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Statistical Learning for Big Data

Image from ”Statistical Truisms”, Kirk
Borne, 2013

Larry Wasserman, 2013 (partial quote):
”Data Science: The End of Statistics?
As I see newspapers and blogs filled with talk of
Data Science and Big Data I find myself filled with
a mixture of optimism and dread. Optimism,
because it means statistics is finally a sexy field.
Dread, because statistics is being left on the
sidelines.
The very fact that people can talk about data
science without even realizing there is a field
already devoted to the analysis of data - a field
called statistics - is alarming.

I like what Karl Broman says:

”When physicists do mathematics, they don’t say they’re doing number
science. They’re doing math.

If you’re analyzing data, you’re doing statistics. You can call it data
science or informatics or analytics or whatever, but it’s still statistics.”

Well put.



Statistical Learning for Big Data

Big Data

BIG DATA: can’t fit on a HD

Big Data: 10Gb+1Tb

big data: <10Gb, can work on a laptop.

MSA220/MVE440

We will work with ”big data” in this class, that is data that
you can work with on a ”PC”.

Emphasis will be on statistical methods that scale to at least
Big Data (Tb).



Statistical Learning for Big Data

Myth about Big Data

Makes statistics obsolete since uncertainties of estimation are
reduced to 0.



Statistical Learning for Big Data

Reality

When the sample size grows, we often see the complexity and
variety of data grow also (number of variables p grows with n, and
maybe much larger than n).

Inference is not as simple as removing estimation uncertainty - draw
conclusions from the data and interpret

Just exploration, visualization and model building for Big Data
requires statistics

With Big Data comes also PEV (probability of extreme values) -
spurious correlations

COD (curse of dimensionality) can be overcome with parametric
modeling, but then we need to understand the assumptions that lie
behind these models.



Statistical Learning for Big Data

Big Data = Big Mistakes?

Google Flu - see the Science paper posted on the class homepage

Forgetting basic stats: sampling populations, confounders, multiple
testing, bias, and overfitting.

Ethical and safety concerns: transparency, privacy



The ”V”s of Big Data

4 Vs

VOLUME: exploratory data analysis (EDA), low-rank or
low-dimensional representations of data, visualization. Different
infrastructure. Big... R projects + distributed computing
resources.

VARIETY: many variables (more than samples, p > n), different
types, sources. Statistics looks a bit different when p = p(n)!

VERACITY: convenience sampling, missing values, different quality,
data cleaning and preparation

VELOCITY: online estimation, parallelization, subsampling

Beyond Vs

Visualization: another V? Bandwidth limit to what the human eye
can process. Efficient and informative dimension reduction.

Extracting information from large models, interpretation.



Beyond The ”V”s of Big Data

4 Vs

Mixed types of data; images, matrices,...

Scalability of statistical methods

Quantifying statistical error for complex methods

Big n does not make modeling assumptions less important!!! Quite
the opposite!



Overview of the Course

Themes

Model building and prediction (regression and classification)

Data representation (low-rank and low-dimensional
approximations)

Clustering

Large-sample methods

Not covered: NN, deep learning - see specialized courses for
these methods.

Software: R. Reason: many good packages based on current
statistical research. However - you can use matlab, python if
you want but demos etc will be based on R...



Overview of the Course

Settings

Big p = high-dimensional data: screening, filtering, sparsity

Big n: subsampling, divide and conquer, online methods

Big n and p: random projections, distributed computing,
aggregating results from batches

We will explore classical methods within each theme and then look
at how these methods have been adjusted to work in big data
settings.



Big p

Regularization

High-dimensional modeling has been an active research field
in statistics for the past 10-15 years

First principles: to build a model with p parameters we need
n > p samples

Assumptions: IF we assume that the model is sparse, i.e. only
few of the p variables actually relate to our outcome then we
can overcome the high-dimensional problem and fit models
even with p > n!

How do we fit sparse models?
Tractable sparse models solutions come at the price of bias but
research within the last couple of years has provided de-biasing
methods

Theory: often assumptions about p growing with n but ”not
too fast”, often difficult to verify assumptions about the
sparse structure.



Big p

Big p! - regularization, sparse modeling

Key concept in statistics is the BIAS-VARIANCE trade-off

When p > n variance goes to infinity (models cannot be
uniquely identified).

If we allow for some bias, by assuming some restricting
structure like sparsity, we can reduce variance.

Recent work on de-biasing such sparse estimates has improved
performance of these methods.

BUT.... is the world sparse???



Big n and p

Data representations

Matrix representations to capture and summarize structure in
big data.

Traditional methods like PCA, SVD - Problems with
consistency, spurious correlations,...

PCA: as p grows, not necessarily the case that a few
components explain most of the variance. Theory for high-dim
PCA relies on sparse (spiked) assumptions on the data
structure.

How even compute? Fast and scalable solutions using e.g.
random projections.

Clustering and pattern discovery for big p and n.



Big n

Large-sample analysis

When n is large, p-values are essentially meaningless.

Why? ”Every model is wrong” so the p-values reflect model
approximation errors.

Be Bayesian instead? (No one true model but a distribution
of models).

Sub-sampling

Methods for dealing with large n: blocking or subsampling of
data

Basis for this: each subsample big enough for asymptotics to
have kicked in

Then we can show that aggregating estimates from each
block is as good as running on all data (which we can’t do
when n is massive).

Online methods



Overview

Topics

Model building: regression and classification

Dimension reduction/Clustering

Subsampling, blocking procedures.



Classification

Classification:
Goals and setup:

Build a predictive model/algorithm to discriminate between
known groups

Need a data set with know group labels on which we can
construct/learn our model.

Combine with dimension reduction/feature selection:

increased interpretability - which features discriminate
between the groups?

improved performance - don’t train your model on features
that are unrelated to the groups.

some methods can’t be applied in a high-dimensional setting
so you need to reduce the number of features first.



Clustering

Clustering:
Goals and setup:

Finding groups in data
Summarize data this is otherwise difficult to ”get a feeling
for”.
Data exploration

This is a more difficult task than classification in the sense that the
goal is subjective. What is a group? A set of observations
separated from the rest? A set of observations close together?
What is meant by ”close”?
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Example: Curve data. Each
observation is a feature measured
over time.

2 groups? 4 groups? Depends what

you think close means. Dynamic

behaviour of interest or only mean

offset value?



Clustering

Clustering:
Combine with dimension reduction/feature selection:

Which features are ”responsible” for group separation?

Some methods can’t be applied in a high-dimensional setting
so you need to reduce the number of features first. In a very
high-dimensional setting ”closeness” looses meaning (curse of
dimensionality).

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
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X1
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Group separation in feature X1 but

not feature X2.



Clustering
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(a) is the original data which hints at a group presence along the first coordinate but not the second. (b) is a

clustering result when we use both features and (c) is when we use only the first feature - these agree. (d) is the

clustering we get if we use only the second feature - groups are formed but they are not well separated.



Discussion Problems

First Trimester Screening: Measures of hCG (human chronic
gonadotropin) levels in blood serum as well as NT (nuchal
translucency, a measure of the amount of fluid around the neck of
the fetus) are indicators of chromosomal abnormalities. Can we
learn from data how to identify fetuses with chromosomal
abnormalities?

Figure from ”New choices in prenatal screening for

Down syndrome” by J.A. Canick appearing in OBG

Management, Clinical Reviews, Dec 2005, Vol 17, 12

Challenges? Clearly a lot of

variability in the affected population.

How does one pick a decision

threshold? FPR = false positive

rate, the proportion of normal

fetuses that our chosen threshold

identifies as abnormal.



Discussion Problems

Genomic diagnostic tool for leukemia: Measures of activity
levels of 1000s of genes for patients with three different kinds of
leukemia.

ALL‐B AML

G
en

es

Patients

Colors indicate activity level for each gene in each

patient.

Challenges? It’s easy to spot the

differences between the three

different kinds of leukemia. We

could practically choose any of the

genes (or a pair) to discriminate

between all three cancers. Not so

easy to identify the key genes that

are responsible for discriminating

between the cancers - is there such a

key set? redundant information?

finding groups of genes that

discriminate between the cancers in

a similar way.



Classification - some notation

Data {yi , xi}ni=1. Index i is the observation number, there are n
observations in this data set.

xi =


xi1
xi2
.
xip

 is a p-dimensional feature vector. That is, we have

p variables in our data set.
yi is the class label (group membership) of observation i .
yi ∈ {1, 2, · · · ,C} if there are C distinct groups or classes in the
data set. We can of course also use other kinds of labeling
formats, e.g. ”Cancer”, ”Not Cancer” etc.



Classification - some notation

Goal

From n observations, construct a rule c() that maps X
(feature space) to {1, 2, · · · ,C} (group labels).

We want the rule to generalize to future data (prediction)

Example: You have data from 250 male patients; age, prostate
volume and level of PSA (a protein that, if detected at increased
levels in blood, may be indicate of cancer). In general, older men
are at higher risk for cancer. Increased prostate volume is also a
risk factor.
We look at the data and come up with a rule:
If
age > 70 and volume > 10% increase andPSA > 3 ∗ normal →
predict cancer.



Classification - some notation

The explicit numbers (70,10%,3*) are based on our data
{yi , xi}ni=1. We emphasize this by denoting the resulting rule as ĉ()
where the ”hat” on the c is used to denote that parameters/rule
thresholds are estimated from data.
We predict the class label of a new patient based on his feature
data xnew as ŷnew = ĉ(xnew ).
If we know the true label of this observation, ynew , we can compare
the outcome of our trained rule to this:
Prediction error or misclassification: ynew 6= ŷnew



Classification - some notation

Loss function:
It is common to simply count the number of mistakes a rule
makes. This measure of performance is called 0-1 loss.
Error rate = 1

n

∑n
i=1 1{yi 6= ĉ(xi )}, where 1{.} is an indicator

function that takes on value 1 if what is inside the curly brackets is
true.
We can also write it on a more general form:
Error rate = 1

n

∑n
i=1 L(yi , ĉ(xi )), where L(., .) is called the loss

function. In regression we usually use the L2-loss, (yi − ĉ(xi ))2.



An example - kNN

kNN - k nearest neighbor is a very intuitive classification method.
For observation xi we identify the closest neighbors in x-space. We
use a majority rule based on these neighbors to make a class
prediction for x .
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Here we use k = 1 neighbors. Each
observation is then predicting the label of a
region around it comprising points in
x-space closer to this observation than any
other observation. As you can see, this
may results in a very irregular rule with
isolated ”islands” of a particular class.



An example - kNN

The kNN rule can be written as
ĉ(xi ) = arg maxc∈{1,2,.,C}

∑
j∈N(xi )

1{yj = c}
N(xi ) is the neighborhood of observation xi and we simply count
the number of observation with a certain label c we see in this
neighborhood. We vote for the class c with the largest count.
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k = 5 k = 20
The larger the neighborhood, the smoother the classification rule is
- more cohesive regions that are predicted to correspond to a
certain class.



An example - kNN

How to pick the size of the neighborhood? Small neighborhood =
irregular class boundaries. Large neighborhood = smooth
boundaries. How do we know which is best?
Well, we can always check to see how well the rule performs!
However, you can’t both train the rule and evaluate/test it on the
same data set. If you do that for kNN you would always choose
k=1 since each observation would be predicting itself and the rule
would never make a mistake.
We are interested in rules that generalize to future data!



Another example - CART

CART stands for Classification and Regression Trees.
CART is a rule-type that constructs rectangular regions in x-space
and allocates a class label to each region. Rectangular regions are
defined by thresholds on features, e.g.
{40 < age < 55} ∩ {PSA < 3 ∗ normal}. To this region we
allocate the label ”Not Cancer”.



Another example - CART

The CART rule can be written as
ĉ(x) = arg maxc∈{1,2,.,C}

∑M
m=1 1{x ∈ Rm}

∑
i∈Rm

1{yi = c}
Rm denotes a rectangular region in x-space and there are a total of
M such regions in the rule. The indicator 1{x ∈ Rm} states that to
predict the label at location x you only need to consider the
rectangle it falls in. The sum

∑
i∈Rm

1{yi = c} counts up the
observations of label c in this rectangle. We vote for the class c
that has the maximum count.
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Another example - CART

We don’t allow for any shape Rm because then the training process
would be too difficult (too many combinations of features and
thresholds to consider).
Instead we use binary splits to form the rectangles.

1 Choose a feature xj and split the data in two parts:
R = {i : xij > tj} and L = {i : xij ≤ tj}.

2 The feature j and the threshold value tj are chosen to make
the right (R) and left (L) parts of the data as ”pure” as
possible, i.e. dominated by one of the classes.

3 Repeat steps 1-2 separately for the R and L data sets.

If you keep on iterating this scheme you build smaller and smaller
rectangular regions containing smaller sets of data with as similar
class labels as possible.



Another example - CART

One of the reasons CART is so popular is because the rectangular
region representation of the rule can also be depicted as a decision
tree. Each data split (steps 1-2 above) can be drawn in order as a
tree. At each node in the tree we perform one of data splits. The
”leaves” of the tree represent the rectangles formed by the final
rule.
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|
Sepal.Length< 5.45

Sepal.Width>=2.8 Sepal.Length< 6.15

Sepal.Width>=3.1

setosa    
44/1/0

versicolor
1/5/1

setosa    
5/2/0

versicolor
0/26/10

virginica 
0/16/39



A little bit of everything!!!

CART is notoriously unstable, meaning small perturbations of the
data can alter the tree substantially.

Random Forests

Sub-sampling: use blocks of data to build many trees and
combine

Random sets of variables: to further enrich the models
generated, we choose a random set of variables to split on
inside each node of the tree

Aggregate: majority decision or mean of predictions from each
tree



Handwritten digits

7291 handwritten digits. Data: images 16x16 pixels.
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Handwritten digits

7291 handwritten digits. Data: images 16x16 pixels. svd.obj <-

svd(zip.train[,-1])

colnames(svd.obj$v) = paste0("V",1:7291)

rownames(svd.obj$v) = paste0("Sample",1:256)

svd.scree(svd.obj, subr=5,

axis.title.x="Full scree plot", axis.title.y="Var

Explained")
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Handwritten digits

7291 handwritten digits. Data: images 16x16 pixels.
plot3d(svd.obj$u[,1:3],col=zip.train[,1]+1)
legend3d("topright", legend =

paste(’Type’, c(unique(zip.train[,1]))),

pch = 5, col=seq(1,10), cex=1, inset=c(0.02))



Handwritten digits

7291 handwritten digits. Data: images 16x16 pixels.
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tree1<-rpart(number .,data=Numbers,

control=rpart.control(cp=0.01, minsplit=10,xval=3)

,method="class")

prp(tree1,extra=100)



Handwritten digits

Random Forest

Lots of R-packages!

CART with subsampling and random variable selection for
each node

library(randomForest)

Nbr.rf<-randomForest(y=Numbers[ii,1],x=Numbers[ii,-1],

ytest=Numbers[-ii,1],xtest=Numbers[-ii,-1],

ntree=1000, proximity=T, keep.forest=TRUE,

importance=TRUE)



Handwritten digits

7291 handwritten digits. Data: images 16x16 pixels.
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Handwritten digits

7291 handwritten digits. Data: images 16x16 pixels.
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Handwritten digits

7291 handwritten digits. Data: images 16x16 pixels.
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image(matrix(Nbr.rf$importance,16,16,byrow=T))




