 71% (5/7) | 1% (135/9561) [<2.5%

G [MOJZL6.TATA T3% (3/7) | 2% (220/9561) [<20%

5 [M0D059:YY1 3% (3/7) | 3% (264/9561)[<20%

b [MAODSO:TEF1 a3 (3/7) | 3% (256/9561) [<20%

Many other examples!

gene (MM)  gene (HS) Annotation (mouse)
Actg2 ACTIN, GAMMA 2, SMOOTH MUSCLE, ENTERIC

QEC3I0 MYHI1 MYOSIN HEAVY CHAIN 11

Lpp LPP LIPOMA PREFERRELC PARTNER

Tagin TAGLN TRANSGELIN (SMOOTH MUSCLE PROTEIN 22-ALPHA)
At 2 ACTAZ ACTIHN, AORTIC SMOOTH MUSCLE (ALFHA-ACTIN 2)
Myl9 MYLS MYL3 PROTEIN (FRAGMENT)

| mndi IMOD1 IFTOMODTN 1 (SMOOTH MUSCIF)




Setup and notation:

Let Sbe the sample space of possible realities, and let 81 S,

LetH =(H,,..,H,):S - {0,1}" be a function specifying N "Hypotheses",

where H. (€) = 0 or I means that the hypothesisis false or true, respectively.

Forevery 8L1S,letT(6) = (T1 (0),..., Ty (9)) be a stochastic variable on [0,1]"
T(6) represents the collection of "test statistics", or more accurately the

collection of resulting p - values, as we assume :

For any # and any | such that H.(8) =1: T.(8) ~UNIFORM[O0,1]



Goal of analysis

Based on the test statistics (or p - values) T (6), we want to

predict the values of H (&).In other words :

For a function f :[0,1]" - {0,1}" predicting values for H (8)
from T (6), we study the error, i.e., we study the stochastic

variable defined, for given f and f, by
N N

Err(@, f)=(N,Z) where V :Zvi and Z :Zzi where
=1 =1

Vi = Hi(H)(l_ fi (T(O)))
z =(1-H, @) {(T(O))



Example

The Type I and Type Il error rates are, for given values of fand f,

the expectations of V and Z, respectively :

E(V) =Y E(v) =Y H@)(1-E(f,T@)))

E(Z)=) E(z) =) (-H,@)E(f,T(©6))

Note that, as usual, we cannot make computations for Type Il errors

whithout making more assumptions about the distribution of T (&)



Example

For a given a > 0, define f, -10,11Y = {o,1}" by
0 u<a

f(u) =
(W il u=a

Then

E(V) :ZN:Hi(H)as Na



The family-wise error rate (FWER)

The FWER is defined, for given values of &and f, as
the probability Pr(V > 0)

It measures, for the whole "family" of hypotheses,

the probability of one or more Type I errors.

EXAMPLE: For f, defined as above, we get

FWER=Pr(V >0) < ZN:Pr(Vi =1)

=3 H,@Pr(f,T(6) =0)= > H,@)a < Na



The Bonferroni correction

For a given a >0, define f;, :[0,1]" - {0,1}" by

0 u<a/N
f(u) =
1 uza/N

Then

EV) :ZN:Hi(H)a/ N<a and

FWER = Pr(V >0) SZN:Hi(H)Pr(fi (T(6)) :O):ZN:Hi(H)a/ N<a

The Bonferroni correction is thus said to control for FWER at level



The Holm method

For a given a >0, define the Holm method f, , 100V = {0,1}" by

- Sort the indices so thatu, <u, <...< Uy

- Fori=1,2,...,set f.(U)=0aslongasu, < then set f, (U) =1

N-—1+1
for the rest.

We get (by conditioning on T () and reordering indices) :

FWER=Pr(V >0) < i H. (&) Pr(f (T(8))=0)

L a o a _
—§Hi<«9>N_j+1s<N G-Dy=py =

Thus the Holm method controls FWER at level a



Adjusted p-values

Assume a function f, , : [0,1]V - {0,1}" can be written as
fy o (W) =1, (F(u)), where f, is the function defined before

and F :[0,1]" = [0,1]" is some function.

Then F 1s called a p - value adjustment.

With adjusted p - values, one can "reject” and "accept”
Hypotheses just as usual based on the adjusted p - values,

while still getting for example control over FWER.



Examples

The function
F(u,,...,Uy) = (min(l, Nu, ),...,min(l, Nuy, ))

computes adjusted p - values for the Bonferroni method.

The function defined by first ordering p - valuesin

increasing order and then computing

.....

computes adjusted p - values for the Holm method.



Example: EST mining

e Gene expression in the

glomerulus in the kidney

Libraries of ESTs were
made from both newborn
and adult mouse
glomerulus

Comparison with libraries
from whole kidney to find
glomerulus enrichment

Takemoto et.al.:Large-scale identification
of genes implicated in kidney

glomerulus development and function

He et.al.:Analysis of 15,000 mouse
glomerular EST and identification of

novel glomerular enriched genes



For 573 genes with
more than one EST in
the glomerulus library

— Hypotheses H,,...,Hc5:
there is no diff. exp.

— Comparison between

libraries for each gene:

Test statistics T,,..,Tc-3
from Fisher test.

— We get unadjusted p-
values p,,...,Ps3
— Adjusted p-values
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Sidak adjusted p-values

The function defined by
Fuw=1-1-u)"

computes adjusted p - values for the Sidak method.

If we assume that the components of T () = (T1 0),..., T (9))
are independent, one can easily show that this method controls
FWER at level @. This can also be proven even under

somewhat more general circumstances.



Other procedures controlling FWER

e Hochberg adjusted p-values (on sorted u,):

,,,,,

e There is also a method by Hommel, and
various other methods.

 They all require some assumption about the
dependency in T(O) to control FWER
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The False Discovery Rate (FDR)

In addition to the stochastic variablesV and Z defined above,
N

define a stochastic variable R = Z (1-1.(T(f))), and then
1=1

define Q as follows :

> Hi(@)1- T, (T(©)

when R>0

V _
Q=R

2 (1= (T (&)
0 : otherwise

Then the FDR is defined as the expectation of Q
(for fixed @and f).

As for FWER, we can define adjusted p - values controlling for FDR




Examples

The Benjamini and Hochberg adjustment :

-Sort the indices so that U, S U, <...< Uy,

.....

This controls for FDR under some assumptions

The Benjamini and Yekutieli adjustment :

- Sort the indices so that U, S U, <...< Uy,

.....

This always controls for FDR
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Implementations

e Methods producing adjusted p-values from
unadjusted p-values are easy to implement.

* In R, look at the function p.adjust(...)



Dependencies between test statistics

e The methods above focus on controlling
various types of Type | error rates.

 To improve error bounds further, one needs to
estimate the dependency structure in T(0).

e This can sometimes be done using
permutations of the data, when the test
statistics are invariant under such
permutations, assuming the null hypotheses.



Step-down max T adjusted
p-values (Westfall and Young)

Order hypotheses so that | T| is decreasing
Do permutations of columns of data matrix:

— Compute test statistic for each hypothesis

— Adjust these, starting at the last, so that they are
decreasing

Estimate adjusted p-values as quantiles of observed
|T| in simulated |T|’s for each hypothesis

Enforce that adjusted p-values are increasing



The bioconductor multtest package

e This package implements a number of
methods based on permutation and
simulation:

— Simple p-value adjustments
— Step-down max T
— Step-down min p



Different error rates:

e Family-wise error rate:  FWER=Pr(V >0)
* False discovery rate; FDR=E(V/RIR>0)Pr(R>0)
e Positive false discovery rate: pFDR=E(V/RIR>0)
 Per comparison error rate: PCER=E(V)/N

 Per family error rate: PFER=E(V)

"Strong” control versus "weak” control



Example: SAM: Finding differentially
expressed genes

Order hypotheses so that | T| is decreasing

Use permutations to estimate the expected
decreasing sequence of test statistics, under
complete null hypothesis

Form a qg-plot (SAM-plot) and select genes that are
further than A away from the diagonal

Estimate PFER by averaging over permutations.



5. DUDCIT, 1. P. SHAFFER AND J. C. BOLDRICEK
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Comparisons of methods

e Classical statistical approach: To prove
inequalities for type | error rates for given
procedures

e Practical approach: Find actual error rates for
real data, or under reasonable hypotheses
(simulation studies)
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“"Cheating” with FDR

How:

* You have a number of hypotheses you want to reject,
but p-values are not quite good enough.

e Add to your hypotheses a number of untrue
hypotheses, with low p-values.

e The number of rejections will rise, but not the
number of false rejections, so your FDR improves,
and you “prove” the hypotheses you care about.



