
Big Data Research 9 (2017) 28–46
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Random Forests for Big Data

Robin Genuer a, Jean-Michel Poggi b, Christine Tuleau-Malot c, Nathalie Villa-Vialaneix d,∗
a ISPED, INSERM U-1219, Univ. Bordeaux & INRIA, SISTM team, France
b LMO, Univ. Paris-Sud Orsay & Univ. Paris Descartes, France
c Université Côte d’Azur, CNRS, LJAD, France
d MIAT, Université de Toulouse, INRA, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 November 2016
Received in revised form 2 June 2017
Accepted 7 July 2017
Available online 23 August 2017

Keywords:
Random forest
Big Data
Parallel computing
Bag of little bootstraps
On-line learning
R

Big Data is one of the major challenges of statistical science and has numerous consequences from
algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include
online data and data heterogeneity. Recently some statistical methods have been adapted to process Big
Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision
trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman
in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and
versatile framework regression problems, as well as two-class and multi-class classification problems.
Focusing on classification problems, this paper proposes a selective review of available proposals that
deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or
on online adaptations of random forests. We also describe how out-of-bag error is addressed in these
methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we
experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one
as well as real world data. One variant relies on subsampling while three others are related to parallel
implementations of random forests and involve either various adaptations of bootstrap to Big Data or
“divide-and-conquer” approaches. The fifth variant is related to online learning of random forests. These
numerical experiments lead to highlight the relative performance of the different variants, as well as
some of their limitations.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Statistics in the Big Data world

Big Data is one of the major challenges of statistical science and
a lot of recent references start to think about the numerous con-
sequences of this new context from the algorithmic viewpoint and
for the theoretical implications of this new framework [1–3]. Big
Data always involve massive data: for instance, Thusoo et al. [4]
indicate that Facebook© had more than 21 PB of data in 2010.
They also often include data streams and data heterogeneity [5].
On a practical point of view, they are characterized by the fact
that data are frequently not structured data, properly indexed in
a database. Thus, simple queries cannot be easily performed on
such data. These features lead to the famous three Vs (Volume,
Velocity and Variety) highlighted by the Gartner, Inc., the advisory

* Corresponding author.
E-mail addresses: robin.genuer@u-bordeaux.fr (R. Genuer),

jean-michel.poggi@math.u-psud.fr (J.-M. Poggi), malot@unice.fr (C. Tuleau-Malot),
nathalie.villa-vialaneix@inra.fr (N. Villa-Vialaneix).
http://dx.doi.org/10.1016/j.bdr.2017.07.003
2214-5796/© 2017 Elsevier Inc. All rights reserved.
company about information technology research,1 now often aug-
mented with other Vs [6]. In the most extreme situations, data
can even have a size too large to fit in a single computer mem-
ory. Then data are distributed among several computers. In this
case, the distribution of the data is managed using specific frame-
works dedicated to shared storage computing environments, such
as Hadoop.2

For statistical science, the problem posed by this large amount
of data is twofold: first, as many statistical procedures have de-
voted few attention to computational runtimes, they can take too
long to provide results in an acceptable time. When dealing with
complex tasks, such as learning a prediction model or perform-
ing a complex exploratory analysis, this issue can occur even if the
dataset would be considered of a moderate size for other simpler

1 http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-
Controlling-Data-Volume-Velocity-and-Variety.pdf.

2 Hadoop, http :/ /hadoop .apache .org is a software environment programmed in
Java, which contains a file system for distributed architectures (HDFS: Hadoop Dis-
tributed File System) and dedicated programs for data analysis in parallel environ-
ments. It has been developed from GoogleFS, The Google File System.

http://dx.doi.org/10.1016/j.bdr.2017.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:robin.genuer@u-bordeaux.fr
mailto:jean-michel.poggi@math.u-psud.fr
mailto:malot@unice.fr
mailto:nathalie.villa-vialaneix@inra.fr
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://hadoop.apache.org
http://dx.doi.org/10.1016/j.bdr.2017.07.003
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2017.07.003&domain=pdf

R. Genuer et al. / Big Data Research 9 (2017) 28–46 29
tasks. Also, as pointed out in [7], the notion of Big Data depends
itself on the available computing resources. This is especially true
when relying on the free statistical software R [8], massively used
in the statistical community, which capabilities are strictly limited
by RAM. In this case, data can be considered as “large” if their size
exceeds 20% of RAM and as “massive” if it exceeds 50% of RAM,
because this amount of data strongly limits the available memory
for learning the statistical model itself. For memory demanding
statistical methods and implementations, the RAM can even be
overloaded with datasets occupying a very moderate amount of
the RAM. As pointed out in [3], in the near future, statistics will
have to deal with problems of scale and computational complexity
to remain relevant. In particular, the collaboration between statis-
ticians and computer scientists is needed to control runtimes that
will maintain the statistical procedures usable on large-scale data
while ensuring good statistical properties.

1.2. Main approaches to scale statistical methods

Recently, some statistical methods have been adapted to pro-
cess Big Data, including linear regression models, clustering meth-
ods and bootstrapping schemes [9,10]. The main proposed strate-
gies are based on i) subsampling, ii) divide and conquer approach, iii)
algorithm weakening and iv) online processing.

Subsampling is probably the simplest way to handle large
datasets. It is proved efficient to approximate spectral analysis of
large matrices using an approximate decomposition, such as the
Nyström algorithm [11]. It is also a valuable strategy to produce
an approximate bootstrap scheme [12]. Simple random sampling
often produces a representative enough subsample but can be hard
to obtain if data are distributed over different computers and the
subsample itself has to be built in parallel: online subsampling
strategies allowing stratified sampling are presented in [13] and
can overcome this problem. Improved subsampling strategies can
also be designed, like the core-set strategy used for clustering
problems in [14], that extracts a relevant small set of points to
perform approximate clustering efficiently. Finally, an alternative
to alleviate the impact of the subsampling without the need to
use sophisticated subsampling schemes is to perform several sub-
samplings and to combine the different results [15].

Divide and conquer approach consists in splitting the problem
into several smaller problems and in gathering the different results
in a final step. This approach is the one followed in the popu-
lar MapReduce programming paradigm [16]. Most of the time, the
combination is based on a simple aggregation or averaging of the
different results but this simple method might lead to biased es-
timations in some statistical models, as simple as a linear model.
Solutions include re-weighting the different results [17].

Algorithm weakening is a very different approach, designed for
methods based on convex optimization problems [18]. This method
explicitly treats the trade-off between computational time and sta-
tistical accuracy using a hierarchy of relaxed optimization prob-
lems with increasing complexity.

Finally, online approaches update the results with sequential
steps, each having a low computational cost. It very often requires
a specific rewriting of the method to single out the specific con-
tribution of a given observation to the method. In this case, the
online update is strictly equivalent to the processing of the whole
dataset but with a reduced computational time [19]. However, in
most cases, such an equivalence can not be obtained and a modi-
fication of the original method is needed to allow online updates
[20].

It has to be noted that only a few papers really address the
question of the difference between the “small data” standard
framework compared to the Big Data in terms of statistical accu-
racy when approximate versions of the original approach are used
to deal with the large sample size. Noticeable exceptions are the
article of Kleiner et al. [12] who prove that their “Bag of Little
Bootstraps” method is statistically equivalent to the standard boot-
strap, the article of Chen and Xie [17] who demonstrate asymptotic
equivalence of their “divide-and-conquer” based estimator with the
estimator based on all data in the setting of linear regression and
the article of Yan et al. [11] who show that the mis-clustering
rate of their subsampling approach, compared to what would have
been obtained with a direct approach on the whole dataset, con-
verges to zero when the subsample size grows (in an unsupervised
setting).

1.3. Random forests and Big Data

Based on decision trees and combined with aggregation and
bootstrap ideas, random forests (abbreviated RF in the sequel),
were introduced by Breiman [21]. They are a powerful nonpara-
metric statistical method allowing to consider regression problems
as well as two-class and multi-class classification problems, in a
single and versatile framework. The consistency of RF has recently
been proved by Scornet et al. [22], to cite the most recent result.
On a practical point of view, RF are widely used [23,24] and ex-
hibit extremely high performance with only a few parameters to
tune. Since RF are based on the definition of several independent
trees, it is thus straightforward to obtain a parallel and faster im-
plementation of the RF method, in which many trees are built in
parallel on different cores. However, direct parallel training of the
trees might be intractable in practice, due to the large size of the
bootstrap samples. As RF also include intensive resampling, it is
natural to consider adapted bootstrapping schemes for the massive
online context, in addition to parallel processing.

Even if the method has already been adapted and implemented
to handle Big Data in various distributed environments (see, for in-
stance, the libraries Mahout3 or MLib, the latter for the distributed
framework Spark,4 among others), a lot of questions remain open.
In this paper, we do not seek to make an exhaustive description of
the various implementations of RF in scalable environments but we
will highlight some problems posed to RF by the Big Data frame-
work, describe several standard strategies that can be used and
discuss their main features, drawbacks and differences with the
original approach. We finally experiment five variants on two mas-
sive datasets (15 and 120 millions of observations), a simulated
one as well as real world data. One variant relies on subsampling
while three others are related to parallel implementations of ran-
dom forests and involve either various adaptations of bootstrap to
Big Data or “divide-and-conquer” approaches. The fifth variant re-
lates to online learning of RF. To the best of our knowledge, no
weakening strategy has been developed for RF.

Since the free statistical software R [8] is de facto the es-
peranto in the statistical community, and since the most flexible
and widely used programs for designing random forests are also
available in R, we have adopted it for numerical experiments as
much as possible. More precisely, the R package randomForest,
implementing the original RF algorithm using Breiman and Cut-
ler’s Fortran code, contains many options together with a detailed
documentation. It has then been used in almost all experiments.
The only exception is for online RF for which no implementation
in R is available. A python library was used, as an alternative tool
in order to provide a comparison of online learning with the alter-
native Big Data variants.

The paper is organized as follows. After this introduction, we
briefly recall some basic facts about RF in Section 2. Then, Sec-
tion 3 is focused on strategies for scaling random forests to Big

3 https :/ /mahout .apache .org.
4 https :/ /spark.apache .org /mllib.

https://mahout.apache.org
https://spark.apache.org/mllib

30 R. Genuer et al. / Big Data Research 9 (2017) 28–46
Fig. 1. Left: a classification tree allowing to predict the class label corresponding to a given x-value. Right: the associated partition of the predictor space.
Data: some proposals about RF in parallel environments are re-
viewed, as well as a description of online strategies. The section
includes a comparison of the features of every method and a dis-
cussion about the estimation of the out-of-bag error. Section 4 is
devoted to numerical experiments on two massive datasets, an ex-
tensive study on a simulated one and an application to real world
data. Finally, Section 5 collects some conclusions and discusses two
open perspectives.

2. Random forests

Denoting by L = {(x1, y1), . . . , (xn, yn)} a learning set of inde-
pendent observations of the random vector (X, Y), we distinguish
X = (X1, ..., X p) where X ∈ R p is the vector of the predictors (or
explanatory variables) from Y ∈ Y the explained variable, where Y
is either a class label for classification problems or a numerical re-
sponse for regression ones. A classifier s is a mapping s : R p → Y
while the regression function appears naturally to be the function
s when we suppose that Y = s(X) + ε with E[ε|X] = 0. RF provide
estimators of either the Bayes classifier, which minimizes the clas-
sification error P (Y �= s(X)), or of the regression function [25,26].
RF are a learning method for classification and regression based on
the CART (Classification and Regression Trees) method defined by
Breiman et al. [27]. The left part of Fig. 1 provides an example of
a classification tree. Such a tree allows to predict the class label
corresponding to a given x-value by simply starting from the root
of the tree (at the top of the left part of the figure) and by an-
swering the questions, all being a comparison of a single variable
in X to a given threshold, until a leaf is reached. The predicted
class is then the value labeling the leaf. Such a tree is a classifier s
which allows to predict a y-value for any given x-value. This clas-
sifier is the function which is piecewise constant on the partition
described in the right part of Fig. 1. Note that splits are parallel
to the axes defined by the original variables leading to an additive
model.

The growing of CART is performed iteratively starting from the
root of the tree. The split of a given node is defined by the choice
of one variable in X and of one threshold value in the range of
this variable that provide the greatest homogeneity in terms of Y
value to child nodes. The decision associated to a given leaf is ei-
ther the average value of Y for the observations in the training set
associated to this leaf (regression case) or the most common value
of Y (classification case).

While CART is a well-known way to design optimal single trees
by performing first a growing step and then a pruning one, the
principle of RF is to aggregate many binary decision trees obtained
by two random perturbation mechanisms: the use of bootstrap
samples (obtained by randomly selecting n observations with re-
placement from learning set L) instead of the whole sample L
and the construction of a randomized tree predictor instead of
CART on each bootstrap sample. For regression problems, the ag-
gregation step involves averaging individual tree predictions, while
for classification problems, it involves performing a majority vote
among individual tree predictions. The construction is summarized
in Fig. 2. The standard method will be denoted by seqRF in the
sequel.

However, trees in RF have two main differences with respect to
CART trees: first, in the growing step, at each node, a fixed number
of input variables are randomly chosen and the best split is calcu-
lated only among them, and secondly, no pruning is performed.

In the next section, we will explain that most proposals made
to adapt RF to Big Data often consider the original RF proposed by
Breiman as an object that simply has to be mimicked in the Big
Data context. Later in this article, we will see that alternatives to
this vision are possible. Some of these alternatives rely on other
ways to re-sample the data and others are based on variants in
the construction of the trees.

We will concentrate on the prediction performance of RF, focus-
ing on out-of-bag (OOB) error. Notations used in this section are
given in Table 1. For each tree t of the forest, OOBt is the associ-
ated OOB sample (composed of data not included in the bootstrap
sample used to construct t) and, in the classification case, the OOB
error rate of the forest is defined by:

errForest = 1

n
Card

{
i ∈ {1, . . . ,n} | yi �= ŷi

}
, (1)

where ŷi is the most frequent label predicted by trees t for which
observation i is in OOBt .

The OOB error is also used to quantify the variable importance
(VI in the sequel), which is crucial for many procedures involv-
ing RF, e.g., for ranking the variables before a stepwise variable
selection strategy (see [28]). More precisely, if errTreet is the error
(misclassification rate for classification) of tree t on its associated
OOBt sample, the variable importance is obtained by randomly
permuting the values of X j in OOBt . A perturbed sample is ob-

tained for which the error of tree t can be computed, ˜errTreet
j
.

The variable importance of X j is then equal to:

VI(X j) = 1

Q

∑
(˜errTreet

j − errTreet),
t

R. Genuer et al. / Big Data Research 9 (2017) 28–46 31
Fig. 2. RF construction scheme: starting from the dataset (left of the figure), generate bootstrap samples (by randomly selecting n observations with replacement from the
learning set L) and learn corresponding randomized binary decision trees. Finally aggregate them.
Table 1
Notations used in Section 2.

Notation Used for

n number of observations in the dataset
Q number of trees in the RF classifier
t a tree in the RF classifier
OOBt set of observations out-of-bag for the tree t
errTreet misclassification rate for observations in OOBt made by t
˜errTree

j

t misclassification rate for observations OOB for t
after a random permutations of values of X j

ŷi OOB prediction of observation xi

(aggregation of predictions made by trees t such that i ∈ OOBt)
errForest OOB misclassification rate for the RF classifier
VI(X j) variable importance of X j

where the sum is over all trees t of the RF and Q denotes the
number of trees.

3. Scaling random forests to Big Data

This section discusses the different strategies that can be used
to scale RF to Big Data. These strategies differ from the original
method, seqRF, at two different levels. The first difference stands
in the implementation, that can be either sequential, using only
one computational process (as in the original method), or parallel.
The direct implementation of RF in parallel is denoted by parRF
but is very limited if the sample size is large because it requires
to handle in parallel several bootstrap samples of the same size
than the original dataset. Thus, variants of the bootstrap step are
also introduced. The first and the most simple approach to reduce
the bootstrap sample size is subsampling, denoted by sampRF in
the sequel, that can be combined either with sequential or par-
allel implementations. Alternatively, three other variants rely on
a parallel implementation of RF (moonRF, blbRF and dacRF) and
include an adaptation of bootstrapping schemes to Big Data or a
divide-and-conquer approach. Finally, a different (and not equiva-
lent) approach based on the online processing of data is also de-
scribed, onRF. This method adapts the bootstrapping scheme and
the growing step of the trees to allow online learning and is natu-
rally designed to be run sequentially.

The names of the different methods, the references to the sec-
tions in which they are discussed and their main features are
summarized in Table 2.

In addition, the section will use the following notations: RF
will denote the random forest method (in a generic sense) or the
final random forest classifier itself, obtained from the various ap-
Table 2
Names, references and main features of the different variants of RF described in this
article.

Name Described in Bootstrapping method Parallel computing

seqRF 2 standard bootstrap no
Sequential RF

parRF 3.2 standard bootstrap yes
Parallel computation of RF

sampRF 3.1 subsampling +
standard bootstrap

can be
but not criticalSampling RF

moonRF 3.2.1 m-out-of-n bootstrap yes
m-out-of-n RF

blbRF 3.2.1 Big Data bootstrap yes
Bag of Little bootstraps RF

dacRF 3.2.2 splitting +
standard bootstrap

yes
Divide-and-conquer bootstrap

onRF 3.3 online bootstrap no
Online RF

proaches described in this section. The number of trees in the final
classifier RF is denoted by Q , n is the number of observations of
the original dataset and, when a subsample is taken in this dataset
(either with or without replacement), it is denoted by τl (l iden-
tifies the subsample when several subsamples are used). Its size
is usually denoted by m. When different processes are run in par-
allel, the number of processes is denoted by K . Depending on the
method, this can lead to learn smaller RF with q < Q trees that are
denoted by RF(q)

l , in which l is an index that identifies the smaller
RF. The notation ∪K

l=1RF(q)

l will be used for the classifier obtained
from the aggregation of K smaller RF with q trees each into a RF
with qK trees. Similarly, tl denotes a tree, identified by the index l
and ∪q

l=1tl denotes the RF obtained from the aggregation of the q
trees t1, . . . , tq . Additional notations used in this section are sum-
marized in Table 3.

3.1. Sub-sampling RF (sampRF)

Meng [13] points the fact that using all data is probably not
required to obtain accurate estimations in learning methods and
that sampling approaches is an important and reliable way to deal
with Big Data. The simple idea behind sampling is to subsample m
observations out of n without replacement in the original sample
(with m � n) and to use the original algorithm (either seqRF or

32 R. Genuer et al. / Big Data Research 9 (2017) 28–46
Table 3
Notations used in Section 3.

Notation Used for

τl subsample of the observations in the dataset
m number of observations in subsamples
RF final random forest classifier
Q number of trees in the final random forest classifier
K number of processes run in parallel
q number of trees in intermediate (smaller) random forests

RF(q)

l RF number l with q trees

∪K
l=1RF(q)

l aggregation of K RF with q trees in a single classifier
tl tree identified by the index l
∪q

l=1tl aggregation of q trees in an RF classifier

Fig. 3. Sub-sampling RF (sampRF): m observations out of n are randomly selected
without replacement and the original RF algorithm (seqRF) or its parallel version
(parRF) described in Section 3.2 are used to obtain a final RF with Q trees. The
difference with the standard seqRF is underlined and highlighted in pink. (For in-
terpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the parallel implementation, parRF, described in Section 3.2) to
process this subsample. This method is illustrated in Fig. 3.

Subsampling is a natural method for statisticians and it is ap-
pealing since it strongly reduces memory usage and computational
efforts. However, it can lead to serious biases if the subsample
is not carefully designed. More precisely, the need to control the
representativeness of the subsampling is crucial. Random subsam-
pling is usually adequate for such tasks, providing the fact that the
sampling fraction is large enough. However, in the Big Data world,
datasets are frequently not structured and indexed. In this situa-
tion, random subsampling can be a difficult task [13].

Section 4 provides various insights on the efficiency of subsam-
pling, on the effect of the sampling fraction and on the repre-
sentativeness of the subsample on the accuracy of the obtained
classifier. The next section investigates approaches which try to
make use of a wider proportion of observations in the dataset us-
ing efficient computational strategies.

3.2. Parallel implementations of random forests

As pointed in the introduction, RF offer a natural framework
for handling Big Data. Since the method relies on bootstrapping
and on the independent construction of many trees, it is naturally
suited for parallel computation. Instead of building all Q bootstrap
samples and trees sequentially as in seqRF, bootstrap samples and
trees (or sets of a small number of bootstrap samples and trees)
can be built in parallel. In the sequel, we will denote by parRF the
approach in which the Q trees of a RF are processed in parallel.
seqRF and parRF implementations are illustrated in Fig. 4 (left and
right, respectively). Using the parRF approach, one can hope for a
computational time factor decrease of approximately K between
seqRF and parRF.

However, as pointed in [12], since the expected size of a boot-
strap sample built from {1, . . . , n} is approximately 0.63n, the need
to process hundreds of such samples in parallel is hardly feasible in
practice when n is very large. Moreover, in the original algorithm
from [21], the trees that composed the RF are fully developed
trees, which means that the trees are grown until every termi-
nal node (leaf) is perfectly homogeneous regarding the values of Y
for the observations that fall in this node. When n is large, and es-
pecially in the regression case, this leads to very deep trees which
are all computationally very expensive and memory demanding.
They can even be difficult to use for prediction purpose. However,
as far as we know, no study addresses the question of the impact
of controlling and/or tuning the maximum number of nodes in the
RF trees.

The next subsection presents alternative solutions to address
the issue of large size bootstrap samples while relying on the
natural parallel background of RF. More precisely, we will dis-
cuss alternative bootstrap schemes for RF (m-out-of-n bootstrap
RF, moonRF, and Bag of Little Bootstraps RF, blbRF) and a divide-
and-conquer approach, dacRF. A last subsection will describe and
comment on the mismatches of each of these approaches with the
standard RF method, seqRF or parRF.

3.2.1. Alternative bootstrap schemes for RF (moonRF and blbRF)
To avoid selecting only some of the observations in the original

big dataset, as it is done in sampRF (Fig. 3), some authors have
focused on alternative bootstrap schemes aiming at reducing the
Fig. 4. Sequential (left) and parallel (right) implementations of the standard RF algorithm. RF is the final random forest with Q trees. parRF builds Q trees in parallel.
Difference in parRF compared to the standard seqRF is underlined and highlighted in pink. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

R. Genuer et al. / Big Data Research 9 (2017) 28–46 33
Fig. 5. m-out-of-n RF (moonRF): Q samples without replacement, with m observations out of n, are randomly built in parallel and a tree is learned from each of these sam-
ples. The Q trees are then aggregated to obtain a final RF with Q trees. The differences with the standard seqRF are underlined and highlighted in pink. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Bag of Little Bootstraps RF (blbRF). In this method, a subsampling step, performed K times in parallel, is followed by an oversampling step which aims at building q
trees for each subsample, all obtained from a bootstrap sample of size n of the original data. All the trees are then gathered into a final random forest, RF. The differences
with the standard seqRF are underlined and highlighted in pink. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
number of different observations of each bootstrap samples. [29]
propose the m-out-of-n bootstrap that proceeds by building boot-
strap samples with only m observations taken without replacement
in {1, . . . , n} (for m � n). This method is illustrated in Fig. 5.

Initially designed to address the computational burden of stan-
dard bootstrapping, the method performance is strongly dependent
on a convenient choice of m and the data-driven scheme proposed
in [30] for the selection of m requires to test several different val-
ues of m and eliminates computational gains.

More recently, an alternative to m-out-of-n bootstrap called
“Bag of Little Bootstraps” (BLB) has been described in [12]. This
method aims at building bootstrap samples of size n, each one
containing only m � n different observations. The size of the boot-
strap sample is the classical one (n), thus avoiding the problem of
the bias involved by m-out-of-n bootstrap methods. The approach
is illustrated in Fig. 6.

It proceeds by two steps: in a first step, K subsamples,
(τl)l=1,...,K , are obtained, with m observations each, that are taken
randomly without replacement from the original observations. In
a second step, each of these subsamples is used to obtain a forest,
RF(q)

l with q = Q
K trees. But instead of taking bootstrap samples

from τl , the method uses over-sampling and, for all i ∈ τl , com-
putes weights, nl , from a multinomial distribution with parameters
i
n and 1
m 1m , where 1m is a vector with m entries equal to 1. These

weights satisfy
∑

i∈τl
nl

i = n and a bootstrap sample of the origi-

nal dataset is thus obtained by using nl
i times each observation i

in τl . For each τl , q such bootstrap samples are built to learn q
trees. These trees are aggregated in a random forest RF(q)

l . Finally,
all these (intermediate) random forests with q trees are gathered
together in a RF with Q = qK trees. The processing of this method
is thus simplified by a smart weighting scheme and is manage-
able even for very large n because all bootstrap samples contain
only a small number (at most m) of unique observations from
the original dataset. The number m is typically of the order nγ for
γ ∈ [0.5, 1], which can be very small compared to the typical num-
ber of unique observations (about 0.63n) of a standard bootstrap
sample. Interestingly, this approach is well supported by theoreti-
cal results because the authors of [12] prove its equivalence with
the standard bootstrap method.

3.2.2. Divide-and-conquer RF (dacRF)
A standard alternative to deal with massive datasets while not

using subsampling is to rely on a “divide-and-conquer” strategy.
The large problem is divided into simpler subproblems and the so-
lutions are aggregated together to solve the original problem. The

34 R. Genuer et al. / Big Data Research 9 (2017) 28–46
Fig. 7. divide-and-conquer RF (dacRF). In this method, the original dataset is partitioned into K subsets. A random forest with q trees is built from each of the subsets and
all the forests are finally aggregated in a final random forest, RF. The differences with the standard seqRF are underlined and highlighted in pink. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
approach is illustrated in Fig. 7: the data are split into small sub-
samples, or chunks, of data, (xi, yi)i∈τl , with ∪lτl = {1, . . . , n} and
τl ∩ τl′ = ∅.

Each of these data chunks is processed in parallel and yields
to the learning of an intermediate RF having a reduced number of
trees. Finally, all these sub-forests are simply aggregated together
to define the final RF.

As indicated in [31], this approach is the standard MapRe-
duce version of RF, implemented in the ApacheTM library Mahout.
MapReduce is a method that proceeds by two steps: in a first
step, called the Map step, the dataset is split into several smaller
chunks of data, (xi, yi)i∈τk , with ∪kτk = {1, . . . , n} and τk ∩ τk′ = ∅,
each one being processed by a separate core. These different Map
jobs are independent and produce a list of couples of the form
(key, value), where “key” is a key indexing the data that are con-
tained in “value”. In the RF case, the output key is always equal
to 1 and the output value is the sub-forest learned from the cor-
responding chunk. Then, in a second step, called the Reduce step,
each reduce job proceeds all the outputs of the Map jobs that cor-
respond to a given key value. This step is skipped in the RF case
since the output of the different Map jobs are simply aggregated
together to produce the final RF. The MapReduce paradigm takes
advantage of the locality of data to speed the computation. Each
Map job usually processes the data stored in a close proximity to
its computational unit. As discussed in the next section and illus-
trated in Section 4.4, this can yield to biases in the resulting RF.

3.2.3. Mismatches with original RF
In this section, we want to stress the differences between the

previously proposed parallel solutions and the original algorithm.
Two methods will be said “equivalent” when they would provide
similar results when used on a given dataset, up to the random-
ness in bootstrap sampling. For instance, seqRF and parRF are
equivalent since the only difference between the two methods is
the sequential or parallel learning of the trees. sampRF and dacRF
are not equivalent to seqRF and are both strongly dependent on
the representativeness of the dataset. This is the standard issue
encountered in survey approaches for sampRF but it is also a se-
rious limitation of dacRF despite the fact that this method uses
all observations. Indeed, if data are thrown in the different chunks
with no control on the representativeness of the subsamples, data
chunks might well be specific enough to produce very heteroge-
neous sub-forests: there would be no meaning in simply averaging
all those trees together to make a global prediction. This is es-
pecially an issue when using the standard MapReduce paradigm
Table 4
Summary of the main features in the variants of the random forest algorithm (ex-
cluding online RF, onRF).

Can be computed
in parallel

Bootstrap
sample size

Expected nb of �= obs.
in bootstrap samples

seqRF yes n 0.63n
parRF (parRF)

sampRF yes but not
critical

m 0.63m

moonRF yes m m

blbRF yes n m
[

1 −
(

m−1
m

)n]

dacRF yes n
K 0.63 n

K

since, as noted by Laptev et al. [15], data are rarely ordered ran-
domly in the Big Data world. On the contrary, items are rather
clustered on some particular attributes and are often placed next
to each other on disk. In this situation, the data locality property
of MapReduce thus leads to very biased data chunks.

Moreover, as pointed out by Kleiner et al. [12], another limita-
tion of sampRF and of dacRF, but also of moonRF, comes from
the fact that each tree is built from a bootstrap sample of size
m. The success of m-out-of-n bootstrap samples is highly condi-
tioned by the choice of m: [29] reports results for m of order
O(n) for successful m-out-of-n bootstrap. Bag of Little Bootstraps
is an appealing alternative since the bootstrap sample size is the
standard one (n). Moreover, in a different framework, [12] demon-
strates a consistency result of the standard bootstrap estimation
for m =O(

√
n) and K ∼ n

m (when n tends to +∞).
In addition, some important features of all these approaches are

summarized in Table 4. A desirable property for a high computa-
tional efficiency is that the number of different observations in the
bootstrap samples is as small as possible.

3.2.4. Out-of-bag error and variable importance measure
OOB error and VI are important diagnostic tools to help the

user understand the RF accuracy and to perform variable selec-
tion. However, these quantities may be unavailable directly (or in a
standard manner) in the RF variants described in the previous sec-
tions. This comes from the fact that sampRF, moonRF and blbRF
use a prior subsampling step of m observations. The RF (or the
subforests) based on this subsample has (have) not a direct access
to the remaining n − m observations that are always out-of-bag
and should, in theory, be considered for OOB computation. In gen-
eral, OOB error (and thus VI) cannot be obtained directly while

R. Genuer et al. / Big Data Research 9 (2017) 28–46 35
Table 5
Notations used in Section 3.2.4.

Notation Used for

K number of subsamples
(equivalent to the number of processes run in parallel here)

q number of trees in intermediate (smaller) random forests
ŷl

i OOB prediction for observation i ∈ τl by forest obtained from τl

errForestl OOB error of RF(q)

l restricted to τl

ŷ−l
i prediction for observation i ∈ τl by forests (RF(q)

l′)l′ �=l

BDerrForest approximation of OOB in sampRF, blbRF, moonRF and dacRF

the RF is trained. A similar problem occurs for dacRF in which all
sub-forests based on a given chunk of data are unaware of data
in the other chunks. In dacRF, it can even be memory costly to
record which data have been used in each chunk to obtain OOB
afterwards. Moreover, even in the case where this information is
available, all RF alternatives presented in the previous sections,
sampRF, moonRF, blbRF and dacRF, require to obtain the predic-
tions for approximately n − rm OOB observations (with r = 0.63

for sampRF and dacRF, r = 1 for moonRF and r = 1 −
(

m−1
m

)n
for

blbRF) for all trees, which can be a computationally extensive task.
In this section, we present a first approximation of OOB error

that can naturally be designed for sampRF and dacRF, and a sec-
ond approximation for moonRF and blbRF. Additional notations
used in this section are summarized in Table 5.

OOB error approximation for sampRF and dacRF. As previously,
(τl)l=1,...,K denote the subsamples of data, each of size m, used
to build independent sub-forests in parallel (with K = 1 for sam-
pRF). Using each of these samples, a sub-forest with Q (sampRF)
or q = Q

K (dacRF) trees is defined, for which an OOB prediction, re-
stricted to observations in τl , can be calculated: ŷl

i is obtained by a
majority vote on the trees of the sub-forest built from a bootstrap
sample of τl for which i is OOB.

An approximation of the OOB error of the sub-forest learned
from sample τl can thus be obtained with errForestl = 1

m Card
{

i ∈
τl|yi �= ŷl

i

}
. This yields to the following approximation of the global

OOB error of RF:

BDerrForest = 1

n

K∑
l=1

m × errForestl

for dacRF or simply BDerrForest = errForest1 for sampRF.

OOB error approximation for moonRF and blbRF. For moonRF, since
samples are obtained without replacement, there are no OOB ob-
servations associated with a tree. However we can compute an
OOB error as in standard RF, restricted to the set ∪Q

l=1τl of ob-
servations that have been sampled in at least one of the subsam-
ples τl . This leads to obtain an approximation of the OOB error,
BDerrForest, based on the prediction of approximately (Q − 1)m
observations (up to the few observations that belong to several
subsamples, which is very small if m � n) that are OOB for each
of the Q trees. This corresponds to an important computational
gain as compared to the standard OOB error that would have re-
quired the prediction of approximately n −m observations for each
tree.

For blbRF, a similar OOB error approximation can be computed
using ∪K

l=1τl . Indeed, since trees are built on samples of size n ob-
tained with replacement from τl (having a size equal to m), and
provided that m � n, there are no OOB observations associated
to the trees with high probability. Again assuming that no ob-
servation belong to several subsamples τl , the OOB prediction of
an observation in τl can be approximated by a majority vote law
based on the predictions made by sub-forests (RF(q)

′)l′ �=l . If this pre-
l
diction is denoted by ŷ−l
i , then the following approximation of the

OOB error can be derived:

BDerrForest = 1

Km

K∑
l=1

Card
{

i ∈ τl | yi �= ŷi
−l

}
.

Again, for each tree, the number of predictions to make to com-
pute this error is (K − 1)m, which is small compared to the n − m
predictions that would have been needed to compute the standard
OOB error.

Similar approximations can also be defined for VI (not investi-
gated in this paper for the sake of simplicity).

3.3. Online random forests

The general idea of online RF (onRF), introduced by Saffari et
al. [20], is to adapt RF methodology, in order to handle the case
where data arrive sequentially. An online framework supposes that,
at a given time step, one does not have access to all the data from
the past, but only to the current observation. onRF are first de-
fined in [20] and detailed only for classification problems. They
combine the idea of online bagging, also called Poisson bootstrap,
from [32–34], Extremely Randomized Trees (ERT) from [35], and a
mechanism to update the RF each time a new observation arrives.

More precisely, when a new sample arrives, the online bagging
updates k times a given tree, where k is sampled from a Poisson
distribution: this means that this new observation will appear k
times in the tree, which mimics the fact that one observation can
be drawn k times in the batch bootstrap sampling (with replace-
ment). ERT is used instead of the original Breiman’s RF, because it
allows for a faster update of the RF: in ERT, S splits (i.e., a split
variable and a split value) are randomly drawn for every node, and
the final split is optimized only among those S candidate splits.
Moreover, all decisions given by a tree are only based on the pro-
portions of each class label among observations in a node. onRF
keeps an heterogeneity measure based on these proportions up-to-
date in an online manner. This measure is used to determine the
class label of a node. When a node is created, S candidate splits
(hence 2S candidate new nodes) are randomly drawn and when
a new observation arrives in an existing node, this measure is up-
dated for all those 2S candidate nodes. This mechanism is repeated
until a stopping condition is realized and the final split minimizes
the heterogeneity measure among the S candidate splits. The pro-
cess is then iterated for the next nodes.

From the theoretical point of view, the recent article [36] in-
troduces a new variant of onRF. The two main differences with
the original onRF are that, 1) no online bootstrap is performed,
and 2) each point is assigned to one of two possible streams at
random with fixed probability. The data stream is then randomly
partitioned into two streams: the structure stream and the esti-
mation stream. Data from the structure stream only participate on
the splits optimization, while data from the estimation stream are
only used to allocate a class label to a node. Thanks to this par-
tition, the authors manage to obtain consistency results of onRF.
The approach is implemented in the python library RFTK,5 used in
experiments of Section 4.5.

[20] also describes an online estimation of the OOB error: since
a given observation is OOB for all trees for which the Poisson ran-
dom variable used to replicate the observation in the tree is equal
to 0, the prediction provided for such a tree t is used to update
errTreet . However, since the prediction cannot be re-evaluated af-
ter the tree has been updated with next data, this approach is only
an approximation of the original errTreet . Moreover, as far as we

5 https :/ /github .com /david-matheson /rftk.

https://github.com/david-matheson/rftk

36 R. Genuer et al. / Big Data Research 9 (2017) 28–46
Fig. 8. Illustration of the datasets unbalanced (left) and x-biases (right).
know, this approximation is not implemented in the python library
RFTK. Finally, permuting the values of a given variable when the
observations are processed online and are not stored after they
have been processed is still an open issue for which [20,36] give
no solution. Hence, VI cannot be simply defined in this framework.

4. Experiments

The present section is devoted to numerical experiments on a
massive simulated dataset (15 millions of observations) as well
as on a real world dataset (120 millions of observations). These
simulations aim at illustrating and comparing the five variants of
RF for Big Data introduced in Section 3. The experimental frame-
work and the data simulation model are first presented and the
baseline used for the comparison, seqRF, is described. Then, the
four variants involving parallel implementations and adaptation of
bootstrapping are compared, and online RF is also evaluated in a
separate section. A specific focus on the influence of biases in sub-
sampling and splitting is performed for both types of approaches
(parallel implementations and online implementation). Finally, we
analyze the performance obtained on a well-known real-world
benchmark for Big Data experiments that contains airline on-time
performance data.

4.1. Experimental framework and simulation model

All experiments have been conducted on the same server (with
concurrent access), with 8 processors AMD Opteron 8384 2.7 GHz,
with 4 cores each, a total RAM equal to 256 Go and running on
Debian 8 Jessie. Parallel methods were all run with 10 cores.

There are strong reasons to carry out experimentations in a uni-
fied way involving codes in R. This will be the case in this section
except for onRF in Section 4.5. Due to their interest, onRF are con-
sidered in experimental part of the paper, but due to the lack of
available program implemented in R, an exception has been made
and a python library has been used. To allow fair comparisons be-
tween the other methods and to make them independent from a
particular software framework or a particular programming lan-
guage, all methods have been programmed using the following
packages:

• the package readr [37] (version 0.1.1), which allows to read
more efficiently flat and tabular text files from disk;
• the package randomForest [38] (version 4.6–10), which im-
plements RF algorithm using Breiman and Cutler’s original For-
tran code;

• the package parallel [8] (version 3.2.0), which is part of R and
supports parallel computation.

To address all these issues, simulated data are studied in this
section. They correspond to a well controlled model and can thus
be used to obtain comprehensive results on the various questions
described above. The simulated dataset corresponds to 15,000,000
observations generated from the model described in [39]: this
model is an equiprobable two class problem in which the variable
to predict, Y , takes values in {−1, 1} and the predictors are, for 6
of them, true predictors, whereas the other ones (in our case only
one) are random noise. The simulation model is defined through
the law of Y (P (Y = 1) = P (Y = −1) = 0.5) and the conditional
distribution of the (X j) j=1,...,7 given Y = y:

• with probability equal to 0.7, X j ∼ N (jy, 1) for j ∈ {1, 2, 3}
and X j ∼N (0, 1) for j ∈ {4, 5, 6} (submodel 1);

• with probability equal to 0.3, X j ∼N (0, 1) for j ∈ {1, 2, 3} and
X j ∼N ((j − 3)y, 1) for j ∈ {4, 5, 6} (submodel 2);

• X7 ∼N (0, 1).

All variables are centered and scaled to unit variance after the
simulation process, which gave a dataset which size (in plain text
format) was equal to 1.9 Go. With the readr package, loading this
dataset took approximately one minute.

Compared to the size of available RAM, this dataset was rela-
tively moderate. This allowed us to perform extensive comparisons
while being in the realistic Big Data framework with a large num-
ber of observations. It has to be noted that RF can be memory
demanding because of the need to save all the splits of a large
number of deep trees. Hence, even a dataset of 1.9 Go can be
challenging for a server with 256 Go RAM, especially for parallel
implementations. For instance, our implementation of dacRF with
10 parallel processes, each learning a RF with 100 trees, peaked
at 244 Go of RAM. Similarly, the python implementation of onRF,
RFTK, overloaded the RAM when trying to learn a RF with 500
trees.

The 15,000,000 observations of this dataset were first randomly
ordered. Then, to illustrate the effect of representativeness of data
in different sub-samples in both divide-and-conquer and online
approaches, two permuted versions of this same dataset were con-
sidered (see Fig. 8 for an illustration):

R. Genuer et al. / Big Data Research 9 (2017) 28–46 37
Fig. 9. OOB error evolution for seqRF versus the number of trees (left), and the maximum number of leaves (right).
• unbalanced will refer to a permuted dataset in which Y val-
ues arrive with a particular pattern. More precisely, we per-
muted the observations so that the first half of the observa-
tions contain a proportion p (with p ∈ {10; 1}%) of observa-
tions coming from the first class (Y = 1), and the other half
contains the same proportion of observations from the second
class (Y = −1);

• x-biases will refer to a permuted dataset in which X values
arrive with a particular pattern. More precisely, in that case,
the data are split into P parts in which the first 70% of the
observations are coming from submodel 1 and the last 30%
are coming from submodel 2.

4.2. Training a baseline seqRF for comparison

The aims of the simulations of this subsection were multiple:
firstly, different approaches designed to handle Big Data with RF
were compared. The comparison was made on the point of view of
the computational effort needed to train the classifier and also in
term of its accuracy. All along this subsection the simulated dataset
described in Section 4.1 (with randomly ordered observations) is
used.

We designed experiments to compare this sequential RF (seqRF)
to the four variants introduced in Section 3, namely: sampRF,
moonRF, blbRF and dacRF (see Table 2 for definitions). Thus, as
a baseline for comparison, a standard RF (seqRF) was first trained
with the R package randomForest. This package allows to control
the complexity of the trees in the RF by setting a maximum num-
ber of terminal nodes (leaves). By default, fully developed trees are
grown, with unlimited number of leaves, until all leaves are pure
(i.e. composed of observations all belonging to the same class).
Considering the very large number of observations, the number
of leaves was limited to 500 in our experiments. The choice of a
maximum number of leaves of 500 was also motivated by the fact
that maximal trees did not bring much improvement in accuracy.
This is illustrated by the left-hand side of Fig. 9 that provides the
value of the OOB error versus the setting of the maximum number
of leaves allowed in the model (for seqRF with 100 trees). On the
contrary, large maximum numbers of leaves increase the seqRF
complexity significantly (the maximal tree contain approximately
60,000 terminal nodes).

The right-hand side of Fig. 9 illustrates the evolution of the OOB
error of seqRF versus the number of trees in the RF, for a number
of trees up to 500. The OOB error stabilizes between 100 and 200
trees and training seqRF with 500 trees took approximately 18 hr.
Hence, we chose to keep a limited number of trees of 100, which
seems a good compromise between accuracy and computational
time.

In conclusion, the baseline for comparison was obtained for se-
qRF with a maximum number of leaves set to 500 and a number
of trees set to 100. Training this RF took approximately 7 hr and
the resulting OOB error was equal to 4.564e−3.

4.3. Comparison of four RF approaches with parallel implementations
and bootstrap variants

The other methods, sampRF, moonRF, blbRF and dacRF, which
involve parallel implementation and variants of bootstrapping,
were then run on the same dataset. In all simulations, the max-
imum number of leaves in the trees was set to 500. Also, since the
purpose of this section is only to compare the methods themselves,
all subsamplings were done in such a way that the subsamples
were fairly representative of the whole dataset from the X and Y
distributional viewpoint. This was performed by a simple random
sampling within the entire dataset.

The different results are compared through the computational
time needed by every method (real elapsed time as returned by
R) and the prediction performance. This last quantity was assessed
in three ways:

i) errForest, which is defined in Equation (1) and refers to the
standard OOB error of a RF. This quantity is hard to obtain
with the different methods described in this chapter when the
sample size is large but we nevertheless computed it to check
if the approximations usually used to estimate this quantity
are reliable;

ii) BDerrForest, which is the approximation of errForest defined
in Section 3.2.4;

iii) errTest, which is a standard test error using a test sample, with
150,000 observations, generated independently from the train-
ing sample.

As illustrated below, errForest and errTest were always found
indistinguishable, which confirms that OOB error is a good estima-
tion of the prediction error.

First, the impact of K and q for blbRF and dacRF was stud-
ied. As shown in Fig. 10, when q is set to 10, blbRF and dacRF
are quite insensitive to the choice of K . However, BDerrForest is a
very pessimistic approximation of the prediction error for dacRF,

38 R. Genuer et al. / Big Data Research 9 (2017) 28–46
Fig. 10. Evolution of the prediction error (top) and computational time for training (bottom) versus K . K is the number of chunks for dacRF (right) or the number of
sub-samples for blbRF (left). The number of trees, q, is set to 10. The horizontal dashed line indicates the OOB error of seqRF.

Fig. 11. Evolution of the prediction error (top) and computational time for training (bottom) versus q. q is the number of trees in each chunk for dacRF (right) or the number
of trees in each sub-sample for blbRF (left). K is set to 10. The horizontal dashed line indicates the OOB error of seqRF.
whereas it gives good approximations for blbRF. Computational
time for training is obviously linearly increasing for blbRF, as we
built more sub-samples, whereas it is decreasing for dacRF, be-
cause the size of each chunk becomes smaller.

Symmetrically, K was then set to 10 to illustrate the effect of
the number of trees in each chunk/sub-samples. Results are pro-
vided in Fig. 11. Again, blbRF is quite robust to the choice of q. On
the contrary, for dacRF, the number of trees built in each chunk
must be quite high to get an unbiased BDerrForest, at the cost of
a substantially increased computational time. In other simulations
for dacRF, q was also set to 100 and K was increased but this
did not give any improvement (not shown). Due to these conclu-
sions, the values K = 10 and q = 50 were chosen for blbRF and
the values K = 10, q = 100 were chosen for dacRF in the rest of
the simulations.

Second, the impact of the sampling fraction, f = m
n was studied

for sampRF and moonRF, with a number of trees set to 100. More
precisely, for sampRF, a subsample containing m observations was
randomly drawn from the entire dataset, with f ∈ {0.1, 1, 10}%.
Results (see the right-hand side of Fig. 12) show that BDerrFor-
est is quite unbiased as soon as f is larger than 1%. Furthermore,
f = 10% leads to some increase in computational time needed for
training, despite the fact that this time is around 10 times smaller
than the one needed to train dacRF with 10 chunks and 100
trees. For moonRF, as the 100 trees are built on samples with
m different observations each, the sampling fraction was varied
in {10−5, 10−4, 10−3}, in order to get a fraction of observations
used by the entire RF (total sampling fraction, represented on the
x-axes of the figure) comparable to the one used in sampRF. The
left-hand part of Fig. 12 shows that BDerrForest gives quite un-
biased estimates of the prediction error. Moreover, the computa-
tional time for training remains low. The increase of the prediction
error when f = 0.1% is explained by the fact that subsamples
contain only 150 observations in this case. Based on these experi-
ments, the total sampling fraction was set to 1% for both sampRF
and moonRF in the rest of the simulations.

Several conclusions can be driven from these results. First, the
computational time needed to train all these Big Data versions of
RF is almost the same and quite reduced (about a few minutes)
compared to seqRF. The fastest approach is to extract a very small

R. Genuer et al. / Big Data Research 9 (2017) 28–46 39
Fig. 12. Evolution of the prediction error (top) and computational time for training (bottom) versus the sampling fraction (log10-scale) used in moonRF (left) and sampRF
(right). The number of trees is set to 100. The horizontal dashed line indicates the OOB error of seqRF.
subsample and the slowest is the dacRF approach with 10 chunks
of 100 trees each (because the number of observations sent to each
chunk is not much reduced compared to the original dataset). The
results are not shown for the sake of simplicity but the perfor-
mances are also quite stable: when a method was trained several
times with the same parameters, the performances were almost
always very close.

Regarding the errors, it has first to be noted that the predic-
tion error (as assessed with errTest) is much better estimated by
errForest than by the proxy of the OOB error provided by BDerrFor-
est. In particular, BDerrForest tends to be biased for sampRF and
moonRF approaches when the sampling fraction is very small and
it tends to overestimate the prediction error (sometimes strongly)
for dacRF.

Finally, many methods achieve a performance which is quite
close to that of the standard RF algorithm, seqRF: sampRF and
moonRF error rates are very similar to that of seqRF, even for very
small subsamples (with at least 0.1% of the original observations,
the difference between the two predictors is not very important).
blbRF is also quite close to seqRF and remarkably stable to a
change in its parameters K and q. Finally, dacRF also gives an ac-
curate predictor but its BDerrForest error estimation is close to the
prediction error only when the number of trees in the RF is large
enough: this is obtained at the price of a higher computational
cost (about 10 times larger than for the other approaches).

4.4. Impact of subsampling biases and tree depth

In the previous section, simulations were conducted with rep-
resentative subsamples and a maximum number of leaves equal to
500 for every tree in every RF. The present section pushes the anal-
ysis a bit further by specifically investigating the influence of these
two features on the results. All simulations were performed with
the same dataset and the same computing environment than in
the previous sections. Finally, the different parameters for the RF
methods were also set similarly: blbRF and dacRF were learned
respectively with K = 10 and q = 50 and with K = 10, q = 100,
whereas moonRF and sampRF were learned with a total sampling
fraction equal to 0.1%.

As explained in Section 3.2, dacRF can be influenced by the lack
of representativeness of the data sent to the different chunks. In
this section, we evaluate the influence of such cases in two differ-
ent directions. We have considered the non-representativeness of
observations in the different chunks/sub-samples, firstly according
to Y values using the unbalanced dataset and secondly, accord-
ing to X values using the x-biases dataset (see Section 4.1 for a
description of these two datasets). For dacRF, this simulation cor-
responds to the case where the sub-forests built from the different
chunks are very heterogeneous. This issue has been discussed in
Section 3.2.3 and we will show that it indeed has a strong impact
in practice.

Results associated to the unbalanced case are presented in
Fig. 13. In this case, data are organized so that, for dacRF, half of
the chunks have a proportion p ∈ {0.01, 0.1} of observations from
the first class (Y = 1), and the other half have the same propor-
tion of observations from the second class (Y = −1). For blbRF and
moonRF, half of the sub-samples were drawn in order to get a pro-
portion p of observation from the first class and the other half the
same proportion of observations from the second class. Finally, as
there is only one subsample to draw for sampRF, it has been ob-
tained with a proportion p of observations of the first class. Hence,
the results associated to sampRF are not fully comparable to the
other two.

The first fact worth noting in these results is again that errFor-
est and errTest are always very close, whereas BDerrForest is more
and more biased as p decreases. For p = 0.1, BDerrForest bias is
rather stable for all methods, except for sampRF (which is ex-
plained by the fact that only one subsample is chosen and thus
90% of the observations are coming from the second class). When
p = 0.01 (which corresponds to a quite extreme situation), we can
see that dacRF is the method that is the most affected in terms
of BDerrForest (BDerrForest strongly underestimates the prediction
error) but also in terms of errForest and errTest because these two
quantities increase a lot.

Interestingly, moonRF is quite robust to this situation, whereas
blbRF has a BDerrForest which strongly overestimates the pre-
diction error. The difference of behavior between these two last
methods might come from the fact that, in our setting, 100 sub-
samples are drawn for moonRF but only 10 for blbRF.

A similar conclusion is obtained for biases towards X values:
simulations have been performed for dacRF with x-biases ob-
tained by partitioning the data into 2 parts (as illustrated on the
right-hand side of Fig. 8), leading to 7/10 of the K = 10 chunks of
data to contain only observations from submodel 1 and the other
3/10 chunks containing only observations from submodel 2. Re-
sults are given in Fig. 14. This result shows that the performance
of RF is strongly deteriorated when sub-forests are based on obser-
vations coming from different distributions X |Y : in this case, the

40 R. Genuer et al. / Big Data Research 9 (2017) 28–46
Fig. 13. Prediction error behavior for 4 RF methods for unbalanced data. The unbalanced proportion p is set to 0.01 (left) or to 0.1 (right). The horizontal dashed line
indicates the OOB error of seqRF.

Fig. 14. Prediction errors for x-biases with dacRF (K = 10 and q = 100). The horizontal dashed line indicates the OOB error of seqRF.
test misclassification rate is multiplied by a factor of more than 50.
Moreover, BDerrForest appears to be a very bad estimation of the
RF prediction error.

Finally, the issue of tree depth is investigated more closely. As
mentioned above, the maximum number of leaves was set to 500
in order to get comparable tree complexities. However homogene-
ity (in terms of classes) of leaves differs when a tree is built on the
entire dataset or on a fraction of it. To illustrate this, the mean Gini
index (over all leaves of a tree and over 100 trees) was computed
(it is defined by 2p̂(1 − p̂), with p̂ the proportion of observations
of class 1 in a leaf). Results are reported in Table 6.

For sampling fractions equal to 0.1% or 1%, tree leaves are pure
(i.e., contain observations from only one class). But for sampling
fractions equal to 100% and 10%, the heterogeneity of the leaves is
more important. The effect of tree depths on RF performance was
thus investigated. Recall that in RF all trees are typically grown to
maximal trees (splits are performed until each leaf is pure) and
that in CART an optimal tree is obtained by pruning the maximal
tree. Table 6 contains the number of leaves of the maximal tree
and the optimal CART tree associated to each sampling fraction.
Trees with 500 leaves are very far from maximal trees in most
Table 6
Number of leaves and leaves heterogeneity of trees built on various fractions of
data. Second column indicates the computational time needed to build one tree,
while the number of leaves of the maximal tree and the optimal pruned tree are
given in third and fourth column respectively. The last column is the mean Gini
index over all leaves of a tree and over 100 trees.

Sampling
fraction

Comp. time Max. tree
size

Pruned tree
size

Mean Gini

100% 5 hr 60683 3789 0.233
10% 13 min 6999 966 0.183
1% 23 sec 906 187 0.073
0.1% 0.01 sec 35 10 0.000

cases and even far from the optimal CART tree for sampling frac-
tions equal to 100% and 10%.

Finally, the performance of 3 RF methods using maximal trees
instead of 500 leaves trees were obtained. The results are illus-
trated in Fig. 15. Computational times are comparable to those
shown in Figs. 11 and 12, while the misclassification rates are
slightly improved. The remaining heterogeneity, when developing
trees with 500 leaves, does not affect much the performance in
that case. Hence, while pruning all trees would lead to a pro-

R. Genuer et al. / Big Data Research 9 (2017) 28–46 41
Fig. 15. Prediction error (measured by errTest) behavior for 3 RF methods when using maximal trees or a maximum number of leaves of 500.
hibitive computational time, a constraint on tree depth may well
be adapted to the Big Data case. This point needs a more in-depth
analysis and is left for further research.

4.5. Online random forest

This section is dedicated to simulations with onRF. The simu-
lations were performed with the method described in [36] which
is available at https :/ /github .com /david-matheson /rftk (onRF). The
method is implemented in python. Thus, the computational time
cannot be directly compared to the computational times described
in the two previous sections (because of the programming lan-
guage side effect). Similarly, the input hyperparameters of ran-
domForest function in the R package randomForest are not ex-
actly the same than the ones proposed in onRF: for instance, in
the R package, the complexity of each tree is controlled by setting
the maximum number of leaves in a tree whereas in onRF, it is
controlled by setting the maximum depth of the trees. Addition-
ally, the two tools are very differently documented: every function
and every option in the R package are described in details in the
documentation whereas RFTK is not provided with a documenta-
tion. However, the meaning of the different options and outputs of
the library can be guessed from their names in most cases.

When relevant, we discuss the comparison between the stan-
dard approaches tested in the two previous sections and the online
RF tested in the current version but the reader must be aware
that some of the differences might come directly from the method
itself (standard or online), whereas others come from the imple-
mentation and programming languages and that it is impossible to
distinguish between the two.

The simulations in this section were performed on the datasets
described in Section 4.1. The training dataset (randomly ordered)
took approximately 9 min to be loaded with the function load-
txt of the python library numpy, which is about 9 times larger
than the time needed by the R package readr to perform the same
task. In the sequel, results about this dataset will be referred as
standard. Moreover, simulations were also performed to study the
effect of sampling (subsamples drawn at random with a sampling
fraction in {0.01, 0.1, 1, 10}%) or of biased order of arrival of the
observations (with the datasets unbalanced, with p = 0.01, and x-
biases with 15 parts). For x-biases the number of parts was chosen
differently than in the Section 4.3 (for dacRF) because only 2 parts
would have led to a quite extreme situation for onRF, in which all
data coming from submodel 1 are presented first, before all data
coming from submodel 2 are presented. We have thus chosen a
more moderate situation in which data from the two submodels
are presented by blocks, alternating submodel 1 and submodel 2
blocks. Note that both simulation settings are similar, since dacRF
processes the different (biased in X) blocks in parallel.

RF were trained with a number of trees equal to 50 or 100
and with a control of the complexity of the trees by their max-
imum depth which was varied in {5, 10, 15, 50}. As explained in
Section 4.1, RF with more trees could not be learned because they
overloaded RAM capacity. Finally, RFTK does not provide the on-
line approximation of OOB error so the accuracy was assessed by
the computation of the prediction error on the same test dataset
used in the previous two sections.

Fig. 16 displays the misclassification rate of onRF on the test
dataset versus the type of bias in the order of arrival of data (no
bias, unbalanced or x-biases) and versus the number of trees in
the RF. The results are provided for a RF in which the maximum
depth of the trees was limited to 15 (which almost always corre-
spond to fully developed trees).

The result shows that, contrary to the dacRF case, x-biases al-
most do not affect the accuracy of the results, even if the classifier
always has a better accuracy when data are presented in random
order. On the contrary, unbalanced has a strong negative impact
on the accuracy of the classifier. Finally, for the best case sce-
nario (standard), the accuracy of onRF is not much affected by
the number of trees in the RF but the accuracy tends to get even
worse when increasing the number of trees in the worst case sce-
nario (unbalanced). In comparison with the strategies described
in Section 4.3, onRF has comparable test error rates (between
(4–4.3) × 10−3 for RF with 100 trees).

Additionally, Fig. 17 displays the evolution of the computational
time versus the type of bias in the order of arrival of data and
the number of trees in the RF. The results are provided for RF in
which the maximum depth of the trees was limited to 15. As ex-
pected, the computational time increases with the number of trees
in the RF, in a more than linear way. Surprisingly, the computa-
tional time of the worse case scenario (unbalanced bias) is the
smallest. A possible explanation is the fact that trees are presented
successively a large number of observations with the same value of
the target variable (Y): the terminal nodes are thus maybe more
easily pure during the training process in this scenario.

Computational times are hard to compare with the ones ob-
tained in Section 4.3. However, computational times are of order
30 min at most for dacRF, and 1–2 min for blbRF and moonRF,

https://github.com/david-matheson/rftk

42 R. Genuer et al. / Big Data Research 9 (2017) 28–46
Fig. 16. onRF: Prediction error for the test dataset versus the type of bias in the order of arrival of data. The horizontal dashed line indicates the OOB error of seqRF.

Fig. 17. Training time (seconds) of onRF versus the type of bias in the order of arrival of data.

Fig. 18. Prediction error (left) and training time (right) versus sampling fraction for onRF. x-axis is log10-scaled. The horizontal dashed line indicates the OOB error of seqRF.

R. Genuer et al. / Big Data Research 9 (2017) 28–46 43
Fig. 19. Prediction error (left), training time (middle), average number of leaves of trees (right), versus maximum depth of trees in RF. The horizontal dashed line (left)
indicates the OOB error of seqRF. The black horizontal line (right) corresponds to the RF used in experiments of Sections 4.2, 4.3 and 4.4 (maximum number of leaves
limited to 500).
whereas onRF takes approximately 10 hr for 50 trees and 30 hr
for 100 trees, which is even larger than training the RF sequen-
tially with randomForest (7 hr).

Fig. 18 displays the evolution of the misclassification rate and of
the computational time versus the sampling fraction when a ran-
dom subsample of the dataset is used for the training (the number
of trees in the RF is equal to 100 and the maximum depth set to
15). The computational time needed to train the model is more
than linear but the prediction accuracy also decreases in a more
than linear way with the sampling fraction. The loss in accuracy is
slightly worse than what was obtained in Section 4.3 for sampRF,
showing that onRF might need a larger sample size to perform
well.

Finally, Fig. 19 displays the evolution of the test misclassifica-
tion rate, of the computational time and of the average number
of leaves in the trees versus the value of the maximum depth for
RF with 100 trees. As expected, the computational time is in di-
rect relation with the complexity of the RF (number of trees and
maximum depth) but tends to remain almost stable for trees with
a maximum depth larger than 15. The same behavior is observed
for the misclassification rate in standard and x-biases which reach
their minimum for RF with a maximum depth set to 15. Finally,
the number of leaves for unbalanced is much smaller, which also
explains why the computational time needed to train the RF is
smaller in this case. For this type of bias, the misclassification rate
increases with the maximum depth for RF with maximum depths
larger than 10: as for the number of trees, the complexity of the
model seem to have a negative impact on this kind of bias.

4.6. Airline dataset

In the present section, similar experiments are performed with
a real world dataset related to flight delays. The data were first
processed in [7] to illustrate the use of the R packages bigmem-
ory and foreach for Big Data computing [40]. In [7], the data were
mainly used for description purpose (e.g., quantile calculation),
whereas we will be using them for prediction. More precisely, five
variables based on the original variables included in the dataset
were used to predict if the flight was likely to arrive on time
or with a delay larger than 15 min (flights with a delay smaller
than 15 min were considered on time). The predictors were: the
moment of the flight (two levels: night/daytime), the moment of
the week (two levels: weekday/week-end), the departure time (in
minutes, numeric) and the distance (numeric). The dataset used to
make the simulations contained 120,748,239 observations (obser-
vations with missing values were filtered out) and had a size equal
to 3.2 GB (compared to the 12.3 GB of the original data with ap-
proximately the same number of observations). Loading the dataset
and processing it to compute and extract the predictors and the
target variables took approximately 30 min. Another feature of the
dataset is that it is unbalanced: most of the flights are on time
(only 19.3% of the flights are late).

The same methods than the one described in Sections 4.2 and
4.3 were compared:

• a standard RF, seqRF, was computed sequentially. It contained
100 trees. The RF took 16 hr to be obtained and its OOB error
was equal to 18.32%;

• sampRF was trained with a subsample of the total data (1%
of all the observations were sampled at random without re-
placement). This RF was trained in parallel with 15 cores, each
core building 7 trees from bootstrap samples coming from the
common subsample (the final RF hence contained 105 trees);

• a blbRF was also trained using K = 15 subsamples, each con-
taining about 454,272 observations (about 0.4% of the size of
the total dataset). 15 sub-forests were trained in parallel on
15 cores with 7 trees each (the final RF hence contained 105
trees);

• Finally dacRF was also obtained with K = 15 chunks and q =
7 trees in each sub-forest. The 15 sub-forests were grown in
parallel with 15 cores (the final RF contained 105 trees).

The number of trees, q, built in each chunk for dacRF is smaller
than what seemed to be a good choice from the conclusion driven
in Section 4.3. But, for this example, increasing the number of trees
did not lead to a better accuracy (despite the fact that it increased
a lot the computational time). Finally, in all methods, the maxi-
mum number of terminal leaves in the trees was set to 500.

Results are given in Fig. 20 in which the notations are the same
than in Section 4.3. The results show that there is almost no dif-
ference in terms of performance accuracy between using all data
and using only a small proportion (about 0.01%) of them. In terms
of compromise between computational time and accuracy, using
a small subsample is clearly the best strategy, provided that the
user is able to obtain a representative subsample at a low com-
putational cost. Also, contrary to what happened in the example

44 R. Genuer et al. / Big Data Research 9 (2017) 28–46
Fig. 20. Performance (computational time and misclassification rates) obtained by three different RF methods for Big Data on Airline data. The horizontal dashed line indicates
the OOB error of seqRF.
described in Section 4.4, BDerrForest is always a good approxima-
tion of errForest. An explanation of this result might be that, for
Airline dataset, prediction accuracy is quite poor and this might
be due to explanatory variables that are not informative enough.
Hence differences between BDerrForest and errForest may be hid-
den by the fact that the prediction error rate is quite high.

In addition, the impact of the representativeness (with respect
to the target variable) of the samples on which the RF were trained
was assessed: instead of using a representative (hence unbalanced)
sample from the total dataset, a balanced subsample (for 50% of
delayed flights and 50% of on time flights) was obtained and used
as the input data to train the RF. Its size was equal to 10% of
the total dataset size. This approach provided an errForest equal
to 33.34% (and BDerrForest was equal to 39.15%), which is strongly
deteriorated compared to the previous misclassification rates. In
this example, the representativeness of the observations contained
in the subsample strongly impacts the estimated model. The model
with balanced data has a better ability to detect late flights and fa-
vors the sensitivity over the specificity.

5. Conclusion and discussion

This final section provides a short conclusion and opens two
perspectives. The first one proposes to consider re-weighting RF as
an alternative for tackling the lack of representativeness for BD-RF
and the second one focuses on alternative online RF schemes and
on RF for data streams.

5.1. Conclusions

This paper aims at extending standard Random Forests in order
to process Big Data. Indeed RF is an interesting example among
the widely used statistical methods in machine learning since it
already offers several ways to deal with massive data in offline or
online contexts. Focusing on classification problems, we reviewed
some of the available proposals about RF in parallel environments
and online RF. We formulated various remarks for RF in the Big
Data context, including approximations of out-of-bag type errors.
We experimented on two massive datasets (15 and 120 millions
of observations), a simulated one and real world data, five vari-
ants involving subsampling, adaptations of bootstrap to Big Data, a
divide-and-conquer approach and online learning.

Among the variants of RF that we tested, the fastest were sam-
pRF with a small sampling fraction and blbRF. On the contrary,
onRF was not found computationally efficient, even compared to
the standard method seqRF, in which all data are processed as
a whole and trees are built sequentially. On a performance point
of view, all methods provide satisfactory results but parameters
(size of the subsamples, number of chunks...) must be designed
with care so as to obtain a low prediction error. However, since
the estimation of OOB error that can be simply designed from the
different variants was found a bad estimate of the prediction error
in many cases, it is also advised to rather calculate an error on an
independent smaller test subsample. When the amount of data is
that big, computing such a test error is easy and can be performed
at low computational cost.

Finally, one of the most crucial point stressed in the simulations
is that the lack of representativeness of subsamples can result in
drastic deterioration of the performances of Big Data variants of
RF, especially of dacRF. However, designing a subsample represen-
tative enough of the whole dataset can be an issue per se in the Big
Data context, but this problem is out of the scope of the present
article.

5.2. Re-weighting schemes

As an alternative, some re-weighting schemes could be used to
address the issue of the lack of representativeness for BD-RF. Let
us sketch some possibilities.

Following a notation from Breiman [21], RF lead to better re-
sults when there is a higher diversity among the trees. So recently,
some extensions of RF have been defined for improving an initial
RF. In [41], Fawagreh et al. use an unsupervised learning technique
(Local Outlier Factor, LOF) to identify diverse trees in the RF and
then, they perform ensemble pruning by selecting trees with the
highest LOF scores to produce an extension of RF termed LOFB-
DRF, much smaller in size than RF and performing better. This
scheme can be extended by using other diversity measures: [42]
presents a theoretical analysis on six existing diversity measures.

Another possible variant would be to consider the whole RF as
an ensemble of sub-forests and to adapt the majority vote scheme
with weights that address, e.g., the issue of the sampling bias. Re-
cently in [43], Winham et al. propose to introduce a weighted
RF approach to improve predictive performance: the weighting
scheme is based on the individual performance of the trees and
could be adapted to the dacRF framework.

Along the same ideas, and at least for an exploratory stage, it
would certainly be possible to adapt a simple idea coming from

R. Genuer et al. / Big Data Research 9 (2017) 28–46 45
the variants of AdaBoost [44] for classification boosting algorithms.
Recall that the basic idea of boosting is, as for the RF case, to gen-
erate many different base predictors obtained by perturbing the
training set and to combine them. Each predictor is designed se-
quentially, highlighting the observations poorly predicted. This is a
crucial difference with RF scheme for which the different training
samples are obtained by independent bootstraps. But the aggrega-
tion part of the boosting algorithm is interesting here: instead of
taking the majority vote of the tree predictions as in the RF con-
text, a weighted combination of trees is considered. The unnormal-
ized weight of the tree t is simply αt = 1/2 ln(εt/(1 −εt)) where εt

is the misclassification error computed on the whole training sam-
ple L. This could be adapted by considering weighted sub-forests
using weights of such form, evaluated on a same (small) subset
of observations that is supposed to be representative of the whole
dataset.

5.3. Online data and data streams

The discussion sketched about online RF can be extended. In-
deed, the use of ERT variant of RF instead of Breiman’s RF allows
to reduce the computational cost. It would be of interest to use
this RF variant in dacRF, or even more randomized ones (like [45]
PERT, Perfect Random Tree Ensembles, or [46,47] PRF, Purely Ran-
dom Forests). The idea of those latter variants is to not choose the
variable involved in a split and the associated threshold from the
data but to randomly choose them according to different schemes.
Finally, onRF could be a way to use only a portion of the dataset
until the RF is accurate enough. Moreover, one valuable character-
istic of onRF is that it could address both the issue of Volume and
Velocity.

In the framework of online RF, only sequential inputs are con-
sidered. But more widely in the Big Data context, data streams are
of interest. Not only do they only consider sequential inputs, but
they also entail unbounded data that should be processed in lim-
ited (given their unboundedness) memory and in an online fashion
to obtain real-time answers to application queries [48]. Moreover,
data streams can be processed in observation- or time-based win-
dows or even batches which collect a number of recent observa-
tions [49]. It could be interesting to fully adapt online RF to the
data stream context [50] and to obtain similar theoretical results.

Additional files

Additional file 1 — R and python scripts used for the simulation

R scripts used in the simulation sections are available at https :
/ /github .com /tuxette /bigdatarf.

Conflict of interest statement

The authors declare that they have no competing interests.

Acknowledgements

The authors thank the editor and the two anonymous referees
for their thorough comments and suggestions which really helped
to deeply improve the paper. The authors are also grateful to the
MIAT IT team and especially to Damien Berry, who provided a fast
and efficient support for system and software configuration.

References

[1] J. Fan, F. Han, H. Liu, Challenges of big data analysis, Nat. Sci. Rev. 1 (2) (2014)
293–314, http://dx.doi.org/10.1093/nsr/nwt032.
[2] R. Hoerl, R. Snee, R. De Veaux, Applying statistical thinking to ‘Big Data’
problems, Wiley Interdiscip. Rev.: Comput. Stat. 6 (4) (2014) 222–232, http://
dx.doi.org/10.1002/wics.1306.

[3] M. Jordan, On statistics, computation and scalability, Bernoulli 19 (4) (2013)
1378–1390, http://dx.doi.org/10.3150/12-BEJSP17.

[4] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma, R. Murthy,
H. Liu, Data warehousing and analytics infrastructure at Facebook, in: Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, 2010, pp. 1013–1020.

[5] P. Besse, A. Garivier, J. Loubes, Big data – Retour vers le futur 3. De statisticien
à data scientist, arXiv preprint arXiv:1403.3758, 2014.

[6] S. Yin, O. Kaynak, Big data for modern industry: challenges and trends, in:
Proceedings of the IEEE, vol. 103, 2015, pp. 143–146.

[7] M. Kane, J. Emerson, S. Weston, Scalable strategies for computing with massive
data, J. Stat. Softw. 55 (2013), http://www.jstatsoft.org/v55/i14.

[8] R Core Team, R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria, 2016, http://
www.R-project.org.

[9] P. Besse, N. Villa-Vialaneix, Statistique et big data analytics. Volumétrie, l’at-
taque des clones, arXiv preprint arXiv:1405.6676, 2014.

[10] C. Wang, M. Chen, E. Schifano, J. Wu, J. Yan, A survey of statistical methods and
computing for big data, arXiv preprint arXiv:1502.07989, 2015.

[11] D. Yan, L. Huang, M. Jordan, Fast approximate spectral clustering, in: J. Elder, F.
Soulié-Fogelman, P. Flach, M. Zaki (Eds.), Proceedings of the 15th ACM SIGKDD
international Conference on Knowledge Discovery and Data Mining, ACM, New
York, NY, USA, 2009, pp. 907–916.

[12] A. Kleiner, A. Talwalkar, P. Sarkar, M. Jordan, A scalable bootstrap for massive
data, J. R. Stat. Soc., Ser. B, Stat. Methodol. 76 (4) (2014) 795–816.

[13] X. Meng, Scalable simple random sampling and stratified sampling, in: Pro-
ceedings of the 30th International Conference on Machine Learning, ICML 2013,
in: JMLR, vol. 28, W&CP, Georgia, USA, 2013.

[14] M. Bǎdoiu, S. Har-Peled, P. Indyk, Approximate clustering via core-sets, in: J.
Reif (Ed.), Proceedings of the 34th Annual ACM Symposium on Theory of Com-
puting, no. 250–257, ACM, New York, NY, USA, 2002.

[15] N. Laptev, K. Zeng, C. Zaniolo, Early accurate results for advanced analytics on
MapReduce, in: Proceedings of the 28th International Conference on Very Large
Data Bases, Istanbul, Turkey, Proc. VLDB Endow. 5 (2012).

[16] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, K. Olukotun, Map-Reduce for
machine learning on multicore, in: J. Lafferty, C. Williams, J. Shawe-Taylor, R.
Zemel, A. Culotta (Eds.), Advances in Neural Information Processing Systems
(NIPS 2010), Hyatt Regency, Vancouver, Canada, vol. 23, 2010, pp. 281–288.

[17] X. Chen, M. Xie, A split-and-conquer approach for analysis of extraordinarily
large data, Stat. Sin. 24 (2014) 1655–1684.

[18] V. Chandrasekaran, M. Jordan, Computational and statistical tradeoffs via con-
vex relaxation, Proc. Natl. Acad. Sci. USA 13 (2013) E1181–E1190.

[19] P. Laskov, C. Gehl, S. Krüger, K. Müller, Incremental support vector learn-
ing: analysis, implementation and application, J. Mach. Learn. Res. 7 (2006)
1909–1936.

[20] A. Saffari, C. Leistner, J. Santner, M. Godec, H. Bischof, On-line random forests,
in: Proceedings of IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, IEEE, 2009, pp. 1393–1400.

[21] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32, http://www.
springerlink.com/content/u0p06167n6173512/fulltext.pdf.

[22] E. Scornet, G. Biau, J. Vert, Consistency of random forests, Ann. Stat. 43 (4)
(2015) 1716–1741, http://dx.doi.org/10.1214/15-AOS1321.

[23] A. Verikas, A. Gelzinis, M. Bacauskiene, Mining data with random forests: a sur-
vey and results of new tests, Pattern Recognit. 44 (2) (2011) 330–349, http://
dx.doi.org/10.1016/j.patcog.2010.08.011.

[24] A. Ziegler, I. König, Mining data with random forests: current options for
real-world applications, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4 (1)
(2014) 55–63, http://dx.doi.org/10.1002/widm.1114.

[25] C. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag, New
York, NY, USA, 2006.

[26] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd
edition, Springer-Verlag, New York, NY, USA, 2009.

[27] L. Breiman, J. Friedman, R. Olsen, C. Stone, Classification and Regression Trees,
Chapman and Hall, New York, USA, 1984.

[28] R. Genuer, J. Poggi, C. Tuleau-Malot, Variable selection using random forests,
Pattern Recognit. Lett. 31 (14) (2010) 2225–2236, http://dx.doi.org/10.1016/
j.patrec.2010.03.014.

[29] P. Bickel, F. Götze, W. van Zwet, Resampling fewer than n observations: gains,
losses and remedies for losses, Stat. Sin. 7 (1) (1997) 1–31.

[30] P. Bickel, A. Sakov, On the choice of m in the m out of n bootstrap and con-
fidence bounds for extrema, Stat. Sin. 18 (3) (2008) 967–985, http://www3.
stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html.

[31] S. del Rio, V. López, J. Benítez, F. Herrera, On the use of MapReduce for im-
balanced big data using random forest, Inf. Sci. 285 (2014) 112–137, http://
dx.doi.org/10.1016/j.ins.2014.03.043.

[32] N. Oza, S. Russel, Online bagging and boosting, in: M. Kaufmann (Ed.), Proceed-
ings of Eighth International Workshop on Artificial Intelligence and Statistics,
Key West, Florida, USA, 2001, pp. 105–112.

https://github.com/tuxette/bigdatarf
http://dx.doi.org/10.1093/nsr/nwt032
http://dx.doi.org/10.1002/wics.1306
http://dx.doi.org/10.3150/12-BEJSP17
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib746875736F6F5F6574616C5F5349474D4F4432303130s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib746875736F6F5F6574616C5F5349474D4F4432303130s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib746875736F6F5F6574616C5F5349474D4F4432303130s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib746875736F6F5F6574616C5F5349474D4F4432303130s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib62657373655F6574616C5F7032303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib62657373655F6574616C5F7032303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6E61756A6173s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6E61756A6173s1
http://www.jstatsoft.org/v55/i14
http://www.R-project.org
http://www.R-project.org
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib62657373655F76696C6C617669616C616E6569785F7032303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib62657373655F76696C6C617669616C616E6569785F7032303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib77616E675F6574616C5F7032303135s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib77616E675F6574616C5F7032303135s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib79616E5F6574616C5F49434B44444D32303039s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib79616E5F6574616C5F49434B44444D32303039s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib79616E5F6574616C5F49434B44444D32303039s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib79616E5F6574616C5F49434B44444D32303039s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6B6C65696E65725F6574616C5F4A5253534232303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6B6C65696E65725F6574616C5F4A5253534232303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6D656E675F49434D4C32303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6D656E675F49434D4C32303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6D656E675F49434D4C32303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6261646F69755F6574616C5F41434D53544332303032s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6261646F69755F6574616C5F41434D53544332303032s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6261646F69755F6574616C5F41434D53544332303032s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6C61707465765F6574616C5F4943564C444232303132s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6C61707465765F6574616C5F4943564C444232303132s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6C61707465765F6574616C5F4943564C444232303132s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6368755F6574616C5F4E49505332303130s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6368755F6574616C5F4E49505332303130s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6368755F6574616C5F4E49505332303130s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6368755F6574616C5F4E49505332303130s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6368656E5F7869655F535332303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6368656E5F7869655F535332303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6368616E64726173656B6172616E5F6A6F7264616E5F504E415355534132303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6368616E64726173656B6172616E5F6A6F7264616E5F504E415355534132303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6C61736B6F765F6574616C5F4A4D4C5232303036s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6C61736B6F765F6574616C5F4A4D4C5232303036s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6C61736B6F765F6574616C5F4A4D4C5232303036s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib736166666172695F6574616C5F4943435632303039s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib736166666172695F6574616C5F4943435632303039s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib736166666172695F6574616C5F4943435632303039s1
http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf
http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf
http://dx.doi.org/10.1214/15-AOS1321
http://dx.doi.org/10.1016/j.patcog.2010.08.011
http://dx.doi.org/10.1002/widm.1114
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib626973686F705F50524D4C32303036s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib626973686F705F50524D4C32303036s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6861737469655F6574616C5F45534C32303039s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6861737469655F6574616C5F45534C32303039s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib627265696D616E5F6574616C5F43525431393834s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib627265696D616E5F6574616C5F43525431393834s1
http://dx.doi.org/10.1016/j.patrec.2010.03.014
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6269636B656C5F6574616C5F535331393937s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6269636B656C5F6574616C5F535331393937s1
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://dx.doi.org/10.1016/j.ins.2014.03.043
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6F7A615F72757373656C5F495741495332303031s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6F7A615F72757373656C5F495741495332303031s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6F7A615F72757373656C5F495741495332303031s1
https://github.com/tuxette/bigdatarf
http://dx.doi.org/10.1002/wics.1306
http://dx.doi.org/10.1016/j.patcog.2010.08.011
http://dx.doi.org/10.1016/j.patrec.2010.03.014
http://dx.doi.org/10.1016/j.ins.2014.03.043

46 R. Genuer et al. / Big Data Research 9 (2017) 28–46
[33] H. Lee, M. Clyde, Online Bayesian bagging, J. Mach. Learn. Res. 5 (2004)
143–151.

[34] J. Hanley, B. MacGibbon, Creating non-parametric bootstrap samples using Pois-
son frequencies, Comput. Methods Programs Biomed. 83 (2006) 57–62.

[35] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn.
63 (1) (2006) 3–42, http://dx.doi.org/10.1007/s10994-006-6226-1.

[36] M. Denil, D. Matheson, N. de Freitas, Consistency of online random forests, in:
Proceedings of the 30th International Conference on Machine Learning, ICML
2013, 2013, pp. 1256–1264.

[37] H. Wickham, R. François, readr: Read Tabular Data, R package version 0.2.2,
http://CRAN.R-project.org/package=readr, 2015.

[38] A. Liaw, M. Wiener, Classification and regression by randomForest, R News 2 (3)
(2002) 18–22, http://CRAN.R-project.org/doc/Rnews.

[39] J. Weston, A. Elisseff, B. Schoelkopf, M. Tipping, Use of the zero norm with
linear model and kernel methods, J. Mach. Learn. Res. 3 (2003) 1439–1461.

[40] Revolution Analytics, S. Weston, foreach: Foreach looping construct for R, R
package version 1.4.2, http://CRAN.R-project.org/package=foreach, 2014.

[41] K. Fawagreh, M. Gaber, E. Elyan, An outlier detection-based tree selection ap-
proach to extreme pruning of random forests, arXiv preprint arXiv:1503.05187,
2015.

[42] E. Tang, P. Suganthan, X. Yao, An analysis of diversity measures, Mach. Learn.
65 (2006) 247–271.
[43] S.J. Winham, R. Freimuth, J. Biernacka, A weighted random forests approach
to improve predictive performance, Stat. Anal. Data Min. ASA Data Sci. J. 6 (6)
(2013) 496–505.

[44] Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119–139.

[45] A. Cutler, G. Zhao, Pert-perfect random tree ensembles, Comput. Sci. Stat. 33
(2001) 490–497.

[46] G. Biau, L. Devroye, G. Lugosi, Consistency of random forests and other averag-
ing classifiers, J. Mach. Learn. Res. 9 (2008) 2015–2033.

[47] S. Arlot, R. Genuer, Analysis of purely random forests bias, arXiv preprint
arXiv:1407.3939, 2014.

[48] M. Garofalakis, J. Gehrke, R. Rastogi, Data Stream Management: Processing
High-Speed Data Streams, Data-Centric Systems and Applications, Springer-
Verlag, Berlin, Heidelberg, 2016.

[49] C. Giannella, J. Han, J. Pei, X. Yan, P. Yu, Mining frequent patterns in data
streams at multiple time granularities, in: H. Kargupta, A. Joshi, K. Sivakumar,
Y. Yesha (Eds.), Data Mining: Next Generation Challenges and Future Directions
(Proceedings of the NSF Workshop on Next Generation Data Mining), AAAI
Press/The MIT Press, Menlo Park, CA, USA, 2004, pp. 191–212.

[50] H. Abdulsalam, D. Skillicorn, P. Martin, Classification using streaming random
forests, IEEE Trans. Knowl. Data Eng. 23 (1) (2011) 22–36, http://dx.doi.org/
10.1109/TKDE.2010.36.

http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6C65655F636C7964655F4A4D4C5232303034s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6C65655F636C7964655F4A4D4C5232303034s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib68616E6C65795F6D6163676962626F6E5F434D504232303036s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib68616E6C65795F6D6163676962626F6E5F434D504232303036s1
http://dx.doi.org/10.1007/s10994-006-6226-1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib64656E696C5F6574616C5F49434D4C32303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib64656E696C5F6574616C5F49434D4C32303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib64656E696C5F6574616C5F49434D4C32303133s1
http://CRAN.R-project.org/package=readr
http://CRAN.R-project.org/doc/Rnews
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib776573746F6E5F6574616C5F4A4D4C5232303033s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib776573746F6E5F6574616C5F4A4D4C5232303033s1
http://CRAN.R-project.org/package=foreach
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib66617761677265685F6574616C5F7032303135s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib66617761677265685F6574616C5F7032303135s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib66617761677265685F6574616C5F7032303135s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib74616E675F6574616C5F4D4C32303036s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib74616E675F6574616C5F4D4C32303036s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib77696E68616D5F6574616C5F5341444D32303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib77696E68616D5F6574616C5F5341444D32303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib77696E68616D5F6574616C5F5341444D32303133s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib667265756E645F73636861706972655F4A43535331393937s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib667265756E645F73636861706972655F4A43535331393937s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6375746C65725F7A68616F5F43535332303031s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6375746C65725F7A68616F5F43535332303031s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib626961755F6574616C5F4A4D4C5232303038s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib626961755F6574616C5F4A4D4C5232303038s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib61726C6F745F67656E7565725F7032303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib61726C6F745F67656E7565725F7032303134s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6761726F66616C616B69735F6574616C5F44534D504853445332303136s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6761726F66616C616B69735F6574616C5F44534D504853445332303136s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6761726F66616C616B69735F6574616C5F44534D504853445332303136s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6769616E6E656C6C615F6574616C5F444D4E4743464432303034s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6769616E6E656C6C615F6574616C5F444D4E4743464432303034s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6769616E6E656C6C615F6574616C5F444D4E4743464432303034s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6769616E6E656C6C615F6574616C5F444D4E4743464432303034s1
http://refhub.elsevier.com/S2214-5796(16)30193-9/bib6769616E6E656C6C615F6574616C5F444D4E4743464432303034s1
http://dx.doi.org/10.1109/TKDE.2010.36
http://dx.doi.org/10.1109/TKDE.2010.36

	Random Forests for Big Data
	1 Introduction
	1.1 Statistics in the Big Data world
	1.2 Main approaches to scale statistical methods
	1.3 Random forests and Big Data

	2 Random forests
	3 Scaling random forests to Big Data
	3.1 Sub-sampling RF (sampRF)
	3.2 Parallel implementations of random forests
	3.2.1 Alternative bootstrap schemes for RF (moonRF and blbRF)
	3.2.2 Divide-and-conquer RF (dacRF)
	3.2.3 Mismatches with original RF
	3.2.4 Out-of-bag error and variable importance measure

	3.3 Online random forests

	4 Experiments
	4.1 Experimental framework and simulation model
	4.2 Training a baseline seqRF for comparison
	4.3 Comparison of four RF approaches with parallel implementations and bootstrap variants
	4.4 Impact of subsampling biases and tree depth
	4.5 Online random forest
	4.6 Airline dataset

	5 Conclusion and discussion
	5.1 Conclusions
	5.2 Re-weighting schemes
	5.3 Online data and data streams

	Additional ﬁles
	Additional ﬁle 1 - R and python scripts used for the simulation

	Conﬂict of interest statement
	Acknowledgements
	References

