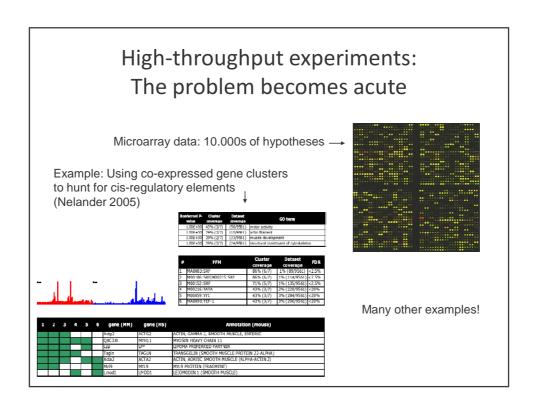
Multiple testing adjustments

mostad@chalmers.se

The multiple testing problem

- "Rejecting a hypothesis at 5% significance level": There is a 5% chance of rejecting a true hypothesis.
- Rejecting 10 hypotheses at 5%: There may be up to 50% chance of an incorrect rejection



Setup and notation:

Let *S* be the sample space of possible realities, and let $\theta \in S$.

Let $H = (H_1, ..., H_N) : S \to \{0,1\}^N$ be a function specifying N "Hypotheses", where $H_i(\theta) = 0$ or 1 means that the hypothesis is false or true, respectively.

For every $\theta \in S$, let $T(\theta) = (T_1(\theta), ..., T_N(\theta))$ be a stochastic variable on $[0,1]^N$ $T(\theta)$ represents the collection of "test statistics", or more accurately the collection of resulting p - values, as we assume:

For any θ and any *i* such that $H_i(\theta) = 1$: $T_i(\theta) \sim UNIFORM[0,1]$

Goal of analysis

Based on the test statistics (or p - values) $T(\theta)$, we want to predict the values of $H(\theta)$. In other words:

For a function $f:[0,1]^N \to \{0,1\}^N$ predicting values for $H(\theta)$ from $T(\theta)$, we study the error, i.e., we study the stochastic variable defined, for given θ and f, by

$$Err(\theta, f) = (V, Z)$$
 where $V = \sum_{i=1}^{N} v_i$ and $Z = \sum_{i=1}^{N} z_i$ where $v_i = H_i(\theta)(1 - f_i(T(\theta)))$ $z_i = (1 - H_i(\theta))f_i(T(\theta))$

Example

The Type I and Type II error rates are, for given values of θ and f, the expectations of V and Z, respectively:

$$E(V) = \sum_{i=1}^{N} E(v_i) = \sum_{i=1}^{N} H_i(\theta) (1 - E(f_i(T(\theta))))$$

$$E(Z) = \sum_{i=1}^{N} E(z_i) = \sum_{i=1}^{N} (1 - H_i(\theta)) E(f_i(T(\theta)))$$

$$E(Z) = \sum_{i=1}^{N} E(z_i) = \sum_{i=1}^{N} (1 - H_i(\theta)) E(f_i(T(\theta)))$$

Note that, as usual, we cannot make computations for Type II errors whithout making more assumptions about the distribution of $T(\theta)$

Example

For a given $\alpha > 0$, define $f_{\alpha} : [0,1]^{N} \to \{0,1\}^{N}$ by

$$f_i(u) = \begin{cases} 0 & u_i < \alpha \\ 1 & u_i \ge \alpha \end{cases}$$

Then

$$E(V) = \sum_{i=1}^{N} H_i(\theta) \alpha \le N\alpha$$

The family-wise error rate (FWER)

The FWER is defined, for given values of θ and f, as the probability Pr(V > 0)

It measures, for the whole "family" of hypotheses, the probability of one or more Type I errors.

EXAMPLE: For f_{α} defined as above, we get

$$FWER = \Pr(V > 0) \le \sum_{i=1}^{N} \Pr(v_i = 1)$$
$$= \sum_{i=1}^{N} H_i(\theta) \Pr(f_i(T(\theta)) = 0) = \sum_{i=1}^{N} H_i(\theta) \alpha \le N\alpha$$

The Bonferroni correction

For a given $\alpha > 0$, define $f_{B,\alpha} : [0,1]^N \to \{0,1\}^N$ by

$$f_i(u) = \begin{cases} 0 & u_i < \alpha/N \\ 1 & u_i \ge \alpha/N \end{cases}$$

Then

$$E(V) = \sum_{i=1}^{N} H_i(\theta) \alpha / N \le \alpha$$
 and

$$FWER = \Pr(V > 0) \le \sum_{i=1}^{N} H_i(\theta) \Pr(f_i(T(\theta)) = 0) = \sum_{i=1}^{N} H_i(\theta) \alpha / N \le \alpha$$

The Bonferroni correction is thus said to control for FWER at level α

The Holm method

For a given $\alpha > 0$, define the Holm method $f_{H,\alpha} : [0,1]^N \to \{0,1\}^N$ by

- Sort the indices so that $u_1 \le u_2 \le ... \le u_N$
- For i = 1,2,..., set $f_i(u) = 0$ as long as $u_i < \frac{\alpha}{N-i+1}$ then set $f_i(u) = 1$ for the rest

We get (by conditioning on $T(\theta)$ and reordering indices) :

$$FWER = \Pr(V > 0) \le \sum_{i=1}^{N} H_i(\theta) \Pr(f_i(T(\theta)) = 0)$$

$$= \sum_{i=j}^{N} H_i(\theta) \frac{\alpha}{N-j+1} \le (N-(j-1)) \frac{\alpha}{N-(j-1)} = \alpha$$

Thus the Holm method controls FWER at level α

Adjusted p-values

Assume a function $f_{M,\alpha}:[0,1]^N \to \{0,1\}^N$ can be written as $f_{M,\alpha}(u) = f_{\alpha}(F(u))$, where f_{α} is the function defined before and $F:[0,1]^N \to [0,1]^N$ is some function. Then F is called a p-value adjustment.

With adjusted p - values, one can "reject" and "accept" Hypotheses just as usual based on the adjusted p - values, while still getting for example control over FWER.

Examples

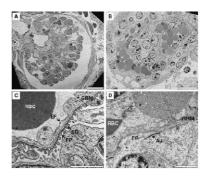
The function

 $F(u_1,...,u_N) = (\min(1, Nu_1),...,\min(1, Nu_N))$ computes adjusted p - values for the Bonferroni method.

The function defined by first ordering p - values in increasing order and then computing $F_j(u) = \max_{k=1,\dots,j} \left(\min(1, (N-k+1)u_k) \right)$ computes adjusted p - values for the Holm method.

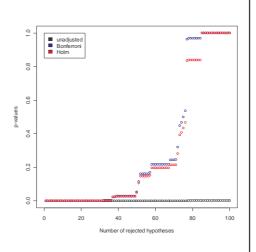
Example: EST mining

- Gene expression in the glomerulus in the kidney
- Libraries of ESTs were made from both newborn and adult mouse glomerulus
- Comparison with libraries from whole kidney to find glomerulus enrichment



Takemoto et.al.:Large-scale identification of genes implicated in kidney glomerulus development and function He et.al.:Analysis of 15,000 mouse glomerular EST and identification of novel glomerular enriched genes

- For 573 genes with more than one EST in the glomerulus library
 - Hypotheses H₁,...,H₅₇₃: there is no diff. exp.
 - Comparison between libraries for each gene: Test statistics T₁,..,T₅₇₃ from Fisher test.
 - We get unadjusted pvalues p₁,...,p₅₇₃
 - Adjusted p-values



Sidák adjusted p-values

The function defined by

$$F_i(u) = 1 - (1 - u_i)^N$$

computes adjusted p - values for the Sidák method.

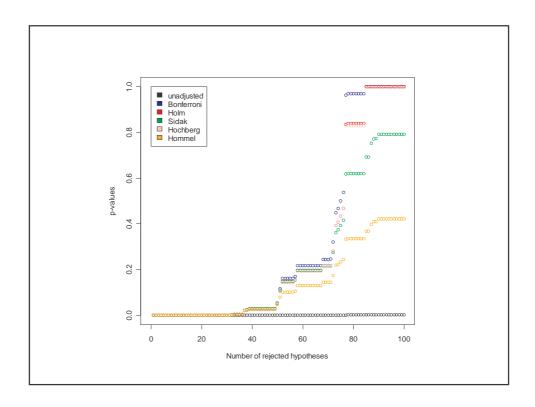
If we assume that the components of $T(\theta) = (T_1(\theta),...,T_N(\theta))$ are independent, one can easily show that this method controls FWER at level α . This can also be proven even under somewhat more general circumstances.

Other procedures controlling FWER

• Hochberg adjusted p-values (on sorted u_k):

$$F_i(u) = \min_{k=i,...,N} [\min((N-k+1)u_k,1)]$$

- There is also a method by Hommel, and various other methods.
- They all require some assumption about the dependency in T(θ) to control FWER



The False Discovery Rate (FDR)

In addition to the stochastic variables V and Z defined above, define a stochastic variable $R = \sum_{i=1}^{N} (1 - f_i(T(\theta)))$, and then define Q as follows:

$$Q = \begin{cases} \frac{V}{R} = \frac{\sum_{i=1}^{N} H_i(\theta)(1 - f_i(T(\theta)))}{\sum_{i=1}^{N} (1 - f_i(T(\theta)))} & \text{when } R > 0 \\ 0 & \text{otherwise} \end{cases}$$

Then the FDR is defined as the expectation of Q (for fixed θ and f).

As for FWER, we can define adjusted p - values controlling for FDR

Examples

The Benjamini and Hochberg adjustment:

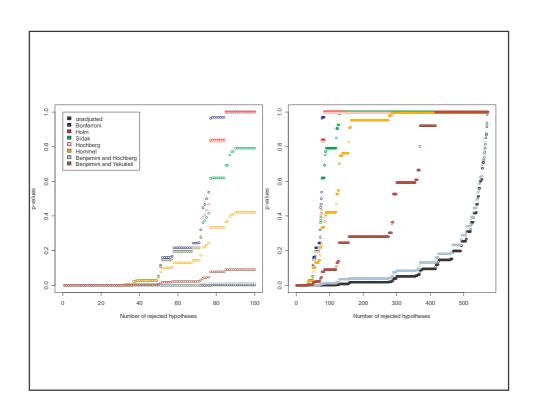
- Sort the indices so that $u_1 \le u_2 \le ... \le u_N$
- Define $F_i(u) = \min_{k=1,\dots,N} \left(\min(\frac{N}{k} u_k, 1) \right)$

This controls for FDR under some assumptions

The Benjamini and Yekutieli adjustment:

- Sort the indices so that $u_1 \le u_2 \le ... \le u_N$
- Define $F_i(u) = \min_{k=1,...,N} \left(\min(\frac{N}{k}(1 + \frac{1}{2} + ... + \frac{1}{N})u_k, 1) \right)$

This always controls for FDR



Implementations

- Methods producing adjusted p-values from unadjusted p-values are easy to implement.
- In R, look at the function **p.adjust(...)**

Dependencies between test statistics

- The methods above focus on controlling various types of Type I error rates.
- To improve error bounds further, one needs to estimate the dependency structure in $T(\theta)$.
- This can sometimes be done using permutations of the data, when the test statistics are invariant under such permutations, assuming the null hypotheses.

Step-down max T adjusted p-values (Westfall and Young)

- Order hypotheses so that |T| is decreasing
- Do permutations of columns of data matrix:
 - Compute test statistic for each hypothesis
 - Adjust these, starting at the last, so that they are decreasing
- Estimate adjusted p-values as quantiles of observed
 |T| in simulated |T|'s for each hypothesis
- Enforce that adjusted p-values are increasing

The bioconductor multtest package

- This package implements a number of methods based on permutation and simulation:
 - Simple p-value adjustments
 - Step-down max T
 - Step-down min p

— ...

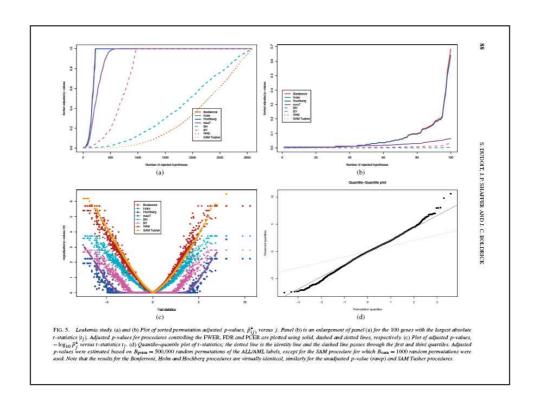
Different error rates:

- Family-wise error rate: FWER = Pr(V > 0)
- False discovery rate: FDR = E(V/R|R>0)Pr(R>0)
- Positive false discovery rate: pFDR = E(V / R | R > 0)
- Per comparison error rate: PCER = E(V)/N
- Per family error rate: PFER = E(V)

"Strong" control versus "weak" control

Example: SAM: Finding differentially expressed genes

- Order hypotheses so that |T| is decreasing
- Use permutations to estimate the expected decreasing sequence of test statistics, under complete null hypothesis
- Form a qq-plot (SAM-plot) and select genes that are further than Δ away from the diagonal
- Estimate PFER by averaging over permutations.



Comparisons of methods

- Classical statistical approach: To prove inequalities for type I error rates for given procedures
- Practical approach: Find actual error rates for real data, or under reasonable hypotheses (simulation studies)

References

- Dudoit, Shaffer, Boldrick: "Multiple Hypothesis Testing in Microarray Experiments" (Stat. Sci. 2003)
- www.r-project.org, www.bioconductor.org
- Scott, Berger: "An exploration of aspects of Bayesian multiple testing" (2003)

"Cheating" with FDR

How:

- You have a number of hypotheses you want to reject, but p-values are not quite good enough.
- Add to your hypotheses a number of untrue hypotheses, with low p-values.
- The number of rejections will rise, but not the number of false rejections, so your FDR improves, and you "prove" the hypotheses you care about.