
13

Data Stream Clustering: A Survey

JONATHAN A. SILVA, University of São Paulo
ELAINE R. FARIA, University of São Paulo and Federal University of Uberlândia
RODRIGO C. BARROS, EDUARDO R. HRUSCHKA, and
ANDRÉ C. P. L. F. DE CARVALHO, University of São Paulo
JOÃO GAMA, University of Porto

Data stream mining is an active research area that has recently emerged to discover knowledge from large
amounts of continuously generated data. In this context, several data stream clustering algorithms have been
proposed to perform unsupervised learning. Nevertheless, data stream clustering imposes several challenges
to be addressed, such as dealing with nonstationary, unbounded data that arrive in an online fashion. The
intrinsic nature of stream data requires the development of algorithms capable of performing fast and
incremental processing of data objects, suitably addressing time and memory limitations. In this article, we
present a survey of data stream clustering algorithms, providing a thorough discussion of the main design
components of state-of-the-art algorithms. In addition, this work addresses the temporal aspects involved
in data stream clustering, and presents an overview of the usually employed experimental methodologies. A
number of references are provided that describe applications of data stream clustering in different domains,
such as network intrusion detection, sensor networks, and stock market analysis. Information regarding
software packages and data repositories are also available for helping researchers and practitioners. Finally,
some important issues and open questions that can be subject of future research are discussed.

Categories and Subject Descriptors: I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Data stream clustering, online clustering

ACM Reference Format:
Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., de Carvalho, A. C. P. L. F., and Gama, J. 2013. Data
stream clustering: A survey. ACM Comput. Surv. 46, 1, Article 13 (October 2013), 31 pages.
DOI: http://dx.doi.org/10.1145/2522968.2522981

1. INTRODUCTION

Recent advances in both hardware and software have allowed large-scale data ac-
quisition. Nevertheless, dealing with massive amounts of data poses a challenge for

The authors gratefully acknowledge Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES),
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa
do Estado de São Paulo (FAPESP), ERDF through the COMPETE Programme, project FCOMP 01-0124-
FEDER-022701, and Foundation for Science and Technology (FCT) project KDUS - Knowledge Discovery
from Ubiquitous Data Streams (ref. PTDC/EIA/098355/2008) for funding this research.
Authors’ addresses: J. A. Silva, Institure of Mathematics and Computer Science (ICMC), University of São
Paulo, São Paulo, Brazil; E. R. Faria, Institute of Mathematics and Computer Science (ICMC), University of
São Paulo, São Paulo, Brazil and School of Computer, Federal University of Uberlandia, Uberlandia, Brazil;
R. C. Barros (corresponding author), E. R. Hruschka, A. C. P. L. F. De Carvalho, Institute of Mathematics
and Computer Science (ICMC), University of São Paulo, São Paulo, Brazil; email: rcbarros@gmail.com; J.
Gama, Laboratory of Artificial Intelligence and Decision Support (LIAAD-INESC TEC) and FEP, University
of Porto, Portugal.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0360-0300/2013/10-ART13 $15.00

DOI: http://dx.doi.org/10.1145/2522968.2522981

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:2 J. A. Silva et al.

researchers and practitioners, due to the physical limitations of the current computa-
tional resources. For the last decade, we have seen an increasing interest in managing
these massive, unbounded sequences of data objects that are continuously generated
at rapid rates, the so-called data streams [Aggarwal 2007; Gama and Gaber 2007;
Gama 2010]. More formally, a data stream S is a massive sequence of data objects
x1, x2, . . . , xN, that is, S = {xi}N

i=1, which is potentially unbounded (N → ∞). Each data
object1 is described by an n−dimensional attribute vector xi = [xi

j]
n
j=1 belonging to an

attribute space � that can be continuous, categorical, or mixed.
Applications of data streams include mining data generated by sensor networks, me-

teorological analysis, stock market analysis, and computer network traffic monitoring,
just to name a few. These applications involve datasets that are far too large to fit in
main memory and are typically stored in a secondary storage device. From this stand-
point, and provided that random access is prohibitively expensive [Guha et al. 2003],
performing linear scans of the data is the only acceptable access method in terms of
computational efficiency.

Extracting potentially useful knowledge from data streams is a challenge per se.
Most data mining and knowledge discovery techniques assume that there is a finite
amount of data generated by an unknown, stationary probability distribution, which
can be physically stored and analyzed in multiple steps by a batch-mode algorithm.
For data stream mining, however, the successful development of algorithms has to take
into account the following restrictions.

(1) Data objects arrive continuously.
(2) There is no control over the order in which the data objects should be processed.
(3) The size of a stream is (potentially) unbounded.
(4) Data objects are discarded after they have been processed. In practice, one can

store part of the data for a given period of time, using a forgetting mechanism to
discard them later.

(5) The unknown data generation process is possibly nonstationary, that is, its proba-
bility distribution may change over time.

The development of effective algorithms for data streams is an effervescent research
issue. This article is particularly focused on algorithms for clustering data streams.
Essentially, the clustering problem can be posed as determining a finite set of cate-
gories (clusters) that appropriately describe a dataset. The rationale behind clustering
algorithms is that objects within a cluster are more similar to each other than they
are to objects belonging to a different cluster [Fayyad et al. 1996; Arabie and Hubert
1999]. It is worth mentioning that batch-mode clustering algorithms have been both
studied and employed as data analysis tools for decades. The literature on the subject
is very large—for example, see Kogan [2007], Gan et al. [2007], and Xu and Wunsch
[2009]—and out of the scope of this article.

Clustering data streams requires a process able to continuously cluster objects within
memory and time restrictions [Gama 2010]. Bearing these restrictions in mind, algo-
rithms for clustering data streams should ideally fulfill the following requirements
[Babcock et al. 2002; Barbará 2002; Tasoulis et al. 2006; Bifet 2010]: (i) provide timely
results by performing fast and incremental processing of data objects; (ii) rapidly adapt
to changing dynamics of the data, which means algorithms should detect when new
clusters may appear, or others disappear; (iii) scale to the number of objects that are
continuously arriving; (iv) provide a model representation that is not only compact,

1In this article we adhere to this most commonly used term, but note that the terms element, example,
instance, and sample are also used.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:3

but that also does not grow with the number of objects processed (notice that even a
linear growth should not be tolerated); (v) rapidly detect the presence of outliers and
act accordingly; and (vi) deal with different data types, for example, XML trees, DNA
sequences, GPS temporal and spatial information. Although these requirements are
only partially fulfilled in practice, it is instructive to keep them in mind when designing
algorithms for clustering data streams.

The purpose of this article is to survey state-of-the-art algorithms for clustering data
streams. Surveys on this subject have been previously published, such as Mahdiraji
[2009], Kavitha and Punithavalli [2010], and Khalilian and Mustapha [2010]. In
Mahdiraji [2009], the author presents a very brief description of only five algorithms.
In Kavitha and Punithavalli [2010], a short description of clustering algorithms for
time-series data streams is presented. Lastly, in Khalilian and Mustapha [2010], the
authors discuss some challenges and issues in data stream clustering. Differently from
previous papers, we offer an extensive review of the literature, as well as comprehensive
discussions of the different design components of data stream clustering algorithms.
As an additional contribution of our work, we focus on relevant subjects that have
not been carefully considered in the literature, namely: (i) providing a taxonomy that
allows the reader to identify every surveyed work with respect to important aspects
in data stream clustering; (ii) analyzing the influence of the time element in data
stream clustering; (iii) analyzing the experimental methodologies usually employed in
the literature; and (iv) providing a number of references that describe applications of
data stream clustering in different domains, such as sensor networks, stock market
analysis, and grid computing.

The remainder of this article is organized as follows. In Section 2, we describe a
taxonomy to properly classify the main data stream clustering algorithms. Section 3
presents the components responsible for online management of data streams, namely:
data structures (Section 3.1), window models (Section 3.2), and outlier detection mech-
anisms (Section 3.3). The offline component of data stream clustering algorithms is
presented in Section 4. Relevant issues regarding the temporal aspects of data stream
clustering are addressed in Section 5. Afterwards, in Section 6, we present an overview
of the most usual experimental methodologies employed in the literature. In Section 7,
we review practical issues in data stream clustering, such as distinct real-world ap-
plications, publicly available software packages, and dataset repositories. Finally, we
indicate challenges to be faced and promising future directions for the area in Section 8
and provide the complexity analysis of the main data stream clustering algorithms in
the Electronic Appendix.

2. OVERVIEW OF DATA STREAM CLUSTERING

In this section, we provide a taxonomy that allows the reader to identify every surveyed
work with respect to important aspects in data stream clustering, namely:

(1) data structure for statistic summary;
(2) window model;
(3) outlier detection mechanism;
(4) number of user-defined parameters;
(5) offline clustering algorithm;
(6) cluster shape;
(7) type of clustering problem.

The application of clustering algorithms to data streams has been concerned with
either object-based clustering or attribute-based clustering, with the former being far
more common.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:4 J. A. Silva et al.

Fig. 1. Object-based data stream clustering framework.

Object-based data stream clustering algorithms can be summarized into two main
steps [Cao et al. 2006; Yang and Zhou 2006; Zhou et al. 2008], namely: data abstraction
step (also known as online component) and clustering step (also known as offline com-
ponent), as illustrated in Figure 1. The online abstraction step summarizes the data
stream with the help of particular data structures for dealing with space and mem-
ory constraints of stream applications. These data structures summarize the stream
in order to preserve the meaning of the original objects without the need of actually
storing them. Among the commonly employed data structures, we highlight the feature
vectors, prototype arrays, coreset trees, and data grids (details in Section 3.1).

For summarizing the continuously arriving stream data and, at the same time, for
giving greater importance to up-to-date objects, a popular approach in object-based
data stream clustering consists of defining a time window that covers the most recent
data. Among the distinct window models that have been used in the literature, we
highlight the landmark model, sliding-window model, and damped model—all covered
in Section 3.2.

Still regarding the data abstraction step, data stream clustering algorithms should
ideally employ outlier detection mechanisms that are able to distinguish between actual
outliers and cluster evolution, considering that the data stream distribution may vary
over time. Outlier detection mechanisms are covered at Section 3.3.

After performing the data abstraction step, data stream clustering algorithms obtain
a data partition via an offline clustering step (offline component). The offline component
is used together with a wide variety of inputs (e.g., time horizon, and number of clusters)
to provide a quick understanding of the broad clusters in the data stream. Since this
component requires the summary statistics as input, it turns out to be very efficient
in practice [Aggarwal et al. 2003]. Based on this assumption, traditional clustering
algorithms (like DBSCAN [Ester et al. 1996] and k-means2 [MacQueen 1967; Lloyd
1982]) can be used to find a data partition over the summaries, whose size is relatively
small compared to the entire data stream. It is worth mentioning that MacQueen [1967]
informally introduced a sequential version of k-means, which could be further exploited
in a stream context. Note also that the cluster shape will be directly related to the
clustering algorithm being employed. For instance, k-means generates hyper-spherical

2As observed by Jain [2009], k-means has a rich and diverse history as it was independently discovered
in different scientific fields by Steinhaus [1956], Lloyd [1982] (who proposed it in 1957 and published it in
1982), Ball and Hall [1965], and MacQueen [1967].

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:5

Fig. 2. Attribute-based data stream clustering framework.

clusters, whereas DBSCAN allows the discovery of arbitrarily shaped clusters. We
present the offline clustering step in Section 4.

Even though most data stream clustering algorithms aim at performing object clus-
tering, there are works that perform attribute clustering (also known as variable clus-
tering). Attribute clustering is usually considered a batch offline procedure, in which
the common strategy is to employ a traditional clustering algorithm over the trans-
posed data matrix. However, for online processing of data streams, it is not possible to
transpose the (possibly infinite) data matrix. Clearly, there is the need of developing
attribute clustering algorithms for data streams, whose objective is to find groups of at-
tributes (e.g., data sources like sensors) that behave similarly through time, under the
constraints assumed in a data stream scenario. Examples of algorithms that perform
attribute clustering are Online Divisive-Agglomerative Clustering (ODAC) [Rodrigues
et al. 2006, 2008] and DGClust [Gama et al. 2011]. Figure 2 depicts the general scheme
of data stream attribute clustering, in which we have one data stream per attribute
and a manager that processes data from the distinct streams. Considering that each
attribute constitutes a different stream, attribute clustering may benefit from parallel
and distributed systems, which is precisely the case of DGClust [Gama et al. 2011].

Table I classifies the 13 most relevant data stream clustering algorithms to date
according to the dimensions defined by our taxonomy. They are:

(1) BIRCH [Zhang et al. 1997];
(2) CluStream [Aggarwal et al. 2003];
(3) ClusTree [Kranen et al. 2011];
(4) D-Stream [Chen and Tu 2007];
(5) DenStream [Cao et al. 2006];
(6) DGClust [Gama et al. 2011];
(7) ODAC [Rodrigues et al. 2006; 2008];
(8) Scalable k-means [Bradley et al. 1998];
(9) Single-pass k-means [Farnstrom et al. 2000];

(10) Stream [Guha et al. 2000];
(11) Stream LSearch [O’Callaghan et al. 2002];
(12) StreamKM++ [Ackermann et al. 2012];
(13) SWClustering [Zhou et al. 2008].

Note that parameters related to distance measures were not included in Table I.
A more detailed discussion about the parameters of each clustering algorithm is pre-
sented in the next sections.

We notice that most data stream clustering algorithms neglect an important aspect of
data stream mining: change detection. It is well-known that the data generation of sev-
eral stream applications is guided by nonstationary distributions. This phenomenon,
also known as concept drift, means that the concept about which data is obtained
may shift from time to time, each time after some minimum permanence. The current

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:6 J. A. Silva et al.

Table I. Analysis of 13 Data Stream Clustering Algorithms

Algorithm
Data Window Outlier Number of

Structure Models Detection Parameters
(1) BIRCH feature vector landmark density-based 5
(2) CluStream feature vector landmark statistical-based 9
(3) ClusTree feature vector damped — 3
(4) D-Stream grid damped density-based 5
(5) DenStream feature vector damped density-based 4
(6) DGClus grid landmark — 5
(7) ODAC correlation matrix landmark — 3
(8) Scalable k-means feature vector landmark — 5
(9) Single-pass k-means feature vector landmark — 2
(10) Stream prototype array landmark — 3
(11) Stream LSearch prototype array landmark — 2
(12) StreamKM++ coreset tree landmark — 3
(13) SWClustering feature vector landmark — 5

Algorithm
Cluster Cluster Cluster

Algorithm Shape Problem
(1) BIRCH k-means hyper-sphere object
(2) CluStream k-means hyper-sphere object
(3) ClusTree k-means/DBSCAN arbitrary object
(4) D-Stream DBSCAN arbitrary object
(5) DenStream DBSCAN arbitrary object
(6) DGClust k-means hyper-sphere attribute
(7) ODAC hierarchical clustering hyper-ellipsis attribute
(8) Scalable k-means k-means hyper-sphere object
(9) Single-pass k-means k-means hyper-sphere object
(10) Stream k-median hyper-sphere object
(11) Stream LSearch k-median hyper-sphere object
(12) StreamKM++ k-means hyper-sphere object
(13) SWClustering k-means hyper-sphere object

strategy of most data stream clustering algorithms is to implicitly deal with nonsta-
tionary distributions through window models. An exception is ODAC [Rodrigues et al.
2006, 2008], which explicitly provides change detection mechanisms. A discussion on
temporal aspects is presented in Section 5.

3. DATA ABSTRACTION STEP

As we have previously seen, most data stream clustering algorithms summarize the
data in an abstraction step. In this section, we detail important aspects involved in
data abstraction: (i) data structures; (ii) window models; and (iii) outlier detection
mechanisms.

3.1. Data Structures

Developing suitable data structures for storing statistic summaries of data streams
is a crucial step for any data stream clustering algorithm, especially due to space-
constraints assumptions made in data stream applications. Considering that the entire
stream cannot be stored in the main memory, special data structures must be employed
for incrementally summarizing the stream. In this section, we present four data struc-
tures commonly employed in the data abstraction step: (i) feature vector; (ii) prototype
array; (iii) coreset trees; and (iv) grids.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:7

3.1.1. Feature Vector. The use of a feature vector for summarizing large amounts of
data was first introduced in the BIRCH algorithm [Zhang et al. 1996]. This vector,
named CF, from Clustering Feature vector, has three components: N, the number of
data objects, LS, the linear sum of the data objects, and SS, the sum of squared data
objects. The structures LS and SS are n-dimensional arrays. These three components
allow to compute cluster measures, such as cluster mean (Eq. (1)), radius (Eq. (2)), and
diameter (Eq. (3)).

centroid = LS
N

(1)

radius =
√√√√(

SS
N

−
(

LS
N

)2
)

(2)

diameter =
√(

2N ∗ SS − 2 ∗ LS2

N(N − 1)

)
(3)

The CF vector presents important incrementality and additivity properties, as de-
scribed next.

(1) Incrementality. A new object x j can be easily inserted into CF vector by updating
its statistic summaries as follows.

LS ← LS + x j

SS ← SS + (x j)2

N ← N + 1

(2) Additivity. Two disjoint vectors CF1 and CF2 can be easily merged into CF3 by
summing up their components.

N3 = N1 + N2
LS3 = LS1 + LS2
SS3 = SS1 + SS2

The other data structure employed in BIRCH is a height-balanced tree (B+-Tree),
named CF tree, where each non-leaf node contains at most B entries, having each a
CF vector and a pointer to a child node. Similarly, every leaf node contains at most L
entries, where each entry is a CF vector. Figure 3 depicts the CF tree structure, where
every non-leaf node represents a cluster consisting of subclusters (its entries).

In the initial phase of BIRCH, the dataset is incrementally scanned to build a CF
tree in-memory. Each leaf node has a maximum diameter (or radius) represented by
a user-defined parameter, T . The value of this parameter defines whether a new data
object may be absorbed by a CF vector. Thus, T determines the size of the tree, where
higher values of T lead to smaller trees.

When a new object arrives, it descends the CF tree from the root to the leaves by
choosing in each non-leaf node its closest CF entry (closeness is defined by the Euclidean
distance between new objects and the centroids of CF entries in non-leaf nodes). In a
leaf node, the closest entry is selected and tested to verify whether it can absorb the
new object. If so, the CF vector is updated, otherwise a new CF entry is created—at this
point it only contains this particular object. If there is no space for a new CF entry in
the leaf node (i.e., there are already L entries within that leaf), the leaf is split into two
leaves and the farthest pair of CF entries is used as seed to the new leaves. Afterwards,
it is necessary to update each non-leaf node entry in the path until the root. Updating

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:8 J. A. Silva et al.

Fig. 3. CF tree structure.

a tree path is a necessary step for every new insertion made in the CF tree. When the
value of T is so low that the tree does not fit in memory, BIRCH makes use of different
heuristics to increase the value of T so that a new CF tree that fits in memory can be
built.

The CF vector from BIRCH has been employed by different algorithms. Scalable
k-means [Bradley et al. 1998], for instance, employs a CF vector structure to enable the
application of the k-means algorithm in very large datasets. The basic idea is that the
objects in the dataset are not equally important to the clustering process. From this
observation, Scalable k-means employs different mechanisms to identify objects that
need to be retained in memory. This algorithm stores data objects in a block (buffer)
in the main memory. Through the CF vectors, it discards objects that were previously
statistically summarized into buffer. The block size is a user-defined parameter. When
the block is full, an extended version of k-means is executed over the stored data. This
extended version of k-means, named Extended k-means, can handle with both single
data objects and sufficient statistics of summarized data. Based on the first generated
partition, two compression phases are applied to the data objects that are continuously
arriving and being stored in the buffer.

In the primary compression phase, data objects that are unlikely to change their
membership to a cluster in future iterations are discarded. To detect these objects, two
strategies are employed, namely: PDC1 and PDC2. PDC1 finds the p% objects that
are within the Mahalanobis radius [Bradley et al. 1998] of a cluster and compresses
them—p is an input parameter. Only sufficient statistics are stored for these objects
and, after computed, they are discarded. Next, PDC2 is applied to the objects that were
not compressed by PDC1 (those outside the radius of its closest cluster). Therefore,
for every remaining object x j , PDC2 finds its closest centroid according to the Maha-
lanobis distance [Maesschalck et al. 2000], say the centroid of cluster Ci; afterwards,
the centroid of Ci is perturbed and moved the farthest away from x j (within a precalcu-
lated confidence interval). In addition, the centroid of the second-closest cluster to x j is
moved to be as close as possible (within a confidence interval) to it. If x j still lies within
the radius of cluster Ci, the sufficient statistics of x j are stored in the corresponding

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:9

Fig. 4. Microcluster structure used in the CluStream algorithm [Aggarwal et al. 2003].

CF vector, and the object is discarded. Otherwise, x j is kept to be processed by the sec-
ondary compression phase. Note that PDC2 is actually creating a “worst-case scenario”
by perturbing the cluster means within computed confidence intervals.

The secondary compression phase is applied to those objects that were not discarded
in the primary compression. The objective of this phase is to release space in memory
to store new objects. The objects that were not discarded are clustered by k-means into
a user-defined number of clusters, k2. Each one of the k2 clusters is evaluated according
to a compactness criterion that verifies whether the variance of a cluster is below a
threshold β (input parameter). The statistical summary CF vector) of the clusters that
meet this criterion is stored in the buffer, together with the CF vectors obtained from
the primary compression. The CF vectors of those clusters that do not attend to the
compactness criterion may be permanently discarded [Bradley et al. 1998].

Farnstrom et al. [2000] present a simplification of Scalable k-means, named Single-
pass k-means. In an attempt to improve computational efficiency, their work does not
employ the compression steps of Scalable k-means. Instead, in each iteration of the
algorithm, all objects in the buffer are discarded after the summary statistics are com-
puted, and only the summary statistics of the k-means clusters are kept in the buffer.

The CF vector concept was extended and named microcluster in the CluStream al-
gorithm [Aggarwal et al. 2003]. Each microcluster has five components. Three of them
(N, LS, and SS) are the regular components of a CF vector. The additional components
are the sum of the timestamps (LST) and the sum of the squares of the timestamps
(SST). The online phase stores q microclusters in memory, where q is an input pa-
rameter. Figure 4 shows the CluStream structure. Each microcluster has a maximum
boundary, which is computed as the standard deviation of the mean distance of the
cluster objects to their centroids multiplied by a factor f . For each new object, the
closest microcluster (according to the Euclidean distance) is selected to absorb it. For
deciding whether a cluster should absorb a new object or not, it is verified if the distance
between the new object and the closest centroid falls within the maximum boundary. If
so, the object is absorbed by the cluster and its summary statistics are updated. If none
of the microclusters can absorb the object, a new microcluster is created. This is ac-
complished by either deleting the oldest microcluster or by merging two microclusters.
The oldest microcluster is deleted if its timestamp is below a given threshold δ (input
parameter), which is deemed to be an outlier and therefore removed. Thus, the CluS-
tream algorithm finds the arrival time (known as the relevance time) of the m/(2Ni)th

percentile of the Ni objects in a microcluster i, whose timestamps are assumed to be
normally distributed. Otherwise, the two closest microclusters are merged, using the
additivity property of the CF vectors, which takes O(q2) time. The q microclusters
are stored in a secondary storage device from time to time, that is, in time intervals

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:10 J. A. Silva et al.

that decrease exponentially—αl, where α and l are user-defined parameters—the so-
called snapshots. These snapshots allow the user to search for clusters in different time
horizons, h, through a pyramidal time window concept [Aggarwal et al. 2003].

Similar to CluStream, the authors in Zhou et al. [2008] propose the SWClustering
algorithm, which uses a Temporal CF vector (TCF). TCF holds the three components of
the original CF vector, plus the timestamp t of its most recent object. SWClustering also
has a new data structure called EHCF (Exponential Histogram of Cluster Feature),
which is defined as a collection of TCFs. Each EHCF is distributed in levels that contain
at most 1

φ
+1 TCFs, where 0 < φ < 1 is a user-defined parameter. The number of objects

in a given TCFi is the same or twice as much of the number of objects in TCFj , for
i > j. Initially, the first TCF contains only one object. The center of EHCF is computed
as the mean of the LS of all TCFs from an EHCF. When a new object x arrives, the
nearest EHCF is selected (according to the Euclidean distance between the object and
the center of EHCF). If the nearest EHCF can absorb x, that is, its distance to the
object x is below R ∗ β, where R is the radius of nearest EHCF and β is a threshold
radius (β > 0), then x is inserted in this EHCF. Else, a new EHCF is created. However,
it is necessary to check if the maximum number of allowed EHCFs is reached. If so,
the two nearest EHCF are merged. Then, the expired records of the EHCF are deleted,
leaving only the most recent N timestamps.

DenStream [Cao et al. 2006] is a density-based data stream clustering algorithm
that also uses a feature vector based on BIRCH. In its online phase, two structures—
p-microclusters (potential clusters) and o-microclusters (a buffer for aiding outlier
detection)—are provided to hold all the information needed for clustering the data.
Each p-microcluster structure has an associated weight w that indicates its importance
based on temporality (microclusters with no recent objects tend to lose importance, i.e.
their respective weights continuously decrease over time in outdated p-microclusters).
The weight of the microcluster, w, at time T is computed according to Eq. (4),
where t1, . . . , t j are the timestamps, and the importance of each object decreases accord-
ing to the fading function in Eq. (5), parameterized with λ, a user-defined parameter.

w =
∑

j∈p-micro-cluster

f (T − t j), (4)

f (t) = 2−λt (5)

Two other statistics are stored for each p-microcluster: the weighted linear sum of
objects (WLS) and the weighted sum of squared objects (WSS), computed according to
Eqs. (6) and (7), respectively. From these equations, it is possible to compute the radius
r of each p-microcluster (Eq. (8)) as well as its mean.

WLS =
∑

j∈p-micro-cluster

f (T − t j)x j (6)

WSS =
∑

j∈p-micro-cluster

f (T − t j)x j2
(7)

r =

√√√√√ n∑
j=1

⎛
⎝WSSj

w
−

(
WLSj

w

)2
⎞
⎠ (8)

Each o-microclusters structure is defined in a similar way. The timestamp of creation
for each o-microcluster, TIni, is also stored.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:11

When a new object x j arrives, the algorithm tries to insert it into its nearest p-
microcluster by updating the cluster summary statistics. The insertion will be success-
ful if its updated radius is within a predefined boundary ε (input parameter). Otherwise,
the algorithm tries to insert x j into its closest o-microcluster by updating its summary
statistics. In this case, the insertion is successful if its updated radius is within ε.
Moreover, if the updated o-microcluster weight exceeds β × μ, this o-microcluster has
grown into a potential p-microcluster. Both β and μ are input parameters. β controls
the threshold level, whereas μ is the integer weight of a given p-microcluster. If x j

was not absorbed by its closest o-microcluster, then a new o-microcluster is created to
absorb x j .

At delimited time periods Tp (given by Eq. (9)), the set of p-microclusters is checked
to verify whether a p-microcluster should become an o-microcluster. Similarly, o-
microclusters may become p-microclusters after the analysis of their corresponding
weights. If the parameter values of λ, β, and μ suggested by the authors Cao et al.
[2006] are employed, this clean-up task is performed quite often, that is, Tp ≤ 4,
leading to a high computational cost.

Tp = 1
λ

log
(βμ

βμ − 1

)
(9)

Similar to Denstream, the ClusTree algorithm [Kranen et al. 2011] also proposes to
use a weighted CF vector, which is kept into a hierarchical tree (R-tree family). Two
parameters are used to build this tree: the number of entries in a leaf node and the
number of entries in non-leaf nodes. ClusTree provides strategies for dealing with time
constraints for anytime clustering, that is, the possibility of interrupting the process
of inserting new objects in the tree at any moment. This algorithm makes no apriori
assumption on the size of the clustering model, since its aggregate and split operations
adjust the size of the model automatically. The objects that were not inserted due to an
interruption are temporarily stored in the buffer of the immediate subtree entry. When
the subtree is accessed again, these objects are taken along as a “hitchhiker”, and the
operation of object insertion in a leaf node continues. ClusTree can also adapt itself to
fast and slow streams. In fast streams, ClusTree aggregates similar objects in order to
do a faster insertion in the tree. In slow streams, the idle time is used to improve the
quality of the clustering.

3.1.2. Prototype Array. Some data stream clustering algorithms use a simplified sum-
marization structure, hereby named prototype array [Domingos and Hulten 2001; Shah
et al. 2005]. It is an array of prototypes (e.g., medoids or centroids) that summarizes
the data partition.

For instance, Stream [Guha et al. 2000] employs an array of prototypes for summa-
rizing the stream by dividing the data stream into chunks of size m = Nρ , 0 < ρ < 1.
Each chunk of m objects is summarized in 2k representative objects by using a variant
of the k-medoids algorithm [Kaufman and Rousseeuw 1990] known as Facility Location
[Charikar and Guha 1999; Meyerson 2001]. The process of compressing the description
of the data objects is repeated until an array of m prototypes is obtained. Next, these
m prototypes are further compressed (clustered) into 2k prototypes and the process
continues along the stream (see Figure 5).

Stream LSearch [O’Callaghan et al. 2002] uses a similar summarizing structure.
This algorithm assumes that the objects arrive in chunks X1, X2, . . . , XZ, where each
chunk Xi (i ∈ [1, Z]) can be clustered in the memory, thus producing k clusters. At the
ith chunk of the stream, the algorithm retains O(i × k) medoids. However, as Z → ∞,
it is not possible to keep the O(i × k) medoids in memory. Therefore, when the main

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:12 J. A. Silva et al.

Fig. 5. Overview of Stream [Guha et al. 2000], which makes use of a prototype array.

memory is full, Stream LSearch clusters the O(i × k) medoids and keeps in memory
only the k medoids obtained by this process.

3.1.3. Coreset Tree. A significantly different summary data structure for data stream
clustering is the coreset tree employed in StreamKM++ [Ackermann et al. 2012]. This
structure is a binary tree in which each tree node i contains the following components:
a set of objects, Ei; a prototype of Ei, xpi ; the number of objects in Ei, Ni; and the sum
of squared distances of the objects in Ei to xpi , SSEi. Ei only has to be stored in the leaf
nodes of the coreset tree, because the objects of an inner node are implicitly defined as
the union of the objects of its child nodes.

The coreset tree structure is responsible for reducing 2m objects to m objects. The
construction of this structure is defined as follows. First, the tree has only the root
node v, which contains all the 2m objects in Ev. The prototype of the root node xpv is
chosen randomly from Ev and Nv = |Ev| = 2m. The computation of SSEv follows from
the definition of xpv . Afterwards, two child nodes for v are created, namely: v1 and
v2. To create these nodes, it is necessary to choose an object from Ev with probability
proportional to Dist(x jv ,xpv)2

SSEv
,∀x jv ∈ Ev, that is, the object that is farthest away from xpv

has the highest probability of being selected. We call the selected object xqv . The next
step is to distribute the objects in Ev to Ev1 and Ev2 , such that

Ev1 = {
xiv ∈ Ev|Dist

(
xiv , xpv

)
< Dist

(
xiv , xqv

)}
Ev2 = Ev\Ev1 . (10)

Later, the summary statistics of child node v1 are updated, that is, xpv1 = xpv , Nv1 =
|Ev1 | and SSEv1 follows from the definition of xpv1 . Similary, the summary statistics of
child node v2 are updated, but note that xpv2 = xqv . This is the expansion step of the
tree, which creates two child nodes for a given inner node. When the tree has many leaf
nodes, it must be decided which one should be expanded first. For such, it is necessary
to start from the root node of the coreset tree and descend it by iteratively selecting a
child node with probability proportional to SSEchild

SSEparent
, until a leaf node is reached for the

expansion step to be restarted. The coreset tree expansion stops when the number of
leaf nodes is m.

StreamKM++ [Ackermann et al. 2012] is a two-step algorithm, that is, merge-and-
reduce. The reduce step is performed by the coreset tree, considering that it reduces 2m
objects to m objects. The merge step is performed by another data structure, namely
the bucket set, which is a set of L buckets (also named buffers), where L is an input
parameter. Each bucket can store m objects. When a new object arrives, it is stored in

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:13

the first bucket. If the first bucket is full, all of its data are moved to the second bucket.
If the second bucket is full, a merge step is computed, that is, the m objects in the first
bucket are merged with the m objects in the second bucket, resulting in 2m objects,
which, by their turn, are reduced by the construction of a coreset tree, as previously
detailed. The resulting m objects are stored in the third bucket, unless it is also full,
and then again a new merge-and-reduce step is needed. This procedure is illustrated
by the pseudocode in Algorithm 1.

ALGORITHM 1: Pseudocode for the insertion of a new object into the bucket set [Ackermann
et al. 2012]. Function coresetReduction(A∪ B) (line 8) receives 2m objects and returns m summa-
rized objects.

Input: New object x j , bucket set B = ⋃L
i=1 Bi , size m.

Output: Updated bucket set B.
B0 = B0 ∪ {x j};
if (|B0| ≥ m) then

create temporary bucket Q;
Q = B0;
B0 = ∅;
i = 1;
while Bi �= ∅ do

Q = coresetReduction(Bi ∪ Q);
Bi = ∅;
i = i + 1;

end
Bi = Q;
Q = ∅;

end

3.1.4. Grids. Some data stream clustering algorithms perform data summarization
through grids [Cao et al. 2006; Park and Lee 2007; Chen and Tu 2007; Gama et al.
2011], that is, by partitioning the n-dimensional feature space into density grid cells.
For instance, D-Stream [Chen and Tu 2007] maps each data stream object into density
grid cells. Each object at time t is associated to a density coefficient that decreases
over time, as shown in Eq. (11), where λ ∈ (0, 1) is a decay factor. The density of a
grid cell g at time t, D(g, t), is given by the sum of the adjusted densities of each object
that is mapped to g at or before time t (E(g, t)), as shown in Eq. (12). Each grid cell
is represented by a tuple <tg, tm, D, label, status>, where tg is the last time the grid
cell was updated, tm is the last time the grid cell was removed from the hash table
that holds the valid grid cells, D is the grid cell density at its last update, label is the
class label of the grid cell, and status indicates whether the grid cell is NORMAL or
SPORADIC, as will be explained later.

D(x j, t) = λt−t j
(11)

D(g, t) =
∑

x∈E(g,t)

D(x, t) (12)

The grid cells maintenance is performed during the online phase. A grid cell can
become sparse if it does not receive new objects for a long time. In contrast, a sparse
grid cell can become dense if it receives new objects. At fixed intervals of time (dynamic
parameter gap), the grid cells are inspected with regard to their status. Considering
that the number of grid cells may be large, especially in high-dimensional streams, only

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:14 J. A. Silva et al.

the grid cells that are not empty are stored. Additionally, grid cells with few objects are
treated as outliers (status = SPORADIC). Sporadic grid cells are periodically removed
from the list of valid grid cells. Also, during the online phase, when a new n-dimensional
object arrives, it is mapped into its corresponding grid cell g. If g is not in the list of
valid grid cells (structured as a hash table), it is inserted in it and its corresponding
summary is updated.

DGClust [Rodrigues et al. 2008; Gama et al. 2011] is an algorithm for distributed
clustering of sensor data that also employs grid cells for summarizing the stream. It
receives data from different sensors—where each sensor produces a univariate data
stream. The data are processed locally in each sensor and when there is an update in
a local grid cell (state change), this is communicated to the central site. The local site
communicates the local state change by sending the number of the grid cell that was
updated. The global state is a combination of the local states (grid cells) of each sensor.
Each local site i keeps two layers of discretization with pi and wi bins, respectively,
where k < wi < pi. The discretization algorithm used for generating the bins for
each layer is Partition Incremental Discretization (PID) [Gama and Pinto 2006], which
assumes grid cells of equal width. Each time a new value xt

i is read, the counter of
the corresponding bin is incremented in both the first and second layers. The number
of bins in the first layer may change, given that the following condition is met: if the
value of the counter associated to a bin in the first layer is larger than a user-defined
threshold, α, the bin is split into two. The second layer discretizes the pi bins into wi
bins, that is, it summarizes the information of the first layer in a higher granularity.
The object counter of a bin in the second layer is incremented when the corresponding
bin in the first layer is incremented. Next, a communication with the central site is
performed to send the update information, so that the global state is updated at each
timestamp. If there was a split, all bins of the second layer are sent to the central site,
otherwise only the updated bin is sent to the central site.

3.2. Window Models

In most data stream scenarios, more recent information from the stream can reflect the
emerging of new trends or changes on the data distribution. This information can be
used to explain the evolution of the process under observation. Systems that give equal
importance to outdated and recent data do not capture the evolving characteristics of
stream data [Chen and Tu 2007]. The so-called moving window techniques have been
proposed to partially address this problem [Barbará 2002; Babcock et al. 2003; Gama
2010]. There are three commonly studied models in data streams [Zhu and Shasha
2002]: (i) sliding windows; (ii) damped windows; and (iii) landmark windows.

3.2.1. Sliding-Window Model. In the sliding-window model, only the most recent infor-
mation from the data stream are stored in a data structure whose size can be variable
or fixed. This data structure is usually a first in, first out (FIFO) structure, which con-
siders the objects from the current period of time up to a certain period in the past.
The organization and manipulation of objects are based on the principles of queue pro-
cessing, where the first object added to the queue will be the first one to be removed.
In Figure 6, we present an example of the sliding-window model.

Several data stream clustering algorithms find clusters based on the sliding-window
model, for example, Babcock et al. [2003], Zhou et al. [2008], and Ren and Ma [2009]. In
summary, these algorithms only update the statistic summaries of the objects inserted
into the window. The size of the window is set according to the available computational
resources.

3.2.2. Damped Window Model. Differently from sliding windows, the damped window
model, also referred to as time-fading model, considers the most recent information

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:15

Fig. 6. Sliding-window model.

Fig. 7. Damped window model.

Fig. 8. Landmark window for a time interval of size 13.

by associating weights to objects from the data stream [Jiang and Gruenwald 2006].
More recent objects receive higher weight than older objects, and the weights of the
objects decrease with time. An illustrative example of the damped window model is
presented in Figure 7, where the weight of the objects exponentially decays from black
(most recent) to white (expired).

This model is usually adopted in density-based clustering algorithms [Cao et al.
2006; Chen and Tu 2007; Isaksson et al. 2012]. These algorithms usually assume an
exponential decay function to weight the objects from the stream. In Cao et al. [2006],
for example, the adopted decay function follows the exponential function given by
Eq. (5), where the λ > 0 parameter determines the decay rate and t is the current time.
The higher the value of λ, the lower the importance of the past data regarding the most
recent data. The D-Stream algorithm [Chen and Tu 2007] assigns a density coefficient
for each element that arrives from the stream, whose value decreases with the object’s
age. This density coefficient is given by λt−tc , where tc is the instant in time that the
object arrived from the stream.

3.2.3. Landmark Window Model. Processing a stream based on landmark windows re-
quires handling disjoint portions of the streams (chunks), which are separated by
landmarks (relevant objects). Landmarks can be defined either in terms of time (e.g.,
on daily or weekly basis) or in terms of the number of elements observed since the pre-
vious landmark [Metwally et al. 2005]. All objects that arrived after the landmark are
kept or summarized into a window of recent data. When a new landmark is reached,
all objects kept into the window are removed and the new objects from the current
landmark are kept in the window until a new landmark is reached. Figure 8 illustrates
an example of landmark window.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:16 J. A. Silva et al.

Data stream clustering algorithms that are based on the landmark window model
include O’Callaghan et al. [2002], Bradley et al. [1998], Farnstrom et al. [2000],
Ackermann et al. [2012], and Aggarwal et al. [2003]. In O’Callaghan et al. [2002],
for example, the Stream algorithm adopts a divide-and-conquer strategy based on a
landmark window whose landmark is defined at every m number of objects. Note that,
in this kind of window model, the relationship between objects from neighboring win-
dows is not considered.

The problem in using any fixed-length window scheme is in finding out the ideal
window size to be employed. A small window guarantees that the data stream algorithm
will be able to rapidly capture eventual concept drifts. At the same time, in stable phases
along the stream, it may affect the performance of the learning algorithm. On the other
hand, a large window is desirable in stable phases, though it may not respond rapidly
to concept drifts [Gama et al. 2004].

3.3. Outlier Detection Mechanisms

Besides the requirements of being incremental and fast, data stream clustering algo-
rithms should also be able to properly handle outliers throughout the stream [Barbará
2002]. Outliers are objects that deviate from the general behavior of a data model [Han
and Kamber 2000], and can occur due to different causes, such as problems in data
collection, storage and transmission errors, fraudulent activities, or changes in the
behavior of the system.

Density-based approaches look for low-density regions in the input space, which may
indicate the presence of outliers. For instance, the BIRCH algorithm [Zhang et al. 1996]
has an optional phase that scans the CF tree and stores leaf entries with low density
on a disk. The number of bytes reserved to store outliers on the disk is specified by
the user. The CF vectors with low density—estimated according to a threshold value—
are considered outliers. The threshold value is specified by the average size of the CF
vectors on leaf nodes. Periodically, the algorithm checks whether the CF vectors stored
on the disk (outlier candidates) can be absorbed by the current CF tree (kept in main
memory). This monitoring occurs when either the disk runs out of space or the entire
stream (assuming a finite one) has been processed. Potentially, this optional phase can
be used for monitoring changes in the data distribution when more data are absorbed
by the CF vectors.

The DenStream algorithm [Cao et al. 2006] introduces the notion of outlier buffer.
The online phase of DenStream keeps the statistical summaries of the stream by means
of p-microclusters. Every Tp time periods—see Eq. (9)—the online phase of DenStream
checks the p-microclusters to identify potential outliers, the so-called o-microclusters.
These are described by the tuple <WLS, WSS, w, TIni>, where TIni is the timestamp
of their creation. A p-microcluster becomes an o-microcluster if its weight (w) is below
the outlier threshold (w < βμ), where β and μ are user-defined parameters. Note that
keeping all o-microclusters in memory may become prohibitive after some time. Hence,
some o-microclusters need to be removed. The idea is to keep in the outlier buffer only
the o-microclusters that may become p-microclusters (i.e., o-microclusters whose weight
increases over time). In order to safely remove the “real" outliers, at every Tp time pe-
riod, the weights of the o-microclusters are checked, and all those whose weight is below
the limit are removed. The limit is captured by Eq. (13), where T is the current time.

ξ (T , TIni) = 2−λ(T −TIni+Tp)−1

2−λTp − 1
(13)

The D-Stream algorithm [Chen and Tu 2007] identifies and removes low-density
grid cells that are categorized into sporadic grid cells. Such sporadic grid cells (outlier
candidates) can occur for two reasons: (i) grid cells that have been receiving very few

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:17

objects; and (ii) crowded grid cells that have their densities reduced by means of the
decay factor. The goal is to remove sporadic grid cells that occur by the first reason.
A hash table stores the list of grid cells, and the algorithm checks periodically which
grid cells in the hash table are sporadic. To do so, at every gap time interval (Eq. (15)),
the grid cells whose density is below a given threshold are labeled as sporadic grid
cells. If, in the next gap time period, the grid cells are still labeled as sporadic, they are
removed from the hash table. The threshold to determine grid cells with low density
(D(g, t) < π (tg, t)) is calculated according to Eq. (14), where t is the current time, tg is
the last update time (t > tg), Cl and Cm are user-defined parameters, G is the number
of grid cells, and λ ∈(0, 1) is a constant called decay factor. We note that by employing
the parameter values suggested by the authors Chen and Tu [2007], the grid cells are
inspected every gap ≤ 2 objects, which may be computationally costly.

π (tg, t) = Cl(1 − λt−tg+1)
G(1 − λ)

(14)

gap =
⌊

logλ

(
max

{
Cl

Cm
,

N − Cm

N − Cl

})⌋
(15)

4. OFFLINE CLUSTERING STEP

In this section, we discuss the clustering step, which typically involves the application of
a standard clustering algorithm to find clusters on the previously generated statistical
summaries.

One of the most popular algorithms for data clustering is k-means [MacQueen 1967]
due to its simplicity, scalability, and empirical success in many real-word applications
[Wu et al. 2007]. Not surprisingly, k-means and its variants are widely used in data
stream scenarios [Bradley et al. 1998; Farnstrom et al. 2000; O’Callaghan et al. 2002;
Aggarwal et al. 2003; Zhou et al. 2008; Ackermann et al. 2012].

A powerful idea in clustering data streams is the use of CF vectors [Gama 2010],
as previously discussed in Section 3.1. Some k-means variants have been proposed for
dealing with CF vectors. In Zhang et al. [1997], for example, the authors suggest three
ways to adapt the k-means algorithm to handle CF vectors.

(1) Calculate the centroid of each CF vector— LS
N —and consider each centroid as an

object to be clustered by k-means.
(2) Do the same as before, but weighting each object (CF vector centroid) proportionally

to N, so that CF vectors with more objects will have a higher influence on the
centroid calculation process performed by k-means.

(3) Apply the clustering algorithm directly to the CF vectors, since their components
keep the sufficient statistics for calculating most of the required distances and
quality metrics.

The first and third strategies are commonly used by clustering algorithms based on
CF vectors. The first strategy is the simplest one to be used in practice, since no further
modification of the clustering algorithm is needed. This strategy is suggested by the
ClusTree algorithm [Kranen et al. 2011] to group the leaf nodes (CF entries) in order
to produce k clusters. The third strategy requires the modification of the clustering
algorithm to properly handle the CF vectors as objects. In CluStream [Aggarwal et al.
2003], the employed k-means variant uses an adapted version of the second strategy
that chooses the initial prototypes with a probability proportional to the number of
objects in a microcluster (expanded CF vector). This variant is presented in Algorithm 2.

In Bradley et al. [1998], another k-means variant for dealing with CF vectors is
presented. This variant, named Extended k-means, uses both the CF vectors of the data

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:18 J. A. Silva et al.

ALGORITHM 2: k-means variant to handle statistical summaries [Aggarwal et al. 2003].
Input: Number of clusters k, and set of micro-clusters Q = {Q1, Q2, . . . , Qq}.
Output: Data partition with k clusters.
Consider each micro-cluster centroid, LS

N , as an object;
Initialization: k initial prototypes are sampled with probability proportional to N;
repeat

Partitioning: compute the distance between prototypes and micro-clusters;
Updating: the new prototype is defined as the weighted centroid of the objects in a cluster;

until Prototypes get stabilized;

that have been processed and new objects as input to find k clusters. It also considers the
CF vector as an object weighted by N. This is similar to the idea presented in Figure 2,
but it contains an additional step to handle empty clusters. After convergence (step 6),
clusters are verified in order to detect empty groups. An empty cluster has its center
set to the farthest object from it and the Extended k-means algorithm is called again to
update the new prototypes [Bradley and Fayyad 1998]. In Farnstrom et al. [2000], the
Extended k-means algorithm is also used in the Single-pass k-means framework.

Yet another k-means variant to handle statistical summaries is presented in
Ackermann et al. [2012]. This clustering algorithm, named k-means++, can be viewed
as a seeding procedure for the original k-means algorithm. As detailed in Section 3.1,
the authors in Ackermann et al. [2012] propose a way of summarizing the data stream
by extracting a small set of objects, named coreset [Bādoiu et al. 2002; Agarwal et al.
2004]. Recall that a coreset is a small (weighted) set of objects that approximates the
objects from the stream regarding the k-means optimization problem. The algorithm
proposed in Ackermann et al. [2012] extracts the coreset from the stream by means
of a merge-and-reduce technique [Har-Peled and Mazumdar 2004] and finds k clusters
through the k-means++ algorithm, described in Algorithm 3.

ALGORITHM 3: k-means++ algorithm [Arthur and Vassilvitskii 2007].
Input: Number of clusters k and coreset M.
Output: Data partition.
Choose an initial center c1 uniformly at random from M;
for i = 2 to k do

Let d(x j) be the shortest distance from an object x j ∈ M to its closest center already chosen
{c1, . . . , ci−1};
Choose the next center ci = xt ∈ M with probability d(xt)2/

∑
x j∈M d(x j)2;

end
Proceed with the standard k-means algorithm;

The LSearch algorithm [O’Callaghan et al. 2002] uses the concept of facility location
[Meyerson 2001] to find a solution to the k-medoids optimization problem. The main
idea is to find the facility location (cluster medoid) that represents objects from the
stream by minimizing a cost function. Each facility (medoid) has an associated cost to
be opened on a given location and a service cost to attend demanding objects. The cost
function is the sum of the associated costs to open facilities and the service costs. Thus, it
is a combination of the Sum of Squared Errors (SSE) and a cost to insert a medoid within
a partition, providing more flexibility to find the number of clusters. Nevertheless, the
user still needs to provide an initial estimate of k before running the algorithm. LSearch
searches for a data partition with the number of clusters between [k, 2k]. Ackermann

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:19

et al. [2012] observe that LSearch does not always find the prespecified k and that
usually the difference lies within a 20% margin from the value of k chosen in advance.

Besides k-means, density-based clustering algorithms, like DBSCAN [Ester et al.
1996], are also used in the offline clustering step. In Cao et al. [2006], the authors
present the DenStream algorithm, which uses a feature vector approach for summa-
rizing the data and a DBSCAN variant for performing data clustering. This variant
receives as input the p-microclusters (feature vectors) and two parameters—ε and μ,
previously presented in Section 3.1—to partition the data. Each p-microcluster struc-
ture is seen as a virtual object with center equal to LS

W Ai
, where W Ai is the weighting

area of objects in a given neighborhood. Even though the user does not need to explic-
itly specify the number of clusters, the definition of ε and μ has a strong influence on
the resulting data partition.

As seen in Section 3.1, another paradigm for clustering data streams partitions the
data space into discretized grid cells. Typically, these algorithms create a grid data
structure by dividing the data space into grid cells followed by the use of a standard
clusterer to cluster these cells. As an example, the offline component of D-Stream
[Chen and Tu 2007] adopts an agglomerative clustering strategy to group grid cells.
The algorithm starts by assigning each dense cell to a cluster. Afterwards, an iterative
procedure merges two dense cells that are strongly correlated into a single cluster.
This procedure is repeated until no changes in the partition can be performed. A
parameter whose value is defined by the user determines if two grid cells are strongly
correlated.

Based on adaptive grid cells, the Distributed Grid Clustering algorithm (DGClust)
[Rodrigues et al. 2008; Gama et al. 2011] is an online 2-layer distributed clustering
algorithm for sensor data. DGClust reduces data dimensionality by monitoring and
clustering only frequent states. As previously mentioned, the DGClust algorithm is
composed of local and central sites, and each sensor is related to a univariate stream
whose values are monitored in a local site. The goal of the central site is to find
k clusters and keep the data partition continuously updated. In order to reduce its
computational complexity, DGClust keeps only the top-m (m > k) most frequent global
states. The central object of each of the most frequent global states will be used in the
final clustering. As soon as the central site finds the top-m set of states, a simple
partitioning algorithm can be applied to the most frequent states, to minimize the
cluster radius (or equivalently the cluster diameter). The Furthest Point algorithm
[Gonzalez 1985] is used for this task. It selects an initial object as the seed to the first
cluster and iteratively selects the next object as the center cluster if its distance to
the remaining clusters is maximized. In order to dynamically adjust the data partition,
the algorithm operates in one of two possible conditions: converged or nonconverged.
If the system is operating in the nonconverged condition, when a new state s(t) is
reached, it updates the centers of the clusters according to the top-m states. If the
system has already converged and the current state has effectively become a part of the
top-m states, the system updates the centers and changes its status to nonconverged.

5. TEMPORAL ASPECTS

Besides the time and space constraints that distinguish batch-mode clustering from
data stream clustering, the influence of time is a very important issue when cluster-
ing data streams. Indeed, there are several works in the literature that stress the
importance of considering the time element when designing a data stream clustering
algorithm. We highlight the following temporal aspects one should consider when de-
signing a new algorithm: (i) time-aware clustering; (ii) outlier-evolution dilemma; and
(iii) cluster tracking. We detail them next.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:20 J. A. Silva et al.

5.1. Time-Aware Clustering

The inherent time element in data streams should be properly exploited by data stream
clustering algorithms. For instance, these algorithms should be able to implicitly or
explicitly consider the influence of time during the clustering process (time-aware
clustering). Current data stream clustering algorithms perform time-aware clustering
by either assigning different levels of importance to objects (considering that recent
data is more relevant than old data) or by modeling the behavior of the arriving data in
such a way that objects can be clustered regarding different temporal patterns instead
of a traditional spatial-based approach.

In the first case, the clustering process is affected by the age of objects, which is
explicitly modeled by a decay function [Aggarwal et al. 2003; Cao et al. 2006; Chen
and Tu 2007; Kranen et al. 2011], as previously mentioned in Sections 3.2 and 3.3.
For the second case, a typical example is the Temporal Structure Learning for Clus-
tering Massive Data Stream in Real Time (TRACDS) algorithm [Hahsler and Dunham
2011]. It is essentially a generalization of the Extensible Markov Model (EMM) algo-
rithm [Dunham et al. 2004; Hahsler and Dunham 2010] for data stream scenarios. In
TRACDS, each cluster (or microcluster) is represented by a state of a Markov Chain
(MC) [Markov 1971; Bhat and Miller 2002], and the transitions represent the rela-
tionship between clusters. With the MC model, TRACDS can model the behavior of
the objects that continuously arrive through state-change probabilities, in which the
time element is implicitly considered through the different temporal patterns of the
sequences of objects.

5.2. Outlier-Evolution Dilemma

As previously seen in Section 3.3, outlier detection mechanisms can be modeled with the
help of decay functions [Zhang et al. 1997; Aggarwal et al. 2003; Cao et al. 2006; Chen
and Tu 2007]. These functions evaluate the relevance of clusters according to their
age, assuming that clusters that are seldom updated should be deemed as outliers.
Nevertheless, we observe that there is a thin line between outlier detection and cluster
evolution, and correctly distinguishing between them may be an application-dependent
procedure. In certain applications, objects deemed as outliers may actually be the
indication of a new emerging cluster. For instance, Barbará [2002] cites an example of
a weather data application in which sufficient outliers indicate a new trend that needs
to be represented by new clusters.

There are cases in which outliers actually redefine the boundaries of existing clusters.
An example is a data stream of spotted cases of an illness, in which outliers indicate
the spread of the epidemics over larger geographical areas [Barbará 2002]. Finally,
there are scenarios in which objects deemed as outliers are indeed noise produced
by uncalibrated sensors or improper environmental influence during data collection.
An uncalibrated sensor may give the false impression that a new emerging cluster is
arising when there is actually a large amount of spurious objects that should not be
considered during clustering.

For the cases in which there are changes in the data probability distribution (e.g.,
real-time surveillance systems, telecommunication systems, sensor networks, and
other dynamic environments), the data stream clustering algorithm should ideally
be able to detect these changes and adapt the clusters accordingly. Aggarwal [2003]
proposes a framework towards efficient change detection that enables the diagnostic of
fast and multidimensional data streams. It allows visualizing and determining trends
in the evolution of the stream, according to a concept called velocity density estimation.
This mechanism creates temporal and spatial velocity profiles, which in turn can be
used to predict different types of data evolution. Even though this framework is not

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:21

meant particularly for clustering applications, it can help users to understand the na-
ture of the stream, and perhaps give new insight to researchers for developing change
detection mechanisms for data stream clustering algorithms.

5.3. Cluster Tracking

The exploration of the stream over different time windows can provide the users a
better comprehension about the dynamic behavior of the clusters. Hence, data stream
clustering algorithms must provide to the user a way to examine clusters occurring in
different granularities of time (e.g., daily, monthly, yearly). Statistics summary struc-
tures like CF vectors are a powerful tool to help in the cluster exploration due to its
additivity and subtractive properties.

In addition, clusters upon the data of many real applications are affected by changes
the underlying data suffers with time. Whereas many studies have been devoted to
adapting clusters to the evolved data, we believe it is necessary to encompass tracing
and understanding of cluster evolution itself, as a means of gaining insights on the
data and supporting strategic decisions. In other words, it is necessary to provide
insights about the nature of cluster change: is a cluster disappearing or are its members
migrating to other clusters? Does a new emerging cluster reflect a new profile of objects
(novelty detection) or does it rather consist of old objects whose characteristics have
evolved?

Following the necessity of tracking and understanding cluster evolution, MONIC
[Spiliopoulou et al. 2006] is an algorithm that was proposed for modeling and track-
ing clustering transitions. These transitions can be internal, related to each cluster,
or external, related to the clustering process as a whole. MONIC categorizes inter-
nal transitions into three types: (i) changes in compactness; (ii) changes in size; and
(iii) changes in location. For external transitions, five outcomes are possible: (i) the
cluster survives; (ii) the cluster is split into multiple clusters; (iii) the cluster is ab-
sorbed by another cluster; (iv) the cluster disappears; and (v) a new cluster emerges.
The transition tracking mechanism is based on the degree of overlapping between two
clusters. Overlapping is defined as the number of common objects weighted by the age
of the objects.

Another algorithm that performs cluster tracking is MEC [Oliveira and Gama 2010;
2012], which traces the evolution of clusters over time through the identification of the
temporal relationship among them. It aims at identifying hidden behavioral patterns
and developing knowledge about the evolution of the phenomena. Unlike MONIC,
MEC employs different metrics to detect changes and provide techniques to visualize
the cluster evolution. A bipartite graph structure is used to visualize the clusters’
evolution and to formalize the definition of transition. This structure is used to compute
the conditional probabilities for every pair of possible connections between nodes of a
bipartite graph (clusters) obtained at consecutive time points.

6. ASSESSING CLUSTER STRUCTURES

An issue that arises when one proposes a new data stream clustering algorithm is how
to properly assess its effectiveness. Determining suitable criteria to validate new and
even existing algorithms is particularly important.

The literature on data clustering is very large, and due to the inherent subjectivity
of the clustering task, several methodologies and clustering validity measures have
been proposed in the past decades. Works on data stream clustering usually adopt
well-known evaluation criteria. For instance, the most commonly employed criteria to
evaluate the quality of stream data partitions are the Sum of Squared Errors (SSE) and
the so-called purity. The former is an internal validity criterion, whereas the latter is

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:22 J. A. Silva et al.

an external validity criterion, in which the true labels (groups) of the data are available
and are compared with the data partition obtained by a clustering algorithm.

The SSE criterion evaluates the compactness of clusters. The lower the SSE value,
the more compact the clusters of the resulting partition. The SSE criterion can be
formally described by Eq. (16), where ci is the centroid of cluster Ci. SSE decreases
monotonically as the number of clusters increase. Hence, it cannot be used to estimate
the optimal value of k, because it tends to find the trivial solution, namely: N singletons.

K∑
i=1

∑
x j∈Ci

‖x j − ci‖2 (16)

The purity is related to the entropy concept. In order to compute the purity criterion,
each cluster is assigned to its majority class, as described in Eq. (17), where v j is the
number of objects in cluster Cj from class i. The purity is the sum of v j over all clusters,
as captured by Eq. (18).

v j = 1
Nj

argmax
i

(
Ni

j

)
(17)

Purity =
k∑

j=1

Nj

N
v j (18)

Note that criteria like SSE and purity are usually employed in a sliding-window
model, which means the clustering partition is obtained with data within the sliding
window. However, if the algorithm does not use the sliding-window model (e.g., if it
employs the concept of representative objects), evaluating a partition created with the
most recent objects of the stream may not be a good idea, considering that representa-
tive objects summarize both past and present information.

Another important issue to be addressed in an experimental methodology is how to
validate partitions generated with nonstationary data. For instance, one needs to verify
how the partition has evolved since the last time it was generated. In this sense, it is
not enough to evaluate the quality of the generated partition (spatial criterion), but it is
also necessary to evaluate the changes that occur in the partition over time (temporal
criterion). Even though the quality of the partition may indicate that changes occurred
in the data distribution—for example, degradation of quality due to a new emerging
cluster—, it is not possible to clearly state what is causing the quality degradation.
Hence, there is a need of combining spatial and temporal criteria to properly evaluate
the quality of partitions and their behavior over the course of the stream.

There are few efforts towards developing more sophisticated evaluation measures
for data streams. In Kremer et al. [2011], the authors propose an external criterion for
evaluating clustering algorithms, named CMM (Clustering Mapping Measure), which
takes into account the age of objects. The CMM measure is a combination of penalties
for each one of the following faults.

(1) Missed objects. Clusters that are constantly moving may eventually “lose” objects,
and thus CMM penalizes for these missed objects.

(2) Misplaced objects. Clusters may eventually overlap over the course of the stream,
and thus CMM penalizes for misplaced objects.

(3) Noise inclusion. CMM penalizes for noisy objects being inserted into existing clus-
ters.

The CMM measure can reflect errors related to emerging, splitting, or moving clus-
ters, which are situations inherent to the streaming context. Nevertheless, note that

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:23

Table II. Application Areas of Data Stream Clustering

Application area References
Bearing prognostics [Serir et al. 2012]

Charitable donation (KDD ’98) [Aggarwal et al. 2003], [Cao et al. 2006], [Gao et al. 2010]

Forest cover
[Aggarwal et al. 2004; Tasoulis et al. 2006]
[Aggarwal and Yu 2008; Lühr and Lazarescu 2009]

Grid computing [Zhang et al. 2009; Zhang and Wang 2010]

Network intrusion detection (KDD ’99)

[O’Callaghan et al. 2002; Cao et al. 2006; Guha et al. 2003]
[Aggarwal et al. 2004; Tasoulis et al. 2006]
[Csernel et al. 2006; Aggarwal et al. 2003]
[Chen and Tu 2007; Aggarwal and Yu 2008]
[Wan et al. 2008; Lühr and Lazarescu 2009]
[Zhu et al. 2010; Ackermann et al. 2012]
[Zhang and Wang 2010; Aggarwal 2010; Li and Tan 2011]

Sensor networks
[Rodrigues et al. 2006; 2008; Gaber et al. 2010]
[Silva et al. 2011; Gama et al. 2011]

Stock market analysis [Kontaki et al. 2008]

Synthetic data

[Zhang et al. 1997, leong Ong et al. 2004, Chen and Tu 2007]
[Guha et al. 2003; Aggarwal et al. 2004; Dang et al. 2009]
[Wan et al. 2008; Aggarwal et al. 2003; Kontaki et al. 2008]
[Serir et al. 2012; Cho et al. 2006; Aggarwal and Yu 2006]
[O’Callaghan et al. 2002; Cao et al. 2006; Zhu et al. 2010]
[Aghbari et al. 2012; Lühr and Lazarescu 2009]

Text data [Aggarwal and Yu 2006; Liu et al. 2008]

VOIP data [Aggarwal 2010]

Water distribution networks [Li et al. 2011]

CMM is an external criterion, and thus requires a “gold standard” partition, which is
not available in many practical applications.

7. DATA STREAM CLUSTERING IN PRACTICE

Our discussion so far has concentrated on techniques for data stream clustering and
analysis of existing algorithms. All these are in vain unless data stream clustering is
useful in practice. In this section, we address the applicability of data stream clustering,
tabulating some relevant examples of its use in diverse real-world applications. We
also briefly discuss existing software packages and dataset repositories for helping
practitioners and researchers in designing their experiments.

7.1. Applications

Data stream mining is motivated by emerging applications involving massive datasets.
Examples of these data include Guha et al. [2003]: customer click streams, telephone
records, large sets of Web pages, multimedia data, financial transactions, and observa-
tional science data. Even though there are several interesting and relevant applications
for data stream clustering (see Table II), most of the studies still propose evaluating
algorithms on synthetic data.

The most notable exception is the public network intrusion dataset, known as KDD-
CUP ’09 [Tavallaee et al. 2009], available at the UCI repository [Frank and Asuncion
2010]. This dataset has two weeks of raw TCP dump data for a local area network and
simulates an environment with occasional attacks. It is used in several experimental

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:24 J. A. Silva et al.

Fig. 9. Arbitrarily shaped synthetic datasets—adapted from Lühr and Lazarescu [2009] c©Elsevier 2009,
Chen and Tu [2007] c©ACM 2007, Serir et al. [2012] c©Elsevier 2012.

studies in data mining, both for classification and clustering. Due to its large size,
it has also been consistently used to assess data stream clustering algorithms (e.g.,
[Aggarwal et al. 2003; Aggarwal and Yu 2008; Aggarwal 2010]). Note that some
evaluation measures may not be suitable for this dataset. For instance, the purity
measure should not be employed for evaluating the cluster structures found within
the KDD-CUP ’09 dataset because the majority of its objects belong to the same class,
resulting in large (and perhaps misleading) values of purity.

Synthetic datasets are usually preferred because testing hypotheses like noise ro-
bustness and scaling for high dimensionality are easier to perform with synthetic data.
Examples of artificially generated datasets are: (i) data generated by varying Gaussian
distributions Aggarwal et al. 2003, 2004; Wan et al. 2008; Dang et al. 2009]; (ii) data
generated by the IBM synthetic data generator [leong Ong et al. 2004]; (iii) data sim-
ulating a taxi location tracking application [Cho et al. 2006]; and (iv) datasets formed
by arbitrarily shaped clusters, like those presented in Figure 9.

In Serir et al. [2012], the authors propose to group data streams from bearing prog-
nostics. They employ a platform developed within the Department of Automatic Control
and Micro-Mechatronic Systems of the FEMTO-ST institute to generate data concern-
ing the test and validation of bearing prognostics approaches. The platform is able
to characterize both the ball bearing functioning and its degradation along its whole
operational life (until fault/failure). Vibration and temperature measurements of the
rolling bearing during its functioning mode are collected by different sensors.

A dataset commonly exploited by the data stream clustering research community is
the charitable donation dataset (KDD-CUP ’98) [Aggarwal et al. 2003; Cao et al. 2006;
Gao et al. 2010], which contains records of information about people who have made
charitable donations in response to direct mailing requests. In this kind of applica-
tion, one possible clustering application is grouping donors that show similar donation
behavior.

Yet another commonly exploited dataset in data stream clustering is the forest cover
type dataset [Aggarwal et al. 2004; Tasoulis et al. 2006; Aggarwal and Yu 2008; Lühr
and Lazarescu 2009]. It can be obtained from the UCI machine learning repository

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:25

Web site3. This dataset contains a total of 581,012 observations with 54 attributes
(10 quantitative, 4 binary values for wilderness areas, and 40 binary soil type). Each
observation is labeled as one of seven forest cover types.

In Zhang et al. [2009] and Zhang and Wang [2010], the authors propose clustering
data streams from real-time grid monitoring. In order to diagnose the EGEE grid
(Enabling Grid for E-SciencE4), they exploited the gLite reports on the lifecycle of the
jobs and on the behavior of the middleware components for providing the summarized
information of grid running status.

Clustering data streams collected by sensor networks [Rodrigues et al. 2006, 2008;
Silva et al. 2011; Gama et al. 2011] is another typical application. Sensor networks
may be responsible, for example, for measuring electric power consumption in a given
city. Electricity distribution companies usually set their management operators on
SCADA/DMS products (Supervisory Control and Data Acquisition/Distribution Man-
agement Systems). In this context, data is collected from a set of sensors distributed
all around the network. Sensors can send information at different time scales, speed,
and granularity. Data continuously flow eventually at high speed, in a dynamic and
time-changing environment. Clustering of the time series generated by each sensor
is one of the learning tasks required in this scenario, considering that it allows the
identification of consumption profiles, and the identification of urban, rural, and indus-
trial consumers. Clustering this kind of information can help to understand patterns
of electrical demand over different periods of the day.

In Kontaki et al. [2008], the authors evaluate their method in a stock prices dataset.
This dataset has 500 time series, with a maximum length of 3,000 objects, collected at
http://finance.yahoo.com. Clustering stock prices may provide insights on the evolution
of stocks over time, and may help deciding when it is the right time for buying or selling
stocks.

Clustering documents is also a relevant application area. In Aggarwal and Yu [2006],
the authors utilize a number of documents obtained from a 1996 scan of the Yahoo!
taxonomy, and a stream was synthetically produced from this scan by creating an
order that matched a depth-first traversal of the Yahoo! hierarchy. Considering that
Web pages at a given node in the hierarchy are crawled at once, the Web pages are
also contiguous by their particular class, as defined by the Yahoo! labels. In Liu et al.
[2008], a corpus of 20,000 documents [Zhang et al. 2006] is employed for evaluating the
proposed algorithm. Each document was randomly assigned a timestamp, and three
different text data streams with different document sequences were created. Clustering
text data streams is useful with many applications, such as news group filtering, text
crawling, document organization, and topic detection.

In Aggarwal [2010], a VOIP system that generates network packets in compressed
G729 format is used. Each network packet contains a snapshot of the voice signal at a
10-ms interval. Each record contains 15 attributes corresponding to several character-
istics of the speech, vocal tract model, pitch, and excitation. The dataset contains voice
packets from six speakers and the clustering objective would be grouping packets from
the same speaker together.

Finally, in Li et al. [2011], the authors monitor water distribution networks. Con-
sidering that evaluating the drinking water quality is a typical large-scale real-time
monitoring application, the authors performed experiments with two distribution net-
works of different scales. The first network is a real water distribution system with

3http://www.ics.uci.edu/∼mlearn.
4http://www.eu-egee.org/, the largest grid infrastructure in the world.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:26 J. A. Silva et al.

129 nodes [Ostfeld et al. 2008]. The second network, with 920 nodes, comes from the
Centre for Water Systems at the University of Exeter5.

7.2. Data Repositories

We highlight the following public data repositories that may be of interest for re-
searchers and practitioners of data stream clustering.

(1) UCI Knowledge Discovery in Databases Archive. This is an online repository of
large datasets which encompasses a wide variety of data types, analysis tasks, and
application areas. It is available at http://kdd.ics.uci.edu/.

(2) KDD Cup Center. This is an annual Data Mining and Knowledge Discovery compe-
tition organized by ACM Special Interest Group on Knowledge Discovery and Data
Mining. It is available at http://www.sigkdd.org/kddcup/.

(3) UCR Time-Series Datasets. These are maintained by Eamonn Keogh, University
California at Riverside, US. They are available at http://www.cs.ucr.edu/∼eamonn/
time series data.

7.3. Software Packages

As we have presented in this article, several data stream clustering algorithms were
proposed in the specialized literature. We believe it would be useful if the research
community joined forces to develop an unified software environment for implementing
new algorithms and evaluation tools for data stream clustering. Recent efforts towards
this objective include the following publicly available software packages.

(1) MOA [Bifet et al. 2010]. MOA is a Java-based software package that contains
state-of-the-art algorithms and measures for both data stream classification and
clustering. It also embodies several evaluation criteria and visualization tools. It is
available at http://moa.cs.waikato.ac.nz.

(2) Rapid-Miner [Mierswa et al. 2006]. This is a Java-based data mining software pack-
age that contains a plugin for data stream processing. It is available at http://rapid-
i.com/.

(3) VFML [Hulten and Domingos 2003]. This is a C-based software package for
mining high-speed data streams and very large datasets. It is available at
http://www.cs.washington.edu/dm/vfml/.

8. CHALLENGES AND FUTURE DIRECTION

Probably the greatest challenge in data stream clustering is building algorithms with-
out introducing ad hoc critical parameters, such as: (i) the expected number of clusters
or the expected density of clusters; (ii) the window length, whose size controls the
trade-off between quality and efficiency; and (iii) the fading factor of clusters or objects,
which gives more importance to the most recent objects. To address (i), there are a few
recent studies that propose methods to automatically estimate the number of clusters
in k-means-based stream clustering algorithms [Silva and Hruschka 2011; Faria et al.
2012]. Algorithms that assume a fixed number of clusters generate partitions that do
not adapt over time, which is especially problematic when dealing with nonstationary
distributions.

Another challenge that should be handled by data stream clustering algorithms is
the ability of properly dealing with outliers, and also of detecting changes in the data
distribution. The dynamic nature of evolving data streams, where new clusters often
emerge while old clusters fade out, imposes difficulties for outlier detection. In gen-
eral, new algorithms should provide mechanisms to distinguish between seeds of new

5Center for Water System at University of Exeter, http://centres.exeter.ac.uk/cws.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:27

clusters and outliers. Regarding the challenge of dealing with nonstationary distribu-
tions, the current—and naive—strategy employed by most available algorithms is to
implicitly deal with them through window models. Even though more robust change
detection mechanisms have been implemented in generic frameworks, we believe future
data stream clustering algorithms should explicitly provide mechanisms for performing
change detection.

Dealing with different and mixed data types (e.g., categorical and ordinal values)
imposes another challenge in data stream clustering that is present within several
real-world application domains. For instance, complex data structures like DNA data
and XML patterns are largely available, thus more attention should be given to
principled algorithms capable of dealing with such data types. In this sense, although
algorithms such as those described in Charikar and Guha [1999], Meyerson [2001],
Guha et al. [2003], Charikar et al. [2003], and Guha [2009] are reasonably flexible,
dealing with any distance metric (not just Euclidean distance), this flexibility may not
be enough for many applications. From this perspective, further studies along these
lines would be helpful.

Considering that the number of mobile applications grows every year, as well as the
volume of data generated by these devices, we believe that clustering data streams
produced by mobile devices will constitute an interesting application in years to come.

Another interesting future application of data stream clustering is social network
analysis. The activities of social network members can be regarded as a data stream,
and a clustering algorithm can be used to show similarities among members, and how
these similar profiles (clusters) evolve over time. Social network stream clustering may
support services such as intelligent advertisement and custom-made content. Finally,
applications involving real-time distributed systems should also deserve particular
attention from upcoming data stream clustering algorithms.

Bearing in mind that clustering data streams is a relevant and challenging task,
we believe that much effort should be addressed to developing more sophisticated
evaluation criteria, high-quality benchmark data, and a sound methodology for reliable
experimental comparison of new data stream clustering algorithms.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

The authors would like to express their appreciation to the anonymous referees of the original manuscript
for their constructive comments.

REFERENCES

ACKERMANN, M. R., MARTENS, M., RAUPACH, C., SWIERKOT, K., LAMMERSEN, C., AND SOHLER, C. 2012. StreamKM++:
A clustering algorithm for data streams. ACM J. Exper. Algor. 17, 1.

AGARWAL, P. K., HAR-PELED, S., AND VARADARAJAN, K. R. 2004a. Approximating extent measures of points.
J. ACM 51, 4, 606–635.

AGGARWAL, C. C. 2003. A framework for diagnosing changes in evolving data streams. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD’03). 575–586.

AGGARWAL, C. C. 2007. Data Streams – Models and Algorithms. Springer.
AGGARWAL, C. C. 2010. A segment-based framework for modeling and mining data streams. Knowl. Inf. Syst,

30, 1, 1–29.
AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2003. A framework for clustering evolving data streams. In

Proceedings of the 29th Conference on Very Large Data Bases (VLDB’03). Vol. 29, 81–92.
AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2004b. A framework for projected clustering of high dimen-

sional data streams. In Proceedings of the 30th Conference on Very Large Data Bases (VLDB’04). Vol. 30,
852–863.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:28 J. A. Silva et al.

AGGARWAL, C. C. AND YU, P. S. 2006. A framework for clustering massive text and categorical data streams. In
Proceedings of the 6th International Conference on Data Mining (SDM’06). 479.

AGGARWAL, C. C. AND YU, P. S. 2008. A framework for clustering uncertain data streams. In Proceedings of the
24th IEEE International Conference on Data Engineering (ICDE’08). 150–159.

AGHBARI, Z. A., KAMEL, I., AND AWAD, T. 2012. On clustering large number of data streams. Intell. Data Anal.
16, 1, 69–91.

AMINI, A., WAH, T. Y., SAYBANI, M. R., AGHABOZORGI, S. R., AND YAZDI, S. 2011. A study of density-grid based
clustering algorithms on data streams. In Proceedings of the 8th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD’11). IEEE Press, Los Alamitos, CA, 1652–1656.

ARABIE, P. AND HUBERT, L. J. 1999. An Overview of Combinatorial Data Analysis. World Scientific Publishing.
ARTHUR, D. AND VASSILVITSKII, S. 2006. How slow is the k-means method? In Proceedings of the 22nd Annual

Symposium on Computational Geometry (SCG’06). ACM Press, New York, 144–153.
ARTHUR, D. AND VASSILVITSKII, S. 2007. K-means++: The advantages of careful seeding. In Proceedings of the

18th Annual ACM-SIAM Symposium on Discrete Algorithms. 1027–1035.
BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J. 2002. Models and issues in data stream sys-

tems. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS’02). ACM Press, New York, 1–16.

BABCOCK, B., DATAR, M., MOTWANI, R., AND O’CALLAGHAN, L. 2003. Maintaining variance and k-medians over
data stream windows. In Proceedings of the 22nd ACM SIGMOD-SIGACT SIGART Symposium on
Principles of Database Systems. ACM Press, New York, 234–243.

BADOIU, M., HAR-PELED, S., AND INDYK, P. 2002. Approximate clustering via core-sets. In Proceedings of the
34th ACM Symposium on Theory of Computing (STOC’02). ACM Press, New York, 250–257.

BALL, G. H. AND HALL, D. J. 1965. ISODATA. A novel method of data analysis and pattern classification. Tech.
rep. Stanford Research Institute, Menlo Park.

BARBARA, D. 2002. Requirements for clustering data streams. SIGKDD Explorations 3, 23–27.
BENTLEY, J. L. 1975. Multidimensional binary search trees used for associative searching. Comm. ACM 18, 9,

509–517.
BENTLEY, J. L. AND SAXE, J. B. 1980. Decomposable searching problems I: Static-to-dynamic transformation.

J. Algor. 1, 4, 301–358.
BHAT, U. N. AND MILLER, G. K. 2002. Elements of Applied Stochastic Processes 3rd Ed. John Wiley and Sons,

New Jersey.
BIFET, A. 2010. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams. IOS

Press.
BIFET, A., HOLMES, G., KIRKBY, R., AND PFAHRINGER, B. 2010. MOA: Massive online analysis. J. Mach. Learn.

Res. 11, 1601–1604.
BRADLEY, P. S. AND FAYYAD, U. M. 1998a. Refining initial points for k-means clustering. In Proceedings of

the 15th International Conference on Machine Learning (ICML’98). Morgan Kaufmann Publishers, San
Francisco, 91–99.

BRADLEY, P. S., FAYYAD, U. M., AND REINA, C. 1998b. Scaling clustering algorithms to large databases. In
Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD’98).
AAAI Press, 9–15.

CAO, F., ESTER, M., QIAN, W., AND ZHOU, A. 2006. Density-based clustering over an evolving data stream with
noise. In Proceedings of the 6th SIAM International Conference on Data Mining. 328–339.

CHARIKAR, M. AND GUHA, S. 1999. Improved combinatorial algorithms for the facility location and k-median
problems. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science. 378–388.

CHARIKAR, M., O’CALLAGHAN, L., AND PANIGRAHY, R. 2003. Better streaming algorithms for clustering problems.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing. ACM Press, New York,
30–39.

CHEN, Y. AND TU, L. 2007. Density-based clustering for real-time stream data. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, New York,
133–142.

CHO, K., JO, S., JANG, H., KIM, S. M., AND SONG, J. 2006. DCF: An efficient data stream clustering framework
for streaming applications. In Proceedings of the 17th International Conference on Database and Expert
Systems Applications (DEXA’06). 114–122.

CSERNEL, B., CLEROT, F., AND HEBRAIL, G. 2006. Datastream clustering over tilted windows through sampling.
In Proceedings of the Knowledge Discovery from Data Streams Workshop (ECML/PKDD).

DANG, X. H., LEE, V. C. S., NG, W. K., CIPTADI, A., AND ONG, K.-L. 2009. An em-based algorithm for clustering
data streams in sliding windows. In Proceedings of the 14th International Conference on Database Systems
for Advanced Applications. Lecture Notes in Computer Science, vol. 5463, Springer, 230–235.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:29

DOMINGOS, P. AND HULTEN, G. 2001. A general method for scaling up machine learning algorithms and its ap-
plication to clustering. In Proceedings of the 8th International Conference on Machine Learning. Morgan
Kaufmann Publishers, San Francisco, 106–113.

DUNHAM, M. H., MENGA, Y., AND HUANG, J. 2004. Extensible markov model. In Proceedings of the 4th IEEE
International Conference on Data Mining (ICDM’04). 371–374.

ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering clusters
in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining. 226–231.

RIBEIRO, E. F., BARROS, R. C., CARVALHO, A. C. P. L. F., AND GAMA, J. 2012. improving the offline clustering stage
of data stream algorithms in scenarios with variable number of clusters. In Proceedings of the 27th ACM
Symposium on Applied Computing (SAC’12). 572–573.

FARNSTROM, F., LEWIS, J., AND ELKAN, C. 2000. Scalability for clustering algorithms revisited. SIGKDD Explo-
ration Newslett. 2, 1, 51–57.

FAYYAD, U., PIATETSKY-SHAPIRO, G., AND SMYTH, P. 1996. From data mining to knowledge discovery: An overview.
In Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence,
Menlo Park, CA, 1–34.

FRANK, A. AND ASUNCION, A. 2010. UCI machine learning repository. http://archive.ics.uci.edu/ml.
GABER, M. M., VATSAVAI, R. R., OMITAOMU, O. A., GAMA, J., CHAWLA, N. V., AND GANGULY, A. R. 2010. Knowledge

Discovery from Sensor Data. Springer.
GAMA, J. 2010. Knowledge Discovery from Data Streams. Chapman Hall/CRC.
GAMA, J. AND GABER, M. M. 2007. Learning from Data Streams: Processing Techniques in Sensor Networks.

Springer.
GAMA, J., MEDAS, P., CASTILLO, G., AND RODRIGUES, P. P. 2004. Learning with drift detection. In Proceedings of

the 17th Brazilian Symposium on Artificial Intelligence (SBIA’04). Vol. 3171., 286–295.
GAMA, J., PEREIRA, P. R., AND LOPES, L. 2011. Clustering distributed sensor data streams using local processing

and reduced communication. Intell. Data Anal. 15, 1, 3–28.
GAMA, J. AND PINTO, C. 2006. Discretization from data streams: Applications to histograms and data mining.

In Proceedings of the ACM Symposium on Applied Computing (SAC’06). 662–667.
GAN, G., MA, C., AND WU, J. 2007. Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series

on Statistics and Applied Probability. SIAM.
GAO, M.-M., LIU, J.-Z., AND GAO, X.-X. 2010. Application of compound gaussian mixture model clustering in

the data stream. In Proceedings of the International Conference on Computer Application and System
Modeling (ICCASM’10).

GONZALEZ, T. F. 1985. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38,
293–306.

GUHA, S. 2009. Tight results for clustering and summarizing data streams. In Proceedings of the 12th Inter-
national Conference on Database Theory (ICDT’09). ACM Press, New York, 268–275.

GUHA, S., MEYERSON, A., MISHRA, N., MOTWANI, R., AND O’CALLAGHAN, L. 2003. Clustering data streams: Theory
and practice. IEEE Trans. Knowl. Data Engin. 15, 515–528.

GUHA, S., MISHRA, N., MOTWANI, R., AND O’CALLAGHAN, L. 2000. Clustering data streams. In Proceedings of the
IEEE Symposium on Foundations of Computer Science. 359–366.

HAHSLER, M. AND DUNHAM, M. H. 2010. rEMM: Extensible markov model for data stream clustering in r.
J. Statist. Softw. 35, 5, 1–31.

HAHSLER, M. AND DUNHAM, M. H. 2011. Temporal structure learning for clustering massive data streams in
real-time. In Proceedings of the SIAM Conference on Data Mining. SIAM/Omnipress, 664–675.

HAN, J. AND KAMBER, M. 2000. Data Mining: Concepts and Techniques. Morgan Kaufmann.
HAR-PELED, S. AND MAZUMDAR, S. 2004. On coresets for k-means and k-median clustering. In Proceedings of

the 36th Annual ACM Symposium on Theory of Computing. 291–300.
HULTEN, G. AND DOMINGOS, P. 2003. VFML – A toolkit for mining high-speed time-changing data streams.

Tech. rep. University of Washington. http://www.cs.washington.edu/dm/vfml/.
ISAKSSON, C., DUNHAM, M. H., AND HAHSLER, M. 2012. SOStream: Self organizing density-based clustering over

data stream. In Proceedings of the 8th International Conference on Machine Learning and Data Mining
in Pattern Recognition. Lecture Notes in Computer Science, vol. 7376, Springer, 264–278.

JAIN, A. K. 2009. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31, 651–666.
JIANG, N. AND GRUENWALD, L. 2006. Research issues in data stream association rule mining. SIGMOD Rec. 35,

1, 14–19.
KAUFMAN, L. AND ROUSSEEUW, P. J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley

Interscience.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

13:30 J. A. Silva et al.

KAVITHA, V. AND PUNITHAVALLI, M. 2010. Clustering time series data stream - A literature survey. Int. J.
Comput. Sci. Inf. Secur. 8, 1, 289–294.

KHALILIAN, M. AND MUSTAPHA, N. 2010. Data stream clustering: challenges and issues. In Proceedings of
International Multi Conference of Engineers and Computer Scientists. 566–569.

KOGAN, J. 2007. Introduction to Clustering Large and High-Dimensional Data. Cambridge University Press.
KONTAKI, M., PAPADOPOULOS, A. N., AND MANOLOPOULOS, Y. 2008. Continuous trend-based clustering in data

streams. In Proceedings of the 10th International Conference on Data Warehousing and Knowledge
Discovery. 251–262.

KRANEN, P., ASSENT, I., BALDAUF, C., AND SEIDL, T. 2011. The clustree: Indexing microclusters for anytime stream
mining. Knowl. Inf. Syst. 29, 2, 249–272.

KREMER, H., KRANEN, P., JANSEN, T., SEIDL, T., BIFET, A., HOLMES, G., AND PFAHRINGER, B.. 2011. An effective
evaluation measure for clustering on evolving data streams. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’11). ACM Press, New York,
868–876.

LI, Q., MA, X., TANG, S., AND XIE, S. 2011. Continuously identifying representatives out of massive streams. In
Proceedings of the 7th International Conference on Advanced Data Mining and Applications (ADMA’11).
Springer, 1–14.

LI, Y. AND TAN, B. H. 2011. Data stream clustering algorithm based on affinity propagation and density.
Advanced Materials Res. 267, 444–449.

LIU, Y.-B., CAI, J.-R., YIN, J., AND FU, A. W.-C. 2008. Clustering text data streams. J. Comput. Sci. Technol. 23,
1, 112–128.

LLOYD, S. P. 1982. Least squares quantization in pcm. IEEE Trans. Inf. Theory 28, 2, 129–137.
LUHR, S. AND LAZARESCU, M. 2009. Incremental clustering of dynamic data streams using connectivity based

representative points. Data Knowl. Engin. 68, 1–27.
MACQUEEN, J. B. 1967. Some methods for classification and analysis of multivariate observations. In Pro-

ceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. L. M. Le Cam and
J. Neyman, Eds., Vol. 1., 281–297.

DE MAESSCHALCK, R., JOUAN-RIMBAUD, D., AND MASSART, D. L. 2000. The mahalanobis distance. Chemometrics
Intell. Laboratory Syst. 50, 1–18.

MAHDIRAJI, A. R. 2009. Clustering data stream: A survey of algorithms. Int. J. Knowl.-Based Intell. Engin.
Syst. 13, 2, 39–44.

MARKOV, A. 1971. Extension of the limit theorems of probability theory to a sum of variables connected in a
chain. In Dynamic Probabilistic Systems, Vol. 1, R. Howard, Ed., John Wiley and Sons, Chapter Appendix
B, 552–577.

METWALLY, A., AGRAWAL, D., AND ABBADI, A. E. L. 2005. Duplicate detection in click streams. In Proceedings of
the 14th International Conference on World Wide Web. ACM Press, New York, 12–21.

MEYERSON, A. 2001. Online facility location. In Proceedings of the Annual IEEE Symposium on Foundations
of Computer Science. 426–431.

MIERSWA, I., WURST, M., KLINKENBERG, R., SCHOLZ, M., AND EULER, T. 2006. YALE: Rapid prototyping for complex
data mining tasks. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’06). L. Ungar, M. Craven, D. Gunopulos, and T. Eliassi-Rad, Eds.,
ACM Press, New York, 935–940.

O’CALLAGHAN, L., MISHRA, N., MEYERSON, A., GUHA, S., AND MOTWANI, R. 2002. Streaming data algorithms
for high-quality clustering. In Proceedings of the 18th International Conference on Data Engineering.
685–694.

OLIVEIRA, M. AND GAMA, J. 2010. MEC –Monitoring clusters’ transitions. In Proceedings of the 5th Starting AI
Researchers Symposium. IOS Press, 212–224.

ONG, K. L, LI, W., NG, W.-K., AND LIM, E.-P. 2004. SCLOPE: An algorithm for clustering data streams of
categorical attributes. In Proceedings of the 6th International Conference on Data Warehousing and
Knowledge Discovery (KDD’04). 209–218.

OLIVEIRA, M. D. B. AND GAMA, J. 2012. A framework to monitor clusters evolution applied to economy and
finance problems. Intell. Data Anal. 16, 1, 93–111.

OSTFELD, A., UBER, J. G., SALOMONS, E., ET AL. 2008. The battle of the water sensor networks (BWSN): A design
challenge for engineers and algorithms. J. Water Resources Plan. Manag. 134, 556.

PARK, N. H. AND SUK LEE, W. 2007. Cell trees: An adaptive synopsis structure for clustering multidimensional
on-line data streams. Data Knowl. Engin. 63, 2, 528–549.

REN, J. AND MA, R. 2009. Density-based data streams clustering over sliding windows. In Proceedings of the
6th International Conference on Fuzzy Systems and Knowledge Discovery. Vol. 5. 248–252.

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

Data Stream Clustering: A Survey 13:31

RODRIGUES, P., GAMA, J., AND PEDROSO, J. P. 2006. ODAC: Hierarchical clustering of time series data streams.
In Proceedings of the 6th SIAM International Conference on Data Mining. 499–503.

RODRIGUES, P. P., GAMA, J., AND PEDROSO, J. P. 2008. Hierarchical clustering of time-series data streams. IEEE
Trans. Knowl. Data Engin. 20, 5, 615 –627.

SERIR, L., RAMASSO, E., AND ZERHOUNI, N. 2012. Evidential evolving gustafson–kessel algorithm for online data
streams partitioning using belief function theory. Int. J. Approximate Reason. 53, 5, 1–22.

SHAH, R., KRISHNASWAMY, S., AND GABER, M. M. 2005. Resource-aware very fast k-means for ubiquitous data
stream mining. In Proceedings of the 2nd International Workshop on Knowledge Discovery in Data
Streams, Held in Conjunction with the 16th European Conference on Machine Learning (ECML’05).

SILVA, A., CHIKY, R., AND HEBRAIL, G. 2011. A clustering approach for sampling data streams in sensor networks.
Knowl. Inf. Syst. 32, 1, 1–23.

SILVA, J. A. AND HRUSCHKA, E. R. 2011. Extending k-means-based algorithms for evolving data streams with
variable number of clusters. In Proceedings of the 4th International Conference on Machine Learning
and Applications (ICMLA’11). Vol. 2. 14–19.

SPILIOPOULOU, M., NTOUTSI, I., THEODORIDIS, Y., AND SCHULT, R. 2006. MONIC: Modeling and monitoring cluster
transitions. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’06). ACM Press, New York, 706–711.

STEINHAUS, H. 1956. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci 1, 801–804.
TASOULIS, D. K., ADAMS, N. M., AND HAND, D. J. 2006. Unsupervised clustering in streaming data. In Proceedings

of the 6th IEEE International Conference on Data Mining-Workshops (ICDM’06). 638–642.
TAVALLAEE, M., BAGHERI, E., LU, W., AND GHORBANI, A. A. 2009. A detailed analysis of the kdd cup 99 data set.

In Proceedings of the 2nd IEEE International Conference on Computational Intelligence for Security and
Defense Applications. 53–58.

VATTANI, A. 2009. K-means requires exponentially many iterations even in the plane. In Proceedings of the
25th Annual Symposium on Computational Geometry (SCG’09). ACM Press, New York, 324–332.

WAN, R., YAN, X., AND SU, X. 2008. A weighted fuzzy clustering algorithm for data stream. In Proceedings of the
ISECS International Colloquium on Computing, Communication, Control, and Management. 360–364.

WU, X., KUMAR, V., QUINLAN, J. R, GHOSH, J., YANG, Q., MOTODA, H., MCLACHLAN, G. J., NG, A., LIU, B., YU, P.
S., ZHOU, Z.-H., STEINBACH, M., HAND, D. J., AND STEINBERG, D. 2007. Top 10 algorithms in data mining.
Knowl. Inf. Syst. 14, 1–37.

XU, R. AND WUNSCH, D. 2009. Clustering. Computational Intelligence Series, Wiley-IEEE Press.
YANG , C. AND ZHOU, J. 2006. HClustream: A novel approach for clustering evolving heterogeneous data stream.

In Proceedings of the 6th IEEE International Conference on Data Mining. 682–688.
ZHANG, T., RAMAKRISHNAN, R., AND LIVNY, M. 1996. BIRCH: An efficient data clustering method for very large

databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM
Press, New York, 103–114.

ZHANG, T., RAMAKRISHNAN, R., AND LIVNY, M. 1997. BIRCH: A new data clustering algorithm and its applications.
Data Mining Knowl. Discov. 1, 2, 141–182.

ZHANG, X., SEBAG, M., AND GERMAIN-RENAUD, C. 2009. Multi-scale real-time grid monitoring with job stream
mining. In Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGRID’09). 420–427.

ZHANG, X. AND WANG, W. 2010. Self-adaptive change detection in streaming data with nonstationary distribu-
tion. In Advanced Data Mining and Applications. Springer, 1–12.

ZHANG, X., ZHOU, X., AND HU, X. 2006. Semantic smoothing for model-based document clustering. In Proceed-
ings of the 6th International Conference on Data Mining (ICDM’06). 1193–1198.

ZHOU, A., CAO, F., QIAN, W., AND JIN, C. 2008. Tracking clusters in evolving data streams over sliding windows.
Knowl. Inf. Syst. 15, 2, 181–214.

ZHU, H., WANG, Y., AND YU, Z. 2010. Clustering of evolving data stream with multiple adaptive sliding window.
In Proceedings of the International Conference on Data Storage and Data Engineering (DSDE’10). 95–
100.

ZHU, Y. AND SHASHA, D. 2002. StatStream: Statistical monitoring of thousands of data streams in real time.
In Proceedings of the 28th International Conference on Very Large Data Bases (VLDB’02). VLBD Endow-
ment, 358–369.

Received June 2012; revised September 2012; accepted January 2013

ACM Computing Surveys, Vol. 46, No. 1, Article 13, Publication date: October 2013.

