Data Stream Clustering: A Survey

JONATHAN A. SILVA, University of São Paulo ELAINE R. FARIA, University of São Paulo and Federal University of Uberlândia RODRIGO C. BARROS, EDUARDO R. HRUSCHKA, and ANDRÉ C. P. L. F. DE CARVALHO, University of São Paulo JOÃO GAMA, University of Porto

Data stream mining is an active research area that has recently emerged to discover knowledge from large amounts of continuously generated data. In this context, several data stream clustering algorithms have been proposed to perform unsupervised learning. Nevertheless, data stream clustering imposes several challenges to be addressed, such as dealing with nonstationary, unbounded data that arrive in an online fashion. The intrinsic nature of stream data requires the development of algorithms capable of performing fast and incremental processing of data objects, suitably addressing time and memory limitations. In this article, we present a survey of data stream clustering algorithms, providing a thorough discussion of the main design components of state-of-the-art algorithms. In addition, this work addresses the temporal aspects involved in data stream clustering, and presents an overview of the usually employed experimental methodologies. A number of references are provided that describe applications of data stream clustering in different domains, such as network intrusion detection, sensor networks, and stock market analysis. Information regarding software packages and data repositories are also available for helping researchers and practitioners. Finally, some important issues and open questions that can be subject of future research are discussed.

Categories and Subject Descriptors: I.5.3 [Pattern Recognition]: Clustering-Algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Data stream clustering, online clustering

ACM Reference Format:

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., de Carvalho, A. C. P. L. F., and Gama, J. 2013. Data stream clustering: A survey. ACM Comput. Surv. 46, 1, Article 13 (October 2013), 31 pages. DOI: http://dx.doi.org/10.1145/2522968.2522981

1. INTRODUCTION

Recent advances in both hardware and software have allowed large-scale data acquisition. Nevertheless, dealing with massive amounts of data poses a challenge for

© 2013 ACM 0360-0300/2013/10-ART13 \$15.00

The authors gratefully acknowledge Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado de São Paulo (FAPESP), ERDF through the COMPETE Programme, project FCOMP 01-0124-FEDER-022701, and Foundation for Science and Technology (FCT) project KDUS - Knowledge Discovery from Ubiquitous Data Streams (ref. PTDC/EIA/098355/2008) for funding this research.

Authors' addresses: J. A. Silva, Institure of Mathematics and Computer Science (ICMC), University of São Paulo, São Paulo, Brazil; E. R. Faria, Institute of Mathematics and Computer Science (ICMC), University of São Paulo, São Paulo, Brazil and School of Computer, Federal University of Uberlandia, Uberlandia, Brazil; R. C. Barros (corresponding author), E. R. Hruschka, A. C. P. L. F. De Carvalho, Institute of Mathematics and Computer Science (ICMC), University of São Paulo, São Paulo, Brazil; email: rcbarros@gmail.com; J. Gama, Laboratory of Artificial Intelligence and Decision Support (LIAAD-INESC TEC) and FEP, University of Porto, Portugal.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

researchers and practitioners, due to the physical limitations of the current computational resources. For the last decade, we have seen an increasing interest in managing these massive, unbounded sequences of data objects that are continuously generated at rapid rates, the so-called *data streams* [Aggarwal 2007; Gama and Gaber 2007; Gama 2010]. More formally, a data stream S is a massive sequence of data objects $\mathbf{x}^1, \mathbf{x}^2, \ldots, \mathbf{x}^N$, that is, $S = {\mathbf{x}^i}_{i=1}^N$, which is potentially unbounded $(N \to \infty)$. Each data object¹ is described by an *n*-dimensional attribute vector $\mathbf{x}^i = [x_j^i]_{j=1}^n$ belonging to an attribute space Ω that can be continuous, categorical, or mixed.

Applications of data streams include mining data generated by sensor networks, meteorological analysis, stock market analysis, and computer network traffic monitoring, just to name a few. These applications involve datasets that are far too large to fit in main memory and are typically stored in a secondary storage device. From this standpoint, and provided that random access is prohibitively expensive [Guha et al. 2003], performing linear scans of the data is the only acceptable access method in terms of computational efficiency.

Extracting potentially useful knowledge from data streams is a challenge per se. Most data mining and knowledge discovery techniques assume that there is a finite amount of data generated by an unknown, stationary probability distribution, which can be physically stored and analyzed in multiple steps by a *batch*-mode algorithm. For data stream mining, however, the successful development of algorithms has to take into account the following restrictions.

- (1) Data objects arrive continuously.
- (2) There is no control over the order in which the data objects should be processed.
- (3) The size of a stream is (potentially) unbounded.
- (4) Data objects are discarded after they have been processed. In practice, one can store part of the data for a given period of time, using a forgetting mechanism to discard them later.
- (5) The unknown data generation process is possibly nonstationary, that is, its probability distribution may change over time.

The development of effective algorithms for data streams is an effervescent research issue. This article is particularly focused on algorithms for clustering data streams. Essentially, the clustering problem can be posed as determining a finite set of categories (clusters) that appropriately describe a dataset. The rationale behind clustering algorithms is that objects within a cluster are more similar to each other than they are to objects belonging to a different cluster [Fayyad et al. 1996; Arabie and Hubert 1999]. It is worth mentioning that batch-mode clustering algorithms have been both studied and employed as data analysis tools for decades. The literature on the subject is very large—for example, see Kogan [2007], Gan et al. [2007], and Xu and Wunsch [2009]—and out of the scope of this article.

Clustering data streams requires a process able to continuously cluster objects within memory and time restrictions [Gama 2010]. Bearing these restrictions in mind, algorithms for clustering data streams should ideally fulfill the following requirements [Babcock et al. 2002; Barbará 2002; Tasoulis et al. 2006; Bifet 2010]: (i) provide timely results by performing fast and incremental processing of data objects; (ii) rapidly adapt to changing dynamics of the data, which means algorithms should detect when new clusters may appear, or others disappear; (iii) scale to the number of objects that are continuously arriving; (iv) provide a model representation that is not only compact,

¹In this article we adhere to this most commonly used term, but note that the terms element, example, instance, and sample are also used.

but that also does not grow with the number of objects processed (notice that even a linear growth should not be tolerated); (v) rapidly detect the presence of outliers and act accordingly; and (vi) deal with different data types, for example, XML trees, DNA sequences, GPS temporal and spatial information. Although these requirements are only partially fulfilled in practice, it is instructive to keep them in mind when designing algorithms for clustering data streams.

The purpose of this article is to survey state-of-the-art algorithms for clustering data streams. Surveys on this subject have been previously published, such as Mahdiraji [2009], Kavitha and Punithavalli [2010], and Khalilian and Mustapha [2010]. In Mahdiraji [2009], the author presents a very brief description of only five algorithms. In Kavitha and Punithavalli [2010], a short description of clustering algorithms for time-series data streams is presented. Lastly, in Khalilian and Mustapha [2010], the authors discuss some challenges and issues in data stream clustering. Differently from previous papers, we offer an extensive review of the literature, as well as comprehensive discussions of the different design components of data stream clustering algorithms. As an additional contribution of our work, we focus on relevant subjects that have not been carefully considered in the literature, namely: (i) providing a taxonomy that allows the reader to identify every surveyed work with respect to important aspects in data stream clustering; (ii) analyzing the influence of the time element in data stream clustering; (iii) analyzing the experimental methodologies usually employed in the literature; and (iv) providing a number of references that describe applications of data stream clustering in different domains, such as sensor networks, stock market analysis, and grid computing.

The remainder of this article is organized as follows. In Section 2, we describe a taxonomy to properly classify the main data stream clustering algorithms. Section 3 presents the components responsible for online management of data streams, namely: data structures (Section 3.1), window models (Section 3.2), and outlier detection mechanisms (Section 3.3). The offline component of data stream clustering algorithms is presented in Section 4. Relevant issues regarding the temporal aspects of data stream clustering are addressed in Section 5. Afterwards, in Section 6, we present an overview of the most usual experimental methodologies employed in the literature. In Section 7, we review practical issues in data stream clustering, such as distinct real-world applications, publicly available software packages, and dataset repositories. Finally, we indicate challenges to be faced and promising future directions for the area in Section 8 and provide the complexity analysis of the main data stream clustering algorithms in the Electronic Appendix.

2. OVERVIEW OF DATA STREAM CLUSTERING

In this section, we provide a taxonomy that allows the reader to identify every surveyed work with respect to important aspects in data stream clustering, namely:

- (1) data structure for statistic summary;
- (2) window model;
- (3) outlier detection mechanism;
- (4) number of user-defined parameters;
- (5) offline clustering algorithm;
- (6) cluster shape;
- (7) type of clustering problem.

The application of clustering algorithms to data streams has been concerned with either object-based clustering or attribute-based clustering, with the former being far more common.

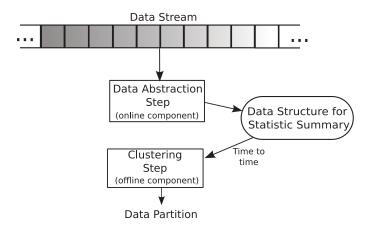


Fig. 1. Object-based data stream clustering framework.

Object-based data stream clustering algorithms can be summarized into two main steps [Cao et al. 2006; Yang and Zhou 2006; Zhou et al. 2008], namely: data abstraction step (also known as online component) and clustering step (also known as offline component), as illustrated in Figure 1. The online abstraction step summarizes the data stream with the help of particular data structures for dealing with space and memory constraints of stream applications. These data structures summarize the stream in order to preserve the meaning of the original objects without the need of actually storing them. Among the commonly employed data structures, we highlight the feature vectors, prototype arrays, coreset trees, and data grids (details in Section 3.1).

For summarizing the continuously arriving stream data and, at the same time, for giving greater importance to up-to-date objects, a popular approach in object-based data stream clustering consists of defining a time window that covers the most recent data. Among the distinct window models that have been used in the literature, we highlight the landmark model, sliding-window model, and damped model—all covered in Section 3.2.

Still regarding the data abstraction step, data stream clustering algorithms should ideally employ outlier detection mechanisms that are able to distinguish between actual outliers and cluster evolution, considering that the data stream distribution may vary over time. Outlier detection mechanisms are covered at Section 3.3.

After performing the data abstraction step, data stream clustering algorithms obtain a data partition via an offline clustering step (offline component). The offline component is used together with a wide variety of inputs (e.g., time horizon, and number of clusters) to provide a quick understanding of the broad clusters in the data stream. Since this component requires the summary statistics as input, it turns out to be very efficient in practice [Aggarwal et al. 2003]. Based on this assumption, traditional clustering algorithms (like *DBSCAN* [Ester et al. 1996] and *k*-means² [MacQueen 1967; Lloyd 1982]) can be used to find a data partition over the summaries, whose size is relatively small compared to the entire data stream. It is worth mentioning that MacQueen [1967] informally introduced a sequential version of *k*-means, which could be further exploited in a stream context. Note also that the cluster shape will be directly related to the clustering algorithm being employed. For instance, *k*-means generates hyper-spherical

 $^{^{2}}$ As observed by Jain [2009], *k*-means has a rich and diverse history as it was independently discovered in different scientific fields by Steinhaus [1956], Lloyd [1982] (who proposed it in 1957 and published it in 1982), Ball and Hall [1965], and MacQueen [1967].

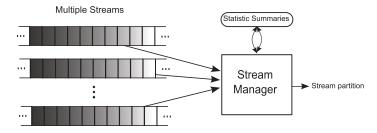


Fig. 2. Attribute-based data stream clustering framework.

clusters, whereas *DBSCAN* allows the discovery of arbitrarily shaped clusters. We present the offline clustering step in Section 4.

Even though most data stream clustering algorithms aim at performing object clustering, there are works that perform attribute clustering (also known as variable clustering). Attribute clustering is usually considered a batch offline procedure, in which the common strategy is to employ a traditional clustering algorithm over the transposed data matrix. However, for online processing of data streams, it is not possible to transpose the (possibly infinite) data matrix. Clearly, there is the need of developing attribute clustering algorithms for data streams, whose objective is to find groups of attributes (e.g., data sources like sensors) that behave similarly through time, under the constraints assumed in a data stream scenario. Examples of algorithms that perform attribute clustering are *Online Divisive-Agglomerative Clustering (ODAC)* [Rodrigues et al. 2006, 2008] and *DGClust* [Gama et al. 2011]. Figure 2 depicts the general scheme of data stream attribute clustering, in which we have one data stream per attribute and a manager that processes data from the distinct streams. Considering that each attribute constitutes a different stream, attribute clustering may benefit from parallel and distributed systems, which is precisely the case of *DGClust* [Gama et al. 2011].

Table I classifies the 13 most relevant data stream clustering algorithms to date according to the dimensions defined by our taxonomy. They are:

- (1) *BIRCH* [Zhang et al. 1997];
- (2) CluStream [Aggarwal et al. 2003];
- (3) *ClusTree* [Kranen et al. 2011];
- (4) *D-Stream* [Chen and Tu 2007];
- (5) *DenStream* [Cao et al. 2006];
- (6) *DGClust* [Gama et al. 2011];
- (7) ODAC [Rodrigues et al. 2006; 2008];
- (8) Scalable k-means [Bradley et al. 1998];
- (9) Single-pass k-means [Farnstrom et al. 2000];
- (10) *Stream* [Guha et al. 2000];
- (11) Stream LSearch [O'Callaghan et al. 2002];
- (12) *StreamKM*++ [Ackermann et al. 2012];
- (13) SWClustering [Zhou et al. 2008].

Note that parameters related to distance measures were not included in Table I. A more detailed discussion about the parameters of each clustering algorithm is presented in the next sections.

We notice that most data stream clustering algorithms neglect an important aspect of data stream mining: *change detection*. It is well-known that the data generation of several stream applications is guided by *nonstationary* distributions. This phenomenon, also known as *concept drift*, means that the concept about which data is obtained may shift from time to time, each time after some minimum permanence. The current

Al	Data	Window	Outlier	Number of
Algorithm	Structure	Models	Detection	Parameters
(1) BIRCH	feature vector	landmark	density-based	5
(2) CluStream	feature vector	landmark	statistical-based 9	
(3) ClusTree	feature vector	damped	_	3
(4) D-Stream	grid	damped	density-based	5
(5) DenStream	feature vector	damped	density-based	4
(6) DGClus	grid	landmark	_	5
(7) ODAC	correlation matrix	landmark	_	3
(8) Scalable k-means	feature vector	landmark	_	5
(9) Single-pass k-means	feature vector	landmark	_	2
(10) Stream	prototype array	landmark	_	3
(11) Stream LSearch	prototype array	landmark	_	2
(12) <i>StreamKM</i> ++	coreset tree	landmark	_	3
(13) SWClustering	feature vector	landmark	_	5
Algorithm	Cluster		Cluster	Cluster
Aigorium	Algorithm		Shana	Droblom

Table I. Analysis of 13 Data Stream Clustering Algorithms

Al	Cluster	Cluster	Cluster	
Algorithm	Algorithm	Shape	Problem	
(1) BIRCH	k-means	hyper-sphere	object	
(2) CluStream	k-means	hyper-sphere	object	
(3) ClusTree	k-means/DBSCAN	arbitrary	object	
(4) D-Stream	DBSCAN	arbitrary	object	
(5) DenStream	DBSCAN	arbitrary	object	
(6) DGClust	k-means	hyper-sphere	attribute	
7) ODAC	hierarchical clustering	hyper-ellipsis	attribute	
(8) Scalable k-means	k-means	hyper-sphere	object	
9) Single-pass k-means	k-means	hyper-sphere	object	
(10) Stream	k-median	hyper-sphere	object	
(11) Stream LSearch	k-median	hyper-sphere	object	
(12) StreamKM++	k-means	hyper-sphere	object	
(13) SWClustering	k-means	hyper-sphere	object	

strategy of most data stream clustering algorithms is to implicitly deal with *nonstationary* distributions through *window models*. An exception is ODAC [Rodrigues et al. 2006, 2008], which explicitly provides *change detection* mechanisms. A discussion on temporal aspects is presented in Section 5.

3. DATA ABSTRACTION STEP

As we have previously seen, most data stream clustering algorithms summarize the data in an abstraction step. In this section, we detail important aspects involved in data abstraction: (i) data structures; (ii) window models; and (iii) outlier detection mechanisms.

3.1. Data Structures

Developing suitable data structures for storing statistic summaries of data streams is a crucial step for any data stream clustering algorithm, especially due to spaceconstraints assumptions made in data stream applications. Considering that the entire stream cannot be stored in the main memory, special data structures must be employed for incrementally summarizing the stream. In this section, we present four data structures commonly employed in the data abstraction step: (i) feature vector; (ii) prototype array; (iii) coreset trees; and (iv) grids.

Data Stream Clustering: A Survey

3.1.1. Feature Vector. The use of a feature vector for summarizing large amounts of data was first introduced in the *BIRCH* algorithm [Zhang et al. 1996]. This vector, named CF, from Clustering Feature vector, has three components: N, the number of data objects, LS, the linear sum of the data objects, and SS, the sum of squared data objects. The structures LS and SS are *n*-dimensional arrays. These three components allow to compute cluster measures, such as cluster mean (Eq. (1)), radius (Eq. (2)), and diameter (Eq. (3)).

$$centroid = \frac{LS}{N} \tag{1}$$

$$radius = \sqrt{\left(\frac{SS}{N} - \left(\frac{LS}{N}\right)^2\right)}$$
(2)

$$diameter = \sqrt{\left(\frac{2N * SS - 2 * LS^2}{N(N-1)}\right)}$$
(3)

The CF vector presents important incrementality and additivity properties, as described next.

(1) *Incrementality*. A new object \mathbf{x}^{j} can be easily inserted into CF vector by updating its statistic summaries as follows.

$$\begin{array}{l} LS \leftarrow LS + \mathbf{x}^{j} \\ SS \leftarrow SS + (\mathbf{x}^{j})^{2} \\ N \leftarrow N + 1 \end{array}$$

(2) Additivity. Two disjoint vectors CF_1 and CF_2 can be easily merged into CF_3 by summing up their components.

$$N_3 = N_1 + N_2 \ LS_3 = LS_1 + LS_2 \ SS_3 = SS_1 + SS_2$$

The other data structure employed in *BIRCH* is a height-balanced tree (B+-Tree), named CF tree, where each non-leaf node contains at most B entries, having each a CF vector and a pointer to a child node. Similarly, every leaf node contains at most L entries, where each entry is a CF vector. Figure 3 depicts the CF tree structure, where every non-leaf node represents a cluster consisting of subclusters (its entries).

In the initial phase of *BIRCH*, the dataset is incrementally scanned to build a CF tree in-memory. Each leaf node has a maximum diameter (or radius) represented by a user-defined parameter, T. The value of this parameter defines whether a new data object may be absorbed by a CF vector. Thus, T determines the size of the tree, where higher values of T lead to smaller trees.

When a new object arrives, it descends the CF tree from the root to the leaves by choosing in each non-leaf node its closest CF entry (closeness is defined by the Euclidean distance between new objects and the centroids of CF entries in non-leaf nodes). In a leaf node, the closest entry is selected and tested to verify whether it can absorb the new object. If so, the CF vector is updated, otherwise a new CF entry is created—at this point it only contains this particular object. If there is no space for a new CF entry in the leaf node (i.e., there are already *L* entries within that leaf), the leaf is split into two leaves and the farthest pair of CF entries is used as seed to the new leaves. Afterwards, it is necessary to update each non-leaf node entry in the path until the root. Updating

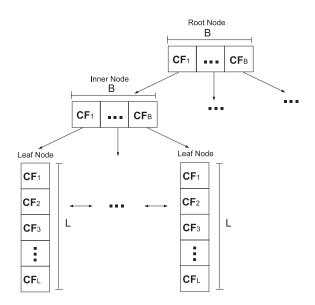


Fig. 3. CF tree structure.

a tree path is a necessary step for every new insertion made in the CF tree. When the value of T is so low that the tree does not fit in memory, *BIRCH* makes use of different heuristics to increase the value of T so that a new CF tree that fits in memory can be built.

The CF vector from *BIRCH* has been employed by different algorithms. *Scalable* k-means [Bradley et al. 1998], for instance, employs a CF vector structure to enable the application of the k-means algorithm in very large datasets. The basic idea is that the objects in the dataset are not equally important to the clustering process. From this observation, *Scalable k-means* employs different mechanisms to identify objects that need to be retained in memory. This algorithm stores data objects in a block (buffer) in the main memory. Through the CF vectors, it discards objects that were previously statistically summarized into buffer. The block size is a user-defined parameter. When the block is full, an extended version of k-means is executed over the stored data. This extended version of k-means, named *Extended k-means*, can handle with both single data objects and sufficient statistics of summarized data. Based on the first generated partition, two compression phases are applied to the data objects that are continuously arriving and being stored in the buffer.

In the primary compression phase, data objects that are unlikely to change their membership to a cluster in future iterations are discarded. To detect these objects, two strategies are employed, namely: PDC1 and PDC2. PDC1 finds the p% objects that are within the Mahalanobis radius [Bradley et al. 1998] of a cluster and compresses them—p is an input parameter. Only sufficient statistics are stored for these objects and, after computed, they are discarded. Next, PDC2 is applied to the objects that were not compressed by PDC1 (those outside the radius of its closest cluster). Therefore, for every remaining object \mathbf{x}^j , PDC2 finds its closest centroid according to the Mahalanobis distance [Maesschalck et al. 2000], say the centroid of cluster \mathbf{C}_i ; afterwards, the centroid of \mathbf{C}_i is perturbed and moved the farthest away from \mathbf{x}^j (within a precalculated confidence interval). In addition, the centroid of the second-closest cluster to \mathbf{x}^j is moved to be as close as possible (within a confidence interval) to it. If \mathbf{x}^j still lies within the radius of cluster \mathbf{C}_i , the sufficient statistics of \mathbf{x}^j are stored in the corresponding

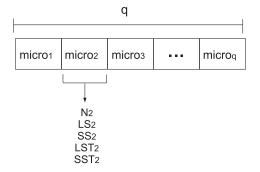


Fig. 4. Microcluster structure used in the CluStream algorithm [Aggarwal et al. 2003].

CF vector, and the object is discarded. Otherwise, \mathbf{x}^{j} is kept to be processed by the secondary compression phase. Note that PDC2 is actually creating a "worst-case scenario" by perturbing the cluster means within computed confidence intervals.

The secondary compression phase is applied to those objects that were not discarded in the primary compression. The objective of this phase is to release space in memory to store new objects. The objects that were not discarded are clustered by k-means into a user-defined number of clusters, k_2 . Each one of the k_2 clusters is evaluated according to a compactness criterion that verifies whether the variance of a cluster is below a threshold β (input parameter). The statistical summary CF vector) of the clusters that meet this criterion is stored in the buffer, together with the CF vectors obtained from the primary compression. The CF vectors of those clusters that do not attend to the compactness criterion may be permanently discarded [Bradley et al. 1998].

Farnstrom et al. [2000] present a simplification of *Scalable k-means*, named *Single*pass k-means. In an attempt to improve computational efficiency, their work does not employ the compression steps of *Scalable k-means*. Instead, in each iteration of the algorithm, all objects in the buffer are discarded after the summary statistics are computed, and only the summary statistics of the k-means clusters are kept in the buffer.

The CF vector concept was extended and named *microcluster* in the *CluStream* algorithm [Aggarwal et al. 2003]. Each microcluster has five components. Three of them (N, LS, and SS) are the regular components of a CF vector. The additional components are the sum of the timestamps (LST) and the sum of the squares of the timestamps (SST). The online phase stores q microclusters in memory, where q is an input parameter. Figure 4 shows the CluStream structure. Each microcluster has a maximum boundary, which is computed as the standard deviation of the mean distance of the cluster objects to their centroids multiplied by a factor f. For each new object, the closest microcluster (according to the Euclidean distance) is selected to absorb it. For deciding whether a cluster should absorb a new object or not, it is verified if the distance between the new object and the closest centroid falls within the maximum boundary. If so, the object is absorbed by the cluster and its summary statistics are updated. If none of the microclusters can absorb the object, a new microcluster is created. This is accomplished by either deleting the oldest microcluster or by merging two microclusters. The oldest microcluster is deleted if its timestamp is below a given threshold δ (input parameter), which is deemed to be an outlier and therefore removed. Thus, the CluStream algorithm finds the arrival time (known as the relevance time) of the $m/(2N_i)^{th}$ percentile of the N_i objects in a microcluster *i*, whose timestamps are assumed to be normally distributed. Otherwise, the two closest microclusters are merged, using the additivity property of the CF vectors, which takes $O(q^2)$ time. The q microclusters are stored in a secondary storage device from time to time, that is, in time intervals

that decrease exponentially— α^l , where α and l are user-defined parameters—the socalled snapshots. These snapshots allow the user to search for clusters in different time horizons, h, through a *pyramidal time window* concept [Aggarwal et al. 2003].

Similar to *CluStream*, the authors in Zhou et al. [2008] propose the *SWClustering* algorithm, which uses a Temporal CF vector (TCF). TCF holds the three components of the original CF vector, plus the timestamp t of its most recent object. *SWClustering* also has a new data structure called EHCF (Exponential Histogram of Cluster Feature), which is defined as a collection of TCFs. Each EHCF is distributed in levels that contain at most $\frac{1}{\phi} + 1$ TCFs, where $0 < \phi < 1$ is a user-defined parameter. The number of objects in a given TCF_i is the same or twice as much of the number of objects in TCF_j , for i > j. Initially, the first TCF contains only one object. The center of EHCF is computed as the mean of the *LS* of all TCFs from an EHCF. When a new object **x** arrives, the nearest EHCF is selected (according to the Euclidean distance between the object and the center of EHCF). If the nearest EHCF can absorb **x**, that is, its distance to the object **x** is below $R * \beta$, where R is the radius of nearest EHCF and β is a threshold radius ($\beta > 0$), then **x** is inserted in this EHCF. Else, a new EHCF is created. However, it is necessary to check if the maximum number of allowed EHCFs is reached. If so, the two nearest EHCF are merged. Then, the expired records of the EHCF are deleted, leaving only the most recent N timestamps.

DenStream [Cao et al. 2006] is a density-based data stream clustering algorithm that also uses a feature vector based on *BIRCH*. In its online phase, two structures *p-microclusters* (potential clusters) and *o-microclusters* (a buffer for aiding outlier detection)—are provided to hold all the information needed for clustering the data. Each *p-microcluster* structure has an associated weight w that indicates its importance based on temporality (microclusters with no recent objects tend to lose importance, i.e. their respective weights continuously decrease over time in outdated *p-microclusters*). The weight of the microcluster, w, at time T is computed according to Eq. (4), where t^1, \ldots, t^j are the timestamps, and the importance of each object decreases according to the fading function in Eq. (5), parameterized with λ , a user-defined parameter.

$$w = \sum_{j \in p\text{-micro-cluster}} f(T - t^j), \tag{4}$$

$$f(t) = 2^{-\lambda t} \tag{5}$$

Two other statistics are stored for each *p*-microcluster: the weighted linear sum of objects (WLS) and the weighted sum of squared objects (WSS), computed according to Eqs. (6) and (7), respectively. From these equations, it is possible to compute the radius r of each *p*-microcluster (Eq. (8)) as well as its mean.

$$WLS = \sum_{i \in p-micro-cluster} f(T-t^j) \mathbf{x}^j$$
(6)

$$WSS = \sum_{j \in p\text{-micro-cluster}} f(T - t^j) \mathbf{x}^{j^2}$$
(7)

$$r = \sqrt{\sum_{j=1}^{n} \left(\frac{WSS^{j}}{w} - \left(\frac{WLS^{j}}{w}\right)^{2}\right)}$$
(8)

Each *o*-microclusters structure is defined in a similar way. The timestamp of creation for each *o*-microcluster, T_{Ini} , is also stored.

Data Stream Clustering: A Survey

When a new object \mathbf{x}^{j} arrives, the algorithm tries to insert it into its nearest *p*microcluster by updating the cluster summary statistics. The insertion will be successful if its updated radius is within a predefined boundary ϵ (input parameter). Otherwise, the algorithm tries to insert \mathbf{x}^{j} into its closest *o*-microcluster by updating its summary statistics. In this case, the insertion is successful if its updated radius is within ϵ . Moreover, if the updated *o*-microcluster weight exceeds $\beta \times \mu$, this *o*-microcluster has grown into a potential *p*-microcluster. Both β and μ are input parameters. β controls the threshold level, whereas μ is the integer weight of a given *p*-microcluster. If \mathbf{x}^{j} was not absorbed by its closest *o*-microcluster, then a new *o*-microcluster is created to absorb \mathbf{x}^{j} .

At delimited time periods T_p (given by Eq. (9)), the set of *p*-microclusters is checked to verify whether a *p*-microcluster should become an *o*-microcluster. Similarly, *o*microclusters may become *p*-microclusters after the analysis of their corresponding weights. If the parameter values of λ , β , and μ suggested by the authors Cao et al. [2006] are employed, this clean-up task is performed quite often, that is, $T_p \leq 4$, leading to a high computational cost.

$$T_p = \frac{1}{\lambda} \log\left(\frac{\beta\mu}{\beta\mu - 1}\right) \tag{9}$$

Similar to *Denstream*, the *ClusTree* algorithm [Kranen et al. 2011] also proposes to use a weighted CF vector, which is kept into a hierarchical tree (R-tree family). Two parameters are used to build this tree: the number of entries in a leaf node and the number of entries in non-leaf nodes. *ClusTree* provides strategies for dealing with time constraints for anytime clustering, that is, the possibility of interrupting the process of inserting new objects in the tree at any moment. This algorithm makes no apriori assumption on the size of the clustering model, since its aggregate and split operations adjust the size of the model automatically. The objects that were not inserted due to an interruption are temporarily stored in the buffer of the immediate subtree entry. When the subtree is accessed again, these objects are taken along as a "hitchhiker", and the operation of object insertion in a leaf node continues. *ClusTree* can also adapt itself to fast and slow streams. In fast streams, *ClusTree* aggregates similar objects in order to do a faster insertion in the tree. In slow streams, the idle time is used to improve the quality of the clustering.

3.1.2. Prototype Array. Some data stream clustering algorithms use a simplified summarization structure, hereby named *prototype array* [Domingos and Hulten 2001; Shah et al. 2005]. It is an array of prototypes (e.g., medoids or centroids) that summarizes the data partition.

For instance, Stream [Guha et al. 2000] employs an array of prototypes for summarizing the stream by dividing the data stream into chunks of size $m = N^{\rho}$, $0 < \rho < 1$. Each chunk of *m* objects is summarized in 2k representative objects by using a variant of the *k*-medoids algorithm [Kaufman and Rousseeuw 1990] known as Facility Location [Charikar and Guha 1999; Meyerson 2001]. The process of compressing the description of the data objects is repeated until an array of *m* prototypes is obtained. Next, these *m* prototypes are further compressed (clustered) into 2k prototypes and the process continues along the stream (see Figure 5).

Stream LSearch [O'Callaghan et al. 2002] uses a similar summarizing structure. This algorithm assumes that the objects arrive in chunks X_1, X_2, \ldots, X_Z , where each chunk X_i ($i \in [1, Z]$) can be clustered in the memory, thus producing k clusters. At the i^{th} chunk of the stream, the algorithm retains $O(i \times k)$ medoids. However, as $Z \to \infty$, it is not possible to keep the $O(i \times k)$ medoids in memory. Therefore, when the main

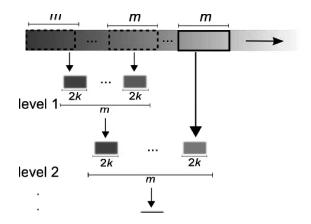


Fig. 5. Overview of Stream [Guha et al. 2000], which makes use of a prototype array.

memory is full, *Stream LSearch* clusters the $O(i \times k)$ medoids and keeps in memory only the *k* medoids obtained by this process.

3.1.3. Coreset Tree. A significantly different summary data structure for data stream clustering is the coreset tree employed in *StreamKM*++ [Ackermann et al. 2012]. This structure is a binary tree in which each tree node *i* contains the following components: a set of objects, E_i ; a prototype of E_i , \mathbf{x}^{p_i} ; the number of objects in E_i , N_i ; and the sum of squared distances of the objects in E_i to \mathbf{x}^{p_i} , SSE_i . E_i only has to be stored in the leaf nodes of the coreset tree, because the objects of an inner node are implicitly defined as the union of the objects of its child nodes.

The coreset tree structure is responsible for reducing 2m objects to m objects. The construction of this structure is defined as follows. First, the tree has only the root node v, which contains all the 2m objects in E_v . The prototype of the root node \mathbf{x}^{p_v} is chosen randomly from E_v and $N_v = |E_v| = 2m$. The computation of SSE_v follows from the definition of \mathbf{x}^{p_v} . Afterwards, two child nodes for v are created, namely: v_1 and v_2 . To create these nodes, it is necessary to choose an object from E_v with probability proportional to $\frac{Dist(\mathbf{x}^{p_v}, \mathbf{x}^{p_v})^2}{SSE_v}$, $\forall \mathbf{x}^{j_v} \in E_v$, that is, the object that is farthest away from \mathbf{x}^{p_v} has the highest probability of being selected. We call the selected object \mathbf{x}^{q_v} . The next step is to distribute the objects in E_v to E_{v_1} and E_{v_2} , such that

$$E_{v_1} = \left\{ \mathbf{x}^{\iota_v} \in E_v | Dist(\mathbf{x}^{\iota_v}, \mathbf{x}^{p_v}) < Dist(\mathbf{x}^{\iota_v}, \mathbf{x}^{q_v}) \right\} E_{v_2} = E_v \setminus E_{v_1}.$$
(10)

Later, the summary statistics of child node v_1 are updated, that is, $\mathbf{x}^{p_{v_1}} = \mathbf{x}^{p_v}$, $N_{v_1} = |E_{v_1}|$ and SSE_{v_1} follows from the definition of $\mathbf{x}^{p_{v_1}}$. Similary, the summary statistics of child node v_2 are updated, but note that $\mathbf{x}^{p_{v_2}} = \mathbf{x}^{q_v}$. This is the *expansion* step of the tree, which creates two child nodes for a given inner node. When the tree has many leaf nodes, it must be decided which one should be expanded first. For such, it is necessary to start from the root node of the coreset tree and descend it by iteratively selecting a child node with probability proportional to $\frac{SSE_{child}}{SSE_{parent}}$, until a leaf node is reached for the expansion step to be restarted. The coreset tree expansion stops when the number of leaf nodes is m.

StreamKM++ [Ackermann et al. 2012] is a two-step algorithm, that is, merge-andreduce. The reduce step is performed by the coreset tree, considering that it reduces 2mobjects to *m* objects. The merge step is performed by another data structure, namely the bucket set, which is a set of *L* buckets (also named buffers), where *L* is an input parameter. Each bucket can store *m* objects. When a new object arrives, it is stored in

13:13

the first bucket. If the first bucket is full, all of its data are moved to the second bucket. If the second bucket is full, a merge step is computed, that is, the *m* objects in the first bucket are merged with the *m* objects in the second bucket, resulting in 2m objects, which, by their turn, are reduced by the construction of a coreset tree, as previously detailed. The resulting *m* objects are stored in the third bucket, unless it is also full, and then again a new merge-and-reduce step is needed. This procedure is illustrated by the pseudocode in Algorithm 1.

ALGORITHM 1: Pseudocode for the insertion of a new object into the **bucket set** [Ackermann et al. 2012]. Function *coreset Reduction*($A \cup B$) (line 8) receives 2m objects and returns m summarized objects.

Input: New object \mathbf{x}^{j} , bucket set $B = \bigcup_{i=1}^{L} B_{i}$, size *m*. **Output**: Updated bucket set *B*. $B_0 = B_0 \cup \{\mathbf{x}^j\};$ if $(|B_0| \ge m)$ then create temporary bucket Q; $Q = B_0;$ $B_0=\emptyset;$ i = 1;while $B_i \neq \emptyset$ do $Q = coresetReduction(B_i \cup Q);$ $B_i = \emptyset;$ i = i + 1;end $B_i = Q;$ $Q = \emptyset;$ end

3.1.4. Grids. Some data stream clustering algorithms perform data summarization through grids [Cao et al. 2006; Park and Lee 2007; Chen and Tu 2007; Gama et al. 2011], that is, by partitioning the *n*-dimensional feature space into density grid cells. For instance, *D-Stream* [Chen and Tu 2007] maps each data stream object into density grid cells. Each object at time *t* is associated to a density coefficient that decreases over time, as shown in Eq. (11), where $\lambda \in (0, 1)$ is a decay factor. The density of a grid cell *g* at time *t*, D(g, t), is given by the sum of the adjusted densities of each object that is mapped to *g* at or before time *t* (E(g, t)), as shown in Eq. (12). Each grid cell is represented by a tuple $\langle t_g, t_m, D, label, status \rangle$, where t_g is the last time the grid cell was updated, t_m is the last time the grid cell density at its last update, *label* is the class label of the grid cell, and *status* indicates whether the grid cell is *NORMAL* or *SPORADIC*, as will be explained later.

$$D(\mathbf{x}^j, t) = \lambda^{t-t^j} \tag{11}$$

$$D(g,t) = \sum_{x \in E(g,t)} D(x,t)$$
(12)

The grid cells maintenance is performed during the online phase. A grid cell can become sparse if it does not receive new objects for a long time. In contrast, a sparse grid cell can become dense if it receives new objects. At fixed intervals of time (dynamic parameter *gap*), the grid cells are inspected with regard to their status. Considering that the number of grid cells may be large, especially in high-dimensional streams, only

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

the grid cells that are not empty are stored. Additionally, grid cells with few objects are treated as outliers (*status* = SPORADIC). Sporadic grid cells are periodically removed from the list of valid grid cells. Also, during the online phase, when a new *n*-dimensional object arrives, it is mapped into its corresponding grid cell *g*. If *g* is not in the list of valid grid cells (structured as a hash table), it is inserted in it and its corresponding summary is updated.

DGClust [Rodrigues et al. 2008; Gama et al. 2011] is an algorithm for distributed clustering of sensor data that also employs grid cells for summarizing the stream. It receives data from different sensors-where each sensor produces a univariate data stream. The data are processed locally in each sensor and when there is an update in a local grid cell (state change), this is communicated to the central site. The local site communicates the local state change by sending the number of the grid cell that was updated. The global state is a combination of the local states (grid cells) of each sensor. Each local site i keeps two layers of discretization with p_i and w_i bins, respectively, where $k < w_i < p_i$. The discretization algorithm used for generating the bins for each layer is Partition Incremental Discretization (PID) [Gama and Pinto 2006], which assumes grid cells of equal width. Each time a new value x_i^t is read, the counter of the corresponding bin is incremented in both the first and second layers. The number of bins in the first layer may change, given that the following condition is met: if the value of the counter associated to a bin in the first layer is larger than a user-defined threshold, α , the bin is split into two. The second layer discretizes the p_i bins into w_i bins, that is, it summarizes the information of the first layer in a higher granularity. The object counter of a bin in the second layer is incremented when the corresponding bin in the first layer is incremented. Next, a communication with the central site is performed to send the update information, so that the global state is updated at each timestamp. If there was a split, all bins of the second layer are sent to the central site, otherwise only the updated bin is sent to the central site.

3.2. Window Models

In most data stream scenarios, more recent information from the stream can reflect the emerging of new trends or changes on the data distribution. This information can be used to explain the evolution of the process under observation. Systems that give equal importance to outdated and recent data do not capture the evolving characteristics of stream data [Chen and Tu 2007]. The so-called moving window techniques have been proposed to partially address this problem [Barbará 2002; Babcock et al. 2003; Gama 2010]. There are three commonly studied models in data streams [Zhu and Shasha 2002]: (i) sliding windows; (ii) damped windows; and (iii) landmark windows.

3.2.1. Sliding-Window Model. In the sliding-window model, only the most recent information from the data stream are stored in a data structure whose size can be variable or fixed. This data structure is usually a *first in, first out (FIFO)* structure, which considers the objects from the current period of time up to a certain period in the past. The organization and manipulation of objects are based on the principles of queue processing, where the first object added to the queue will be the first one to be removed. In Figure 6, we present an example of the sliding-window model.

Several data stream clustering algorithms find clusters based on the sliding-window model, for example, Babcock et al. [2003], Zhou et al. [2008], and Ren and Ma [2009]. In summary, these algorithms only update the statistic summaries of the objects inserted into the window. The size of the window is set according to the available computational resources.

3.2.2. Damped Window Model. Differently from sliding windows, the damped window model, also referred to as time-fading model, considers the most recent information

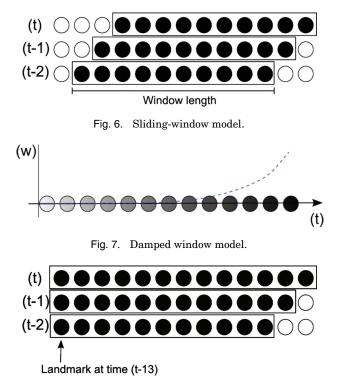


Fig. 8. Landmark window for a time interval of size 13.

by associating weights to objects from the data stream [Jiang and Gruenwald 2006]. More recent objects receive higher weight than older objects, and the weights of the objects decrease with time. An illustrative example of the damped window model is presented in Figure 7, where the weight of the objects exponentially decays from black (most recent) to white (expired).

This model is usually adopted in density-based clustering algorithms [Cao et al. 2006; Chen and Tu 2007; Isaksson et al. 2012]. These algorithms usually assume an exponential decay function to weight the objects from the stream. In Cao et al. [2006], for example, the adopted decay function follows the exponential function given by Eq. (5), where the $\lambda > 0$ parameter determines the decay rate and t is the current time. The higher the value of λ , the lower the importance of the past data regarding the most recent data. The *D-Stream* algorithm [Chen and Tu 2007] assigns a density coefficient for each element that arrives from the stream, whose value decreases with the object's age. This density coefficient is given by λ^{t-t_c} , where t_c is the instant in time that the object arrived from the stream.

3.2.3. Landmark Window Model. Processing a stream based on landmark windows requires handling disjoint portions of the streams (chunks), which are separated by landmarks (relevant objects). Landmarks can be defined either in terms of time (e.g., on daily or weekly basis) or in terms of the number of elements observed since the previous landmark [Metwally et al. 2005]. All objects that arrived after the landmark are kept or summarized into a window of recent data. When a new landmark is reached, all objects kept into the window are removed and the new objects from the current landmark are kept in the window until a new landmark is reached. Figure 8 illustrates an example of landmark window. Data stream clustering algorithms that are based on the landmark window model include O'Callaghan et al. [2002], Bradley et al. [1998], Farnstrom et al. [2000], Ackermann et al. [2012], and Aggarwal et al. [2003]. In O'Callaghan et al. [2002], for example, the *Stream* algorithm adopts a divide-and-conquer strategy based on a landmark window whose landmark is defined at every *m* number of objects. Note that, in this kind of window model, the relationship between objects from neighboring windows is not considered.

The problem in using any fixed-length window scheme is in finding out the ideal window size to be employed. A small window guarantees that the data stream algorithm will be able to rapidly capture eventual concept drifts. At the same time, in stable phases along the stream, it may affect the performance of the learning algorithm. On the other hand, a large window is desirable in stable phases, though it may not respond rapidly to concept drifts [Gama et al. 2004].

3.3. Outlier Detection Mechanisms

Besides the requirements of being incremental and fast, data stream clustering algorithms should also be able to properly handle outliers throughout the stream [Barbará 2002]. Outliers are objects that deviate from the general behavior of a data model [Han and Kamber 2000], and can occur due to different causes, such as problems in data collection, storage and transmission errors, fraudulent activities, or changes in the behavior of the system.

Density-based approaches look for low-density regions in the input space, which may indicate the presence of outliers. For instance, the *BIRCH* algorithm [Zhang et al. 1996] has an optional phase that scans the CF tree and stores leaf entries with low density on a disk. The number of bytes reserved to store outliers on the disk is specified by the user. The CF vectors with low density—estimated according to a threshold value are considered outliers. The threshold value is specified by the average size of the CF vectors on leaf nodes. Periodically, the algorithm checks whether the CF vectors stored on the disk (outlier candidates) can be absorbed by the current CF tree (kept in main memory). This monitoring occurs when either the disk runs out of space or the entire stream (assuming a finite one) has been processed. Potentially, this optional phase can be used for monitoring changes in the data distribution when more data are absorbed by the CF vectors.

The DenStream algorithm [Cao et al. 2006] introduces the notion of outlier buffer. The online phase of DenStream keeps the statistical summaries of the stream by means of p-microclusters. Every T_p time periods—see Eq. (9)—the online phase of DenStream checks the p-microclusters to identify potential outliers, the so-called o-microclusters. These are described by the tuple $\langle WLS, WSS, w, T_{Ini} \rangle$, where T_{Ini} is the timestamp of their creation. A p-microcluster becomes an o-microcluster if its weight (w) is below the outlier threshold ($w < \beta \mu$), where β and μ are user-defined parameters. Note that keeping all o-microclusters in memory may become prohibitive after some time. Hence, some o-microclusters need to be removed. The idea is to keep in the outlier buffer only the o-microclusters that may become p-microclusters (i.e., o-microclusters whose weight increases over time). In order to safely remove the "real" outliers, at every T_p time period, the weights of the o-microclusters are checked, and all those whose weight is below the limit are removed. The limit is captured by Eq. (13), where T is the current time.

$$\xi(T, T_{Ini}) = \frac{2^{-\lambda(T - T_{Ini} + T_p) - 1}}{2^{-\lambda T_p} - 1}$$
(13)

The *D-Stream* algorithm [Chen and Tu 2007] identifies and removes low-density grid cells that are categorized into sporadic grid cells. Such sporadic grid cells (outlier candidates) can occur for two reasons: (i) grid cells that have been receiving very few

objects; and (ii) crowded grid cells that have their densities reduced by means of the decay factor. The goal is to remove sporadic grid cells that occur by the first reason. A hash table stores the list of grid cells, and the algorithm checks periodically which grid cells in the hash table are sporadic. To do so, at every *gap* time interval (Eq. (15)), the grid cells whose density is below a given threshold are labeled as sporadic grid cells. If, in the next gap time period, the grid cells are still labeled as sporadic, they are removed from the hash table. The threshold to determine grid cells with low density ($D(g, t) < \pi(t_g, t)$) is calculated according to Eq. (14), where t is the current time, t_g is the last update time ($t > t_g$), C_l and C_m are user-defined parameters, G is the number of grid cells, and $\lambda \in (0, 1)$ is a constant called *decay factor*. We note that by employing the parameter values suggested by the authors Chen and Tu [2007], the grid cells are inspected every *gap* ≤ 2 objects, which may be computationally costly.

$$\pi(t_g, t) = \frac{C_l(1 - \lambda^{t - t_g + 1})}{G(1 - \lambda)}$$
(14)

$$gap = \left\lfloor log_{\lambda} \left(max \left\{ \frac{C_l}{C_m}, \frac{N - C_m}{N - C_l} \right\} \right) \right\rfloor$$
(15)

4. OFFLINE CLUSTERING STEP

In this section, we discuss the clustering step, which typically involves the application of a *standard* clustering algorithm to find clusters on the previously generated statistical summaries.

One of the most popular algorithms for data clustering is *k*-means [MacQueen 1967] due to its simplicity, scalability, and empirical success in many real-word applications [Wu et al. 2007]. Not surprisingly, *k*-means and its variants are widely used in data stream scenarios [Bradley et al. 1998; Farnstrom et al. 2000; O'Callaghan et al. 2002; Aggarwal et al. 2003; Zhou et al. 2008; Ackermann et al. 2012].

A powerful idea in clustering data streams is the use of CF vectors [Gama 2010], as previously discussed in Section 3.1. Some k-means variants have been proposed for dealing with CF vectors. In Zhang et al. [1997], for example, the authors suggest three ways to adapt the k-means algorithm to handle CF vectors.

- (1) Calculate the centroid of each CF vector— $\frac{LS}{N}$ —and consider each centroid as an object to be clustered by *k*-means.
- (2) Do the same as before, but weighting each object (CF vector centroid) proportionally to N, so that CF vectors with more objects will have a higher influence on the centroid calculation process performed by k-means.
- (3) Apply the clustering algorithm directly to the CF vectors, since their components keep the sufficient statistics for calculating most of the required distances and quality metrics.

The first and third strategies are commonly used by clustering algorithms based on CF vectors. The first strategy is the simplest one to be used in practice, since no further modification of the clustering algorithm is needed. This strategy is suggested by the *ClusTree* algorithm [Kranen et al. 2011] to group the leaf nodes (CF entries) in order to produce k clusters. The third strategy requires the modification of the clustering algorithm to properly handle the CF vectors as objects. In *CluStream* [Aggarwal et al. 2003], the employed k-means variant uses an adapted version of the second strategy that chooses the initial prototypes with a probability proportional to the number of objects in a microcluster (expanded CF vector). This variant is presented in Algorithm 2.

In Bradley et al. [1998], another *k*-means variant for dealing with CF vectors is presented. This variant, named *Extended k-means*, uses both the CF vectors of the data

ALGORITHM 2: k-means	variant to handle	e statistical summarie	es [Aggarwa	l et al. 2003].
----------------------	-------------------	------------------------	-------------	-----------------

Input: Number of clusters *k*, and set of micro-clusters $Q = \{Q_1, Q_2, \ldots, Q_q\}$.

Output: Data partition with k clusters. Consider each micro-cluster centroid, $\frac{LS}{N}$, as an object;

Initialization: k initial prototypes are sampled with probability proportional to N; repeat

Partitioning: compute the distance between prototypes and micro-clusters;

Updating: the new prototype is defined as the weighted centroid of the objects in a cluster; **until** *Prototypes get stabilized*;

that have been processed and new objects as input to find k clusters. It also considers the CF vector as an object weighted by N. This is similar to the idea presented in Figure 2. but it contains an additional step to handle empty clusters. After convergence (step 6), clusters are verified in order to detect empty groups. An empty cluster has its center set to the farthest object from it and the *Extended k-means* algorithm is called again to update the new prototypes [Bradley and Fayyad 1998]. In Farnstrom et al. [2000], the Extended k-means algorithm is also used in the Single-pass k-means framework.

Yet another k-means variant to handle statistical summaries is presented in Ackermann et al. [2012]. This clustering algorithm, named k-means++, can be viewed as a seeding procedure for the original k-means algorithm. As detailed in Section 3.1, the authors in Ackermann et al. [2012] propose a way of summarizing the data stream by extracting a small set of objects, named coreset [Bādoiu et al. 2002; Agarwal et al. 2004]. Recall that a coreset is a small (weighted) set of objects that approximates the objects from the stream regarding the k-means optimization problem. The algorithm proposed in Ackermann et al. [2012] extracts the coreset from the stream by means of a merge-and-reduce technique [Har-Peled and Mazumdar 2004] and finds k clusters through the *k*-means++ algorithm, described in Algorithm 3.

ALGORITHM 3: k-means++ algorithm [Arthur and Vassilvitskii 2007].

Input: Number of clusters k and coreset M. Output: Data partition. Choose an initial center c_1 uniformly at random from M; for i = 2 to k do Let $d(\mathbf{x}^j)$ be the shortest distance from an object $\mathbf{x}^j \in M$ to its closest center already chosen $\{c_1,\ldots,c_{i-1}\};$ Choose the next center $c_i = \mathbf{x}^t \in M$ with probability $d(\mathbf{x}^t)^2 / \sum_{\mathbf{x}^j \in M} d(\mathbf{x}^j)^2$; end

Proceed with the standard *k*-means algorithm;

The LSearch algorithm [O'Callaghan et al. 2002] uses the concept of facility location [Meyerson 2001] to find a solution to the k-medoids optimization problem. The main idea is to find the facility location (cluster medoid) that represents objects from the stream by minimizing a cost function. Each facility (medoid) has an associated cost to be opened on a given location and a service cost to attend demanding objects. The cost function is the sum of the associated costs to open facilities and the service costs. Thus, it is a combination of the Sum of Squared Errors (SSE) and a cost to insert a medoid within a partition, providing more flexibility to find the number of clusters. Nevertheless, the user still needs to provide an initial estimate of k before running the algorithm. LSearch searches for a data partition with the number of clusters between [k, 2k]. Ackermann

et al. [2012] observe that *LSearch* does not always find the prespecified k and that usually the difference lies within a 20% margin from the value of k chosen in advance.

Besides k-means, density-based clustering algorithms, like *DBSCAN* [Ester et al. 1996], are also used in the offline clustering step. In Cao et al. [2006], the authors present the *DenStream* algorithm, which uses a feature vector approach for summarizing the data and a *DBSCAN* variant for performing data clustering. This variant receives as input the *p*-microclusters (feature vectors) and two parameters— ϵ and μ , previously presented in Section 3.1—to partition the data. Each *p*-microcluster structure is seen as a virtual object with center equal to $\frac{LS}{WA_i}$, where WA_i is the weighting area of objects in a given neighborhood. Even though the user does not need to explicitly specify the number of clusters, the definition of ϵ and μ has a strong influence on the resulting data partition.

As seen in Section 3.1, another paradigm for clustering data streams partitions the data space into discretized grid cells. Typically, these algorithms create a grid data structure by dividing the data space into grid cells followed by the use of a standard clusterer to cluster these cells. As an example, the offline component of *D-Stream* [Chen and Tu 2007] adopts an agglomerative clustering strategy to group grid cells. The algorithm starts by assigning each dense cell to a cluster. Afterwards, an iterative procedure merges two dense cells that are strongly correlated into a single cluster. This procedure is repeated until no changes in the partition can be performed. A parameter whose value is defined by the user determines if two grid cells are strongly correlated.

Based on adaptive grid cells, the Distributed Grid Clustering algorithm (DGClust) [Rodrigues et al. 2008; Gama et al. 2011] is an online 2-layer distributed clustering algorithm for sensor data. DGClust reduces data dimensionality by monitoring and clustering only frequent states. As previously mentioned, the DGClust algorithm is composed of local and central sites, and each sensor is related to a univariate stream whose values are monitored in a local site. The goal of the central site is to find k clusters and keep the data partition continuously updated. In order to reduce its computational complexity, *DGClust* keeps only the top-m(m > k) most frequent global states. The central object of each of the most frequent global states will be used in the final clustering. As soon as the central site finds the top-m set of states, a simple partitioning algorithm can be applied to the most frequent states, to minimize the cluster radius (or equivalently the cluster diameter). The Furthest Point algorithm [Gonzalez 1985] is used for this task. It selects an initial object as the seed to the first cluster and iteratively selects the next object as the center cluster if its distance to the remaining clusters is maximized. In order to dynamically adjust the data partition, the algorithm operates in one of two possible conditions: converged or nonconverged. If the system is operating in the *nonconverged* condition, when a new state s(t) is reached, it updates the centers of the clusters according to the top-m states. If the system has already converged and the current state has effectively become a part of the top-*m* states, the system updates the centers and changes its status to *nonconverged*.

5. TEMPORAL ASPECTS

Besides the time and space constraints that distinguish batch-mode clustering from data stream clustering, the influence of time is a very important issue when clustering data streams. Indeed, there are several works in the literature that stress the importance of considering the time element when designing a data stream clustering algorithm. We highlight the following temporal aspects one should consider when designing a new algorithm: (i) time-aware clustering; (ii) outlier-evolution dilemma; and (iii) cluster tracking. We detail them next.

5.1. Time-Aware Clustering

The inherent time element in data streams should be properly exploited by data stream clustering algorithms. For instance, these algorithms should be able to implicitly or explicitly consider the influence of time during the clustering process (time-aware clustering). Current data stream clustering algorithms perform time-aware clustering by either assigning different levels of importance to objects (considering that recent data is more relevant than old data) or by modeling the behavior of the arriving data in such a way that objects can be clustered regarding different temporal patterns instead of a traditional spatial-based approach.

In the first case, the clustering process is affected by the *age* of objects, which is explicitly modeled by a decay function [Aggarwal et al. 2003; Cao et al. 2006; Chen and Tu 2007; Kranen et al. 2011], as previously mentioned in Sections 3.2 and 3.3. For the second case, a typical example is the *Temporal Structure Learning for Clustering Massive Data Stream in Real Time* (*TRACDS*) algorithm [Hahsler and Dunham 2011]. It is essentially a generalization of the *Extensible Markov Model (EMM)* algorithm [Dunham et al. 2004; Hahsler and Dunham 2010] for data stream scenarios. In *TRACDS*, each cluster (or microcluster) is represented by a state of a Markov Chain (MC) [Markov 1971; Bhat and Miller 2002], and the transitions represent the relationship between clusters. With the MC model, TRACDS can model the behavior of the objects that continuously arrive through state-change probabilities, in which the time element is implicitly considered through the different temporal patterns of the sequences of objects.

5.2. Outlier-Evolution Dilemma

As previously seen in Section 3.3, outlier detection mechanisms can be modeled with the help of decay functions [Zhang et al. 1997; Aggarwal et al. 2003; Cao et al. 2006; Chen and Tu 2007]. These functions evaluate the relevance of clusters according to their age, assuming that clusters that are seldom updated should be deemed as outliers. Nevertheless, we observe that there is a thin line between outlier detection and cluster evolution, and correctly distinguishing between them may be an application-dependent procedure. In certain applications, objects deemed as outliers may actually be the indication of a new emerging cluster. For instance, Barbará [2002] cites an example of a weather data application in which sufficient outliers indicate a new trend that needs to be represented by new clusters.

There are cases in which outliers actually redefine the boundaries of existing clusters. An example is a data stream of spotted cases of an illness, in which outliers indicate the spread of the epidemics over larger geographical areas [Barbará 2002]. Finally, there are scenarios in which objects deemed as outliers are indeed noise produced by uncalibrated sensors or improper environmental influence during data collection. An uncalibrated sensor may give the false impression that a new emerging cluster is arising when there is actually a large amount of spurious objects that should not be considered during clustering.

For the cases in which there are changes in the data probability distribution (e.g., real-time surveillance systems, telecommunication systems, sensor networks, and other dynamic environments), the data stream clustering algorithm should ideally be able to detect these changes and adapt the clusters accordingly. Aggarwal [2003] proposes a framework towards efficient change detection that enables the diagnostic of fast and multidimensional data streams. It allows visualizing and determining trends in the evolution of the stream, according to a concept called *velocity density estimation*. This mechanism creates temporal and spatial velocity profiles, which in turn can be used to predict different types of data evolution. Even though this framework is not

meant particularly for clustering applications, it can help users to understand the nature of the stream, and perhaps give new insight to researchers for developing change detection mechanisms for data stream clustering algorithms.

5.3. Cluster Tracking

The exploration of the stream over different time windows can provide the users a better comprehension about the dynamic behavior of the clusters. Hence, data stream clustering algorithms must provide to the user a way to examine clusters occurring in different granularities of time (e.g., daily, monthly, yearly). Statistics summary structures like CF vectors are a powerful tool to help in the cluster exploration due to its additivity and subtractive properties.

In addition, clusters upon the data of many real applications are affected by changes the underlying data suffers with time. Whereas many studies have been devoted to adapting clusters to the evolved data, we believe it is necessary to encompass tracing and understanding of cluster evolution itself, as a means of gaining insights on the data and supporting strategic decisions. In other words, it is necessary to provide insights about the nature of cluster change: is a cluster disappearing or are its members migrating to other clusters? Does a new emerging cluster reflect a new profile of objects (novelty detection) or does it rather consist of old objects whose characteristics have evolved?

Following the necessity of tracking and understanding cluster evolution, *MONIC* [Spiliopoulou et al. 2006] is an algorithm that was proposed for modeling and tracking clustering transitions. These transitions can be internal, related to each cluster, or external, related to the clustering process as a whole. *MONIC* categorizes internal transitions into three types: (i) changes in compactness; (ii) changes in size; and (iii) changes in location. For external transitions, five outcomes are possible: (i) the cluster survives; (ii) the cluster is split into multiple clusters; (iii) the cluster is absorbed by another cluster; (iv) the cluster disappears; and (v) a new cluster emerges. The transition tracking mechanism is based on the degree of overlapping between two clusters. Overlapping is defined as the number of common objects weighted by the age of the objects.

Another algorithm that performs cluster tracking is MEC [Oliveira and Gama 2010; 2012], which traces the evolution of clusters over time through the identification of the temporal relationship among them. It aims at identifying hidden behavioral patterns and developing knowledge about the evolution of the phenomena. Unlike MONIC, MEC employs different metrics to detect changes and provide techniques to visualize the cluster evolution. A bipartite graph structure is used to visualize the clusters' evolution and to formalize the definition of transition. This structure is used to compute the conditional probabilities for every pair of possible connections between nodes of a bipartite graph (clusters) obtained at consecutive time points.

6. ASSESSING CLUSTER STRUCTURES

An issue that arises when one proposes a new data stream clustering algorithm is how to properly assess its effectiveness. Determining suitable criteria to validate new and even existing algorithms is particularly important.

The literature on data clustering is very large, and due to the inherent subjectivity of the clustering task, several methodologies and clustering validity measures have been proposed in the past decades. Works on data stream clustering usually adopt well-known evaluation criteria. For instance, the most commonly employed criteria to evaluate the quality of stream data partitions are the Sum of Squared Errors (SSE) and the so-called *purity*. The former is an internal validity criterion, whereas the latter is an external validity criterion, in which the true labels (groups) of the data are available and are compared with the data partition obtained by a clustering algorithm.

The SSE criterion evaluates the compactness of clusters. The lower the SSE value, the more compact the clusters of the resulting partition. The SSE criterion can be formally described by Eq. (16), where \mathbf{c}_i is the centroid of cluster C_i . SSE decreases monotonically as the number of clusters increase. Hence, it cannot be used to estimate the optimal value of k, because it tends to find the trivial solution, namely: N singletons.

$$\sum_{i=1}^{K} \sum_{\mathbf{x}_i \in C_i} \|\mathbf{x}_j - \mathbf{c}_i\|^2$$
(16)

The purity is related to the entropy concept. In order to compute the purity criterion, each cluster is assigned to its majority class, as described in Eq. (17), where v_j is the number of objects in cluster C_j from class *i*. The purity is the sum of v_j over all clusters, as captured by Eq. (18).

$$v_j = \frac{1}{N_j} \operatorname*{argmax}_i \left(N_j^i \right) \tag{17}$$

$$Purity = \sum_{j=1}^{k} \frac{N_j}{N} v_j \tag{18}$$

Note that criteria like SSE and purity are usually employed in a sliding-window model, which means the clustering partition is obtained with data within the sliding window. However, if the algorithm does not use the sliding-window model (e.g., if it employs the concept of representative objects), evaluating a partition created with the most recent objects of the stream may not be a good idea, considering that representative objects summarize both past and present information.

Another important issue to be addressed in an experimental methodology is how to validate partitions generated with nonstationary data. For instance, one needs to verify how the partition has evolved since the last time it was generated. In this sense, it is not enough to evaluate the quality of the generated partition (spatial criterion), but it is also necessary to evaluate the changes that occur in the partition over time (temporal criterion). Even though the quality of the partition may indicate that changes occurred in the data distribution—for example, degradation of quality due to a new emerging cluster—, it is not possible to clearly state what is causing the quality degradation. Hence, there is a need of combining spatial and temporal criteria to properly evaluate the quality of partitions and their behavior over the course of the stream.

There are few efforts towards developing more sophisticated evaluation measures for data streams. In Kremer et al. [2011], the authors propose an external criterion for evaluating clustering algorithms, named CMM (Clustering Mapping Measure), which takes into account the age of objects. The CMM measure is a combination of penalties for each one of the following faults.

- (1) *Missed objects*. Clusters that are constantly moving may eventually "lose" objects, and thus CMM penalizes for these missed objects.
- (2) *Misplaced objects*. Clusters may eventually overlap over the course of the stream, and thus CMM penalizes for misplaced objects.
- (3) *Noise inclusion*. CMM penalizes for noisy objects being inserted into existing clusters.

The CMM measure can reflect errors related to emerging, splitting, or moving clusters, which are situations inherent to the streaming context. Nevertheless, note that

Data Stream Clustering: A Survey

Application area	References	
Bearing prognostics	[Serir et al. 2012]	
Charitable donation (KDD '98)	[Aggarwal et al. 2003], [Cao et al. 2006], [Gao et al. 2010]	
Forest cover	[Aggarwal et al. 2004; Tasoulis et al. 2006] [Aggarwal and Yu 2008; Lühr and Lazarescu 2009]	
Grid computing	[Zhang et al. 2009; Zhang and Wang 2010]	
Network intrusion detection (KDD '99)	[O'Callaghan et al. 2002; Cao et al. 2006; Guha et al. 2003] [Aggarwal et al. 2004; Tasoulis et al. 2006] [Csernel et al. 2006; Aggarwal et al. 2003] [Chen and Tu 2007; Aggarwal and Yu 2008] [Wan et al. 2008; Lühr and Lazarescu 2009] [Zhu et al. 2010; Ackermann et al. 2012] [Zhang and Wang 2010; Aggarwal 2010; Li and Tan 2011]	
Sensor networks	[Rodrigues et al. 2006; 2008; Gaber et al. 2010] [Silva et al. 2011; Gama et al. 2011]	
Stock market analysis	[Kontaki et al. 2008]	
Synthetic data	[Zhang et al. 1997, leong Ong et al. 2004, Chen and Tu 2007 [Guha et al. 2003; Aggarwal et al. 2004; Dang et al. 2009] [Wan et al. 2008; Aggarwal et al. 2003; Kontaki et al. 2008] [Serir et al. 2012; Cho et al. 2006; Aggarwal and Yu 2006] [O'Callaghan et al. 2002; Cao et al. 2006; Zhu et al. 2010] [Aghbari et al. 2012; Lühr and Lazarescu 2009]	
Text data	[Aggarwal and Yu 2006; Liu et al. 2008]	
VOIP data	[Aggarwal 2010]	
Water distribution networks	[Li et al. 2011]	

Table II. Application Areas of Data Stream Clustering

CMM is an external criterion, and thus requires a "gold standard" partition, which is not available in many practical applications.

7. DATA STREAM CLUSTERING IN PRACTICE

Our discussion so far has concentrated on techniques for data stream clustering and analysis of existing algorithms. All these are in vain unless data stream clustering is useful in practice. In this section, we address the applicability of data stream clustering, tabulating some relevant examples of its use in diverse real-world applications. We also briefly discuss existing software packages and dataset repositories for helping practitioners and researchers in designing their experiments.

7.1. Applications

Data stream mining is motivated by emerging applications involving massive datasets. Examples of these data include Guha et al. [2003]: customer click streams, telephone records, large sets of Web pages, multimedia data, financial transactions, and observational science data. Even though there are several interesting and relevant applications for data stream clustering (see Table II), most of the studies still propose evaluating algorithms on synthetic data.

The most notable exception is the public network intrusion dataset, known as KDD-CUP '09 [Tavallaee et al. 2009], available at the UCI repository [Frank and Asuncion 2010]. This dataset has two weeks of raw TCP dump data for a local area network and simulates an environment with occasional attacks. It is used in several experimental

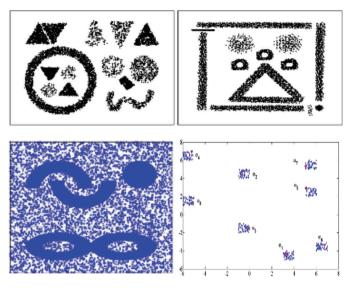


Fig. 9. Arbitrarily shaped synthetic datasets—adapted from Lühr and Lazarescu [2009] ©Elsevier 2009, Chen and Tu [2007] ©ACM 2007, Serir et al. [2012] ©Elsevier 2012.

studies in data mining, both for classification and clustering. Due to its large size, it has also been consistently used to assess data stream clustering algorithms (e.g., [Aggarwal et al. 2003; Aggarwal and Yu 2008; Aggarwal 2010]). Note that some evaluation measures may not be suitable for this dataset. For instance, the purity measure should not be employed for evaluating the cluster structures found within the KDD-CUP '09 dataset because the majority of its objects belong to the same class, resulting in large (and perhaps misleading) values of purity.

Synthetic datasets are usually preferred because testing hypotheses like noise robustness and scaling for high dimensionality are easier to perform with synthetic data. Examples of artificially generated datasets are: (i) data generated by varying Gaussian distributions Aggarwal et al. 2003, 2004; Wan et al. 2008; Dang et al. 2009]; (ii) data generated by the IBM synthetic data generator [leong Ong et al. 2004]; (iii) data simulating a taxi location tracking application [Cho et al. 2006]; and (iv) datasets formed by arbitrarily shaped clusters, like those presented in Figure 9.

In Serir et al. [2012], the authors propose to group data streams from bearing prognostics. They employ a platform developed within the Department of Automatic Control and Micro-Mechatronic Systems of the FEMTO-ST institute to generate data concerning the test and validation of bearing prognostics approaches. The platform is able to characterize both the ball bearing functioning and its degradation along its whole operational life (until fault/failure). Vibration and temperature measurements of the rolling bearing during its functioning mode are collected by different sensors.

A dataset commonly exploited by the data stream clustering research community is the charitable donation dataset (KDD-CUP '98) [Aggarwal et al. 2003; Cao et al. 2006; Gao et al. 2010], which contains records of information about people who have made charitable donations in response to direct mailing requests. In this kind of application, one possible clustering application is grouping donors that show similar donation behavior.

Yet another commonly exploited dataset in data stream clustering is the forest cover type dataset [Aggarwal et al. 2004; Tasoulis et al. 2006; Aggarwal and Yu 2008; Lühr and Lazarescu 2009]. It can be obtained from the UCI machine learning repository Web site³. This dataset contains a total of 581,012 observations with 54 attributes (10 quantitative, 4 binary values for wilderness areas, and 40 binary soil type). Each observation is labeled as one of seven forest cover types.

In Zhang et al. [2009] and Zhang and Wang [2010], the authors propose clustering data streams from real-time grid monitoring. In order to diagnose the EGEE grid (Enabling Grid for E-SciencE⁴), they exploited the gLite reports on the lifecycle of the jobs and on the behavior of the middleware components for providing the summarized information of grid running status.

Clustering data streams collected by sensor networks [Rodrigues et al. 2006, 2008; Silva et al. 2011; Gama et al. 2011] is another typical application. Sensor networks may be responsible, for example, for measuring electric power consumption in a given city. Electricity distribution companies usually set their management operators on SCADA/DMS products (Supervisory Control and Data Acquisition/Distribution Management Systems). In this context, data is collected from a set of sensors distributed all around the network. Sensors can send information at different time scales, speed, and granularity. Data continuously flow eventually at high speed, in a dynamic and time-changing environment. Clustering of the time series generated by each sensor is one of the learning tasks required in this scenario, considering that it allows the identification of consumption profiles, and the identification of urban, rural, and industrial consumers. Clustering this kind of information can help to understand patterns of electrical demand over different periods of the day.

In Kontaki et al. [2008], the authors evaluate their method in a stock prices dataset. This dataset has 500 time series, with a maximum length of 3,000 objects, collected at http://finance.yahoo.com. Clustering stock prices may provide insights on the evolution of stocks over time, and may help deciding when it is the right time for buying or selling stocks.

Clustering documents is also a relevant application area. In Aggarwal and Yu [2006], the authors utilize a number of documents obtained from a 1996 scan of the *Yahoo!* taxonomy, and a stream was synthetically produced from this scan by creating an order that matched a depth-first traversal of the *Yahoo!* hierarchy. Considering that Web pages at a given node in the hierarchy are crawled at once, the Web pages are also contiguous by their particular class, as defined by the *Yahoo!* labels. In Liu et al. [2008], a corpus of 20,000 documents [Zhang et al. 2006] is employed for evaluating the proposed algorithm. Each document was randomly assigned a timestamp, and three different text data streams with different document sequences were created. Clustering text data streams is useful with many applications, such as news group filtering, text crawling, document organization, and topic detection.

In Aggarwal [2010], a VOIP system that generates network packets in compressed G729 format is used. Each network packet contains a snapshot of the voice signal at a 10-ms interval. Each record contains 15 attributes corresponding to several characteristics of the speech, vocal tract model, pitch, and excitation. The dataset contains voice packets from six speakers and the clustering objective would be grouping packets from the same speaker together.

Finally, in Li et al. [2011], the authors monitor water distribution networks. Considering that evaluating the drinking water quality is a typical large-scale real-time monitoring application, the authors performed experiments with two distribution networks of different scales. The first network is a real water distribution system with

³http://www.ics.uci.edu/~mlearn.

⁴http://www.eu-egee.org/, the largest grid infrastructure in the world.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

129 nodes [Ostfeld et al. 2008]. The second network, with 920 nodes, comes from the Centre for Water Systems at the University of Exeter⁵.

7.2. Data Repositories

We highlight the following public data repositories that may be of interest for researchers and practitioners of data stream clustering.

- (1) UCI Knowledge Discovery in Databases Archive. This is an online repository of large datasets which encompasses a wide variety of data types, analysis tasks, and application areas. It is available at http://kdd.ics.uci.edu/.
- (2) KDD Cup Center. This is an annual Data Mining and Knowledge Discovery competition organized by ACM Special Interest Group on Knowledge Discovery and Data Mining. It is available at http://www.sigkdd.org/kddcup/.
- (3) UCR Time-Series Datasets. These are maintained by Eamonn Keogh, University California at Riverside, US. They are available at http://www.cs.ucr.edu/~eamonn/time_series_data.

7.3. Software Packages

As we have presented in this article, several data stream clustering algorithms were proposed in the specialized literature. We believe it would be useful if the research community joined forces to develop an unified software environment for implementing new algorithms and evaluation tools for data stream clustering. Recent efforts towards this objective include the following publicly available software packages.

- (1) MOA [Bifet et al. 2010]. MOA is a Java-based software package that contains state-of-the-art algorithms and measures for both data stream classification and clustering. It also embodies several evaluation criteria and visualization tools. It is available at http://moa.cs.waikato.ac.nz.
- (2) Rapid-Miner [Mierswa et al. 2006]. This is a Java-based data mining software package that contains a plugin for data stream processing. It is available at http://rapidi.com/.
- (3) VFML [Hulten and Domingos 2003]. This is a C-based software package for mining high-speed data streams and very large datasets. It is available at http://www.cs.washington.edu/dm/vfml/.

8. CHALLENGES AND FUTURE DIRECTION

Probably the greatest challenge in data stream clustering is building algorithms without introducing ad hoc critical parameters, such as: (i) the expected number of clusters or the expected density of clusters; (ii) the window length, whose size controls the trade-off between quality and efficiency; and (iii) the fading factor of clusters or objects, which gives more importance to the most recent objects. To address (i), there are a few recent studies that propose methods to automatically estimate the number of clusters in *k*-means-based stream clustering algorithms [Silva and Hruschka 2011; Faria et al. 2012]. Algorithms that assume a fixed number of clusters generate partitions that do not adapt over time, which is especially problematic when dealing with nonstationary distributions.

Another challenge that should be handled by data stream clustering algorithms is the ability of properly dealing with outliers, and also of detecting changes in the data distribution. The dynamic nature of evolving data streams, where new clusters often emerge while old clusters fade out, imposes difficulties for outlier detection. In general, new algorithms should provide mechanisms to distinguish between seeds of new

⁵Center for Water System at University of Exeter, http://centres.exeter.ac.uk/cws.

clusters and outliers. Regarding the challenge of dealing with *nonstationary* distributions, the current—and naive—strategy employed by most available algorithms is to implicitly deal with them through *window models*. Even though more robust *change detection* mechanisms have been implemented in generic frameworks, we believe future data stream clustering algorithms should explicitly provide mechanisms for performing *change detection*.

Dealing with different and mixed data types (e.g., categorical and ordinal values) imposes another challenge in data stream clustering that is present within several real-world application domains. For instance, complex data structures like DNA data and XML patterns are largely available, thus more attention should be given to principled algorithms capable of dealing with such data types. In this sense, although algorithms such as those described in Charikar and Guha [1999], Meyerson [2001], Guha et al. [2003], Charikar et al. [2003], and Guha [2009] are reasonably flexible, dealing with any distance metric (not just Euclidean distance), this flexibility may not be enough for many applications. From this perspective, further studies along these lines would be helpful.

Considering that the number of mobile applications grows every year, as well as the volume of data generated by these devices, we believe that clustering data streams produced by mobile devices will constitute an interesting application in years to come.

Another interesting future application of data stream clustering is social network analysis. The activities of social network members can be regarded as a data stream, and a clustering algorithm can be used to show similarities among members, and how these similar profiles (clusters) evolve over time. Social network stream clustering may support services such as intelligent advertisement and custom-made content. Finally, applications involving real-time distributed systems should also deserve particular attention from upcoming data stream clustering algorithms.

Bearing in mind that clustering data streams is a relevant and challenging task, we believe that much effort should be addressed to developing more sophisticated evaluation criteria, high-quality benchmark data, and a sound methodology for reliable experimental comparison of new data stream clustering algorithms.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

The authors would like to express their appreciation to the anonymous referees of the original manuscript for their constructive comments.

REFERENCES

- ACKERMANN, M. R., MARTENS, M., RAUPACH, C., SWIERKOT, K., LAMMERSEN, C., AND SOHLER, C. 2012. StreamKM++: A clustering algorithm for data streams. ACM J. Exper. Algor. 17, 1.
- AGARWAL, P. K., HAR-PELED, S., AND VARADARAJAN, K. R. 2004a. Approximating extent measures of points. J. ACM 51, 4, 606–635.
- AGGARWAL, C. C. 2003. A framework for diagnosing changes in evolving data streams. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'03). 575–586.
- AGGARWAL, C. C. 2007. Data Streams Models and Algorithms. Springer.
- AGGARWAL, C. C. 2010. A segment-based framework for modeling and mining data streams. *Knowl. Inf. Syst*, 30, 1, 1–29.
- AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2003. A framework for clustering evolving data streams. In Proceedings of the 29th Conference on Very Large Data Bases (VLDB'03). Vol. 29, 81–92.
- AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2004b. A framework for projected clustering of high dimensional data streams. In Proceedings of the 30th Conference on Very Large Data Bases (VLDB'04). Vol. 30, 852–863.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

- AGGARWAL, C. C. AND YU, P. S. 2006. A framework for clustering massive text and categorical data streams. In Proceedings of the 6th International Conference on Data Mining (SDM'06). 479.
- AGGARWAL, C. C. AND YU, P. S. 2008. A framework for clustering uncertain data streams. In Proceedings of the 24th IEEE International Conference on Data Engineering (ICDE'08). 150–159.
- AGHBARI, Z. A., KAMEL, I., AND AWAD, T. 2012. On clustering large number of data streams. Intell. Data Anal. 16, 1, 69–91.
- AMINI, A., WAH, T. Y., SAYBANI, M. R., AGHABOZORGI, S. R., AND YAZDI, S. 2011. A study of density-grid based clustering algorithms on data streams. In Proceedings of the 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'11). IEEE Press, Los Alamitos, CA, 1652–1656.
- ARABIE, P. AND HUBERT, L. J. 1999. An Overview of Combinatorial Data Analysis. World Scientific Publishing.
- ARTHUR, D. AND VASSILVITSKII, S. 2006. How slow is the k-means method? In Proceedings of the 22nd Annual Symposium on Computational Geometry (SCG'06). ACM Press, New York, 144–153.
- ARTHUR, D. AND VASSILVITSKII, S. 2007. K-means++: The advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. 1027–1035.
- BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J. 2002. Models and issues in data stream systems. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS'02). ACM Press, New York, 1–16.
- BABCOCK, B., DATAR, M., MOTWANI, R., AND O'CALLAGHAN, L. 2003. Maintaining variance and k-medians over data stream windows. In Proceedings of the 22nd ACM SIGMOD-SIGACT SIGART Symposium on Principles of Database Systems. ACM Press, New York, 234–243.
- BADOIU, M., HAR-PELED, S., AND INDYK, P. 2002. Approximate clustering via core-sets. In Proceedings of the 34th ACM Symposium on Theory of Computing (STOC'02). ACM Press, New York, 250–257.
- BALL, G. H. AND HALL, D. J. 1965. ISODATA. A novel method of data analysis and pattern classification. Tech. rep. Stanford Research Institute, Menlo Park.
- BARBARA, D. 2002. Requirements for clustering data streams. SIGKDD Explorations 3, 23-27.
- BENTLEY, J. L. 1975. Multidimensional binary search trees used for associative searching. Comm. ACM 18, 9, 509–517.
- BENTLEY, J. L. AND SAXE, J. B. 1980. Decomposable searching problems I: Static-to-dynamic transformation. J. Algor. 1, 4, 301–358.
- BHAT, U. N. AND MILLER, G. K. 2002. Elements of Applied Stochastic Processes 3rd Ed. John Wiley and Sons, New Jersey.
- BIFET, A. 2010. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams. IOS Press.
- BIFET, A., HOLMES, G., KIRKBY, R., AND PFAHRINGER, B. 2010. MOA: Massive online analysis. J. Mach. Learn. Res. 11, 1601–1604.
- BRADLEY, P. S. AND FAYYAD, U. M. 1998a. Refining initial points for k-means clustering. In Proceedings of the 15th International Conference on Machine Learning (ICML'98). Morgan Kaufmann Publishers, San Francisco, 91–99.
- BRADLEY, P. S., FAYYAD, U. M., AND REINA, C. 1998b. Scaling clustering algorithms to large databases. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD'98). AAAI Press, 9–15.
- CAO, F., ESTER, M., QIAN, W., AND ZHOU, A. 2006. Density-based clustering over an evolving data stream with noise. In Proceedings of the 6th SIAM International Conference on Data Mining. 328–339.
- CHARIKAR, M. AND GUHA, S. 1999. Improved combinatorial algorithms for the facility location and k-median problems. In *Proceedings of the 40th Annual Symposium on Foundations of Computer Science*. 378–388.
- CHARIKAR, M., O'CALLAGHAN, L., AND PANIGRAHY, R. 2003. Better streaming algorithms for clustering problems. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing. ACM Press, New York, 30–39.
- CHEN, Y. AND TU, L. 2007. Density-based clustering for real-time stream data. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, New York, 133–142.
- CHO, K., JO, S., JANG, H., KIM, S. M., AND SONG, J. 2006. DCF: An efficient data stream clustering framework for streaming applications. In Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06). 114–122.
- CSERNEL, B., CLEROT, F., AND HEBRAIL, G. 2006. Datastream clustering over tilted windows through sampling. In Proceedings of the Knowledge Discovery from Data Streams Workshop (ECML/PKDD).
- DANG, X. H., LEE, V. C. S., NG, W. K., CIPTADI, A., AND ONG, K.-L. 2009. An em-based algorithm for clustering data streams in sliding windows. In Proceedings of the 14th International Conference on Database Systems for Advanced Applications. Lecture Notes in Computer Science, vol. 5463, Springer, 230–235.

- DOMINGOS, P. AND HULTEN, G. 2001. A general method for scaling up machine learning algorithms and its application to clustering. In *Proceedings of the* 8th International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, 106–113.
- DUNHAM, M. H., MENGA, Y., AND HUANG, J. 2004. Extensible markov model. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM'04). 371–374.
- ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. 226–231.
- RIBEIRO, E. F., BARROS, R. C., CARVALHO, A. C. P. L. F., AND GAMA, J. 2012. improving the offline clustering stage of data stream algorithms in scenarios with variable number of clusters. In Proceedings of the 27th ACM Symposium on Applied Computing (SAC'12). 572–573.
- FARNSTROM, F., LEWIS, J., AND ELKAN, C. 2000. Scalability for clustering algorithms revisited. SIGKDD Exploration Newslett. 2, 1, 51–57.
- FAYYAD, U., PIATETSKY-SHAPIRO, G., AND SMYTH, P. 1996. From data mining to knowledge discovery: An overview. In Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence, Menlo Park, CA, 1–34.
- FRANK, A. AND ASUNCION, A. 2010. UCI machine learning repository. http://archive.ics.uci.edu/ml.
- GABER, M. M., VATSAVAI, R. R., OMITAOMU, O. A., GAMA, J., CHAWLA, N. V., AND GANGULY, A. R. 2010. Knowledge Discovery from Sensor Data. Springer.
- GAMA, J. 2010. Knowledge Discovery from Data Streams. Chapman Hall/CRC.
- GAMA, J. AND GABER, M. M. 2007. Learning from Data Streams: Processing Techniques in Sensor Networks. Springer.
- GAMA, J., MEDAS, P., CASTILLO, G., AND RODRIGUES, P. P. 2004. Learning with drift detection. In Proceedings of the 17th Brazilian Symposium on Artificial Intelligence (SBIA'04). Vol. 3171., 286–295.
- GAMA, J., PEREIRA, P. R., AND LOPES, L. 2011. Clustering distributed sensor data streams using local processing and reduced communication. Intell. Data Anal. 15, 1, 3–28.
- GAMA, J. AND PINTO, C. 2006. Discretization from data streams: Applications to histograms and data mining. In Proceedings of the ACM Symposium on Applied Computing (SAC'06). 662–667.
- GAN, G., MA, C., AND WU, J. 2007. Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability. SIAM.
- GAO, M.-M., LIU, J.-Z., AND GAO, X.-X. 2010. Application of compound gaussian mixture model clustering in the data stream. In Proceedings of the International Conference on Computer Application and System Modeling (ICCASM'10).
- GONZALEZ, T. F. 1985. Clustering to minimize the maximum intercluster distance. *Theor. Comput. Sci. 38*, 293–306.
- GUHA, S. 2009. Tight results for clustering and summarizing data streams. In Proceedings of the 12th International Conference on Database Theory (ICDT'09). ACM Press, New York, 268–275.
- GUHA, S., MEYERSON, A., MISHRA, N., MOTWANI, R., AND O'CALLAGHAN, L. 2003. Clustering data streams: Theory and practice. *IEEE Trans. Knowl. Data Engin.* 15, 515–528.
- GUHA, S., MISHRA, N., MOTWANI, R., AND O'CALLAGHAN, L. 2000. Clustering data streams. In Proceedings of the IEEE Symposium on Foundations of Computer Science. 359–366.
- HAHSLER, M. AND DUNHAM, M. H. 2010. rEMM: Extensible markov model for data stream clustering in r. J. Statist. Softw. 35, 5, 1–31.
- HAHSLER, M. AND DUNHAM, M. H. 2011. Temporal structure learning for clustering massive data streams in real-time. In Proceedings of the SIAM Conference on Data Mining. SIAM/Omnipress, 664–675.
- HAN, J. AND KAMBER, M. 2000. Data Mining: Concepts and Techniques. Morgan Kaufmann.
- HAR-PELED, S. AND MAZUMDAR, S. 2004. On coresets for k-means and k-median clustering. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing. 291–300.
- HULTEN, G. AND DOMINGOS, P. 2003. VFML A toolkit for mining high-speed time-changing data streams. Tech. rep. University of Washington. http://www.cs.washington.edu/dm/vfml/.
- ISAKSSON, C., DUNHAM, M. H., AND HAHSLER, M. 2012. SOStream: Self organizing density-based clustering over data stream. In Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science, vol. 7376, Springer, 264–278.
- JAIN, A. K. 2009. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31, 651-666.
- JIANG, N. AND GRUENWALD, L. 2006. Research issues in data stream association rule mining. SIGMOD Rec. 35, 1, 14–19.
- KAUFMAN, L. AND ROUSSEEUW, P. J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley Interscience.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

- KAVITHA, V. AND PUNITHAVALLI, M. 2010. Clustering time series data stream A literature survey. Int. J. Comput. Sci. Inf. Secur. 8, 1, 289–294.
- KHALILIAN, M. AND MUSTAPHA, N. 2010. Data stream clustering: challenges and issues. In Proceedings of International Multi Conference of Engineers and Computer Scientists. 566–569.
- KOGAN, J. 2007. Introduction to Clustering Large and High-Dimensional Data. Cambridge University Press.
- KONTAKI, M., PAPADOPOULOS, A. N., AND MANOLOPOULOS, Y. 2008. Continuous trend-based clustering in data streams. In Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery. 251–262.
- KRANEN, P., ASSENT, I., BALDAUF, C., AND SEIDL, T. 2011. The clustree: Indexing microclusters for anytime stream mining. Knowl. Inf. Syst. 29, 2, 249–272.
- KREMER, H., KRANEN, P., JANSEN, T., SEIDL, T., BIFET, A., HOLMES, G., AND PFAHRINGER, B. 2011. An effective evaluation measure for clustering on evolving data streams. In *Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'11)*. ACM Press, New York, 868–876.
- LI, Q., MA, X., TANG, S., AND XIE, S. 2011. Continuously identifying representatives out of massive streams. In Proceedings of the 7th International Conference on Advanced Data Mining and Applications (ADMA'11). Springer, 1–14.
- LI, Y. AND TAN, B. H. 2011. Data stream clustering algorithm based on affinity propagation and density. Advanced Materials Res. 267, 444–449.
- LIU, Y.-B., CAI, J.-R., YIN, J., AND FU, A. W.-C. 2008. Clustering text data streams. J. Comput. Sci. Technol. 23, 1, 112–128.
- LLOYD, S. P. 1982. Least squares quantization in pcm. IEEE Trans. Inf. Theory 28, 2, 129–137.
- LUHR, S. AND LAZARESCU, M. 2009. Incremental clustering of dynamic data streams using connectivity based representative points. *Data Knowl. Engin.* 68, 1–27.
- MACQUEEN, J. B. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. L. M. Le Cam and J. Neyman, Eds., Vol. 1., 281–297.
- DE MAESSCHALCK, R., JOUAN-RIMBAUD, D., AND MASSART, D. L. 2000. The mahalanobis distance. Chemometrics Intell. Laboratory Syst. 50, 1–18.
- MAHDIRAJI, A. R. 2009. Clustering data stream: A survey of algorithms. Int. J. Knowl.-Based Intell. Engin. Syst. 13, 2, 39–44.
- MARKOV, A. 1971. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. In *Dynamic Probabilistic Systems*, Vol. 1, R. Howard, Ed., John Wiley and Sons, Chapter Appendix B, 552–577.
- METWALLY, A., AGRAWAL, D., AND ABBADI, A. E. L. 2005. Duplicate detection in click streams. In Proceedings of the 14th International Conference on World Wide Web. ACM Press, New York, 12–21.
- MEYERSON, A. 2001. Online facility location. In Proceedings of the Annual IEEE Symposium on Foundations of Computer Science. 426–431.
- MIERSWA, I., WURST, M., KLINKENBERG, R., SCHOLZ, M., AND EULER, T. 2006. YALE: Rapid prototyping for complex data mining tasks. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'06). L. Ungar, M. Craven, D. Gunopulos, and T. Eliassi-Rad, Eds., ACM Press, New York, 935–940.
- O'CALLAGHAN, L., MISHRA, N., MEYERSON, A., GUHA, S., AND MOTWANI, R. 2002. Streaming data algorithms for high-quality clustering. In Proceedings of the 18th International Conference on Data Engineering. 685–694.
- OLIVEIRA, M. AND GAMA, J. 2010. MEC –Monitoring clusters' transitions. In Proceedings of the 5th Starting AI Researchers Symposium. IOS Press, 212–224.
- ONG, K. L, LI, W., NG, W.-K., AND LIM, E.-P. 2004. SCLOPE: An algorithm for clustering data streams of categorical attributes. In Proceedings of the 6th International Conference on Data Warehousing and Knowledge Discovery (KDD'04). 209–218.
- OLIVEIRA, M. D. B. AND GAMA, J. 2012. A framework to monitor clusters evolution applied to economy and finance problems. *Intell. Data Anal.* 16, 1, 93–111.
- OSTFELD, A., UBER, J. G., SALOMONS, E., ET AL. 2008. The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. J. Water Resources Plan. Manag. 134, 556.
- PARK, N. H. AND SUK LEE, W. 2007. Cell trees: An adaptive synopsis structure for clustering multidimensional on-line data streams. *Data Knowl. Engin.* 63, 2, 528–549.
- REN, J. AND MA, R. 2009. Density-based data streams clustering over sliding windows. In Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery. Vol. 5. 248–252.

- RODRIGUES, P., GAMA, J., AND PEDROSO, J. P. 2006. ODAC: Hierarchical clustering of time series data streams. In Proceedings of the 6th SIAM International Conference on Data Mining. 499–503.
- RODRIGUES, P. P., GAMA, J., AND PEDROSO, J. P. 2008. Hierarchical clustering of time-series data streams. IEEE Trans. Knowl. Data Engin. 20, 5, 615–627.
- SERIR, L., RAMASSO, E., AND ZERHOUNI, N. 2012. Evidential evolving gustafson-kessel algorithm for online data streams partitioning using belief function theory. Int. J. Approximate Reason. 53, 5, 1–22.
- SHAH, R., KRISHNASWAMY, S., AND GABER, M. M. 2005. Resource-aware very fast k-means for ubiquitous data stream mining. In Proceedings of the 2nd International Workshop on Knowledge Discovery in Data Streams, Held in Conjunction with the 16th European Conference on Machine Learning (ECML'05).
- SILVA, A., CHIKY, R., AND HEBRAIL, G. 2011. A clustering approach for sampling data streams in sensor networks. *Knowl. Inf. Syst.* 32, 1, 1–23.
- SILVA, J. A. AND HRUSCHKA, E. R. 2011. Extending k-means-based algorithms for evolving data streams with variable number of clusters. In Proceedings of the 4th International Conference on Machine Learning and Applications (ICMLA'11). Vol. 2. 14–19.
- SPILIOPOULOU, M., NTOUTSI, I., THEODORIDIS, Y., AND SCHULT, R. 2006. MONIC: Modeling and monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'06). ACM Press, New York, 706–711.
- STEINHAUS, H. 1956. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci 1, 801-804.
- TASOULIS, D. K., ADAMS, N. M., AND HAND, D. J. 2006. Unsupervised clustering in streaming data. In Proceedings of the 6th IEEE International Conference on Data Mining-Workshops (ICDM'06). 638–642.
- TAVALLAEE, M., BAGHERI, E., LU, W., AND GHORBANI, A. A. 2009. A detailed analysis of the kdd cup 99 data set. In Proceedings of the 2nd IEEE International Conference on Computational Intelligence for Security and Defense Applications. 53–58.
- VATTANI, A. 2009. K-means requires exponentially many iterations even in the plane. In *Proceedings of the* 25th Annual Symposium on Computational Geometry (SCG'09). ACM Press, New York, 324–332.
- WAN, R., YAN, X., AND SU, X. 2008. A weighted fuzzy clustering algorithm for data stream. In Proceedings of the ISECS International Colloquium on Computing, Communication, Control, and Management. 360–364.
- WU, X., KUMAR, V., QUINLAN, J. R, GHOSH, J., YANG, Q., MOTODA, H., MCLACHLAN, G. J., NG, A., LIU, B., YU, P. S., ZHOU, Z.-H., STEINBACH, M., HAND, D. J., AND STEINBERG, D. 2007. Top 10 algorithms in data mining. *Knowl. Inf. Syst.* 14, 1–37.
- XU, R. AND WUNSCH, D. 2009. Clustering. Computational Intelligence Series, Wiley-IEEE Press.
- YANG, C. AND ZHOU, J. 2006. HClustream: A novel approach for clustering evolving heterogeneous data stream. In Proceedings of the 6th IEEE International Conference on Data Mining. 682–688.
- ZHANG, T., RAMAKRISHNAN, R., AND LIVNY, M. 1996. BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, New York, 103–114.
- ZHANG, T., RAMAKRISHNAN, R., AND LIVNY, M. 1997. BIRCH: A new data clustering algorithm and its applications. Data Mining Knowl. Discov. 1, 2, 141–182.
- ZHANG, X., SEBAG, M., AND GERMAIN-RENAUD, C. 2009. Multi-scale real-time grid monitoring with job stream mining. In Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID'09). 420–427.
- ZHANG, X. AND WANG, W. 2010. Self-adaptive change detection in streaming data with nonstationary distribution. In Advanced Data Mining and Applications. Springer, 1–12.
- ZHANG, X., ZHOU, X., AND HU, X. 2006. Semantic smoothing for model-based document clustering. In Proceedings of the 6th International Conference on Data Mining (ICDM'06). 1193–1198.
- ZHOU, A., CAO, F., QIAN, W., AND JIN, C. 2008. Tracking clusters in evolving data streams over sliding windows. *Knowl. Inf. Syst.* 15, 2, 181–214.
- ZHU, H., WANG, Y., AND YU, Z. 2010. Clustering of evolving data stream with multiple adaptive sliding window. In Proceedings of the International Conference on Data Storage and Data Engineering (DSDE'10). 95– 100.
- ZHU, Y. AND SHASHA, D. 2002. StatStream: Statistical monitoring of thousands of data streams in real time. In Proceedings of the 28th International Conference on Very Large Data Bases (VLDB'02). VLBD Endowment, 358–369.

Received June 2012; revised September 2012; accepted January 2013