
MSA220 - Statistical Learning for Big
Data

Lecture 14

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Big n!

Our final theme!

When the sample size is large, there’s a couple of things we
need to be concerned about

p-values become ”meaningless” - simply reflecting that all
models are approximations of the real world

Computations can become impossible or slow, even for simple
statistical tasks

Big n statistics

Most methods bear a strong resemblance to stuff you’re
already familiar with

Cross-validation, subsampling (bagging, RF) and bootstrap

We will review bootstrap first because of this

The Bootstrap

An excellent book (can be found online): An Introduction to the
Bootstrap by R. Tibshirani and B. Efron

What and why?

We often just trust confidence intervals that package methods
spit out without thinking about underlying assumptions

For linear models this is often OK as long as the error
distribution isn’t too messy or skewed and as long as the
sample size is fairly big

In other modeling scenarios, or for particular statistics of
interest, we should be careful!

The Bootstrap

In nonlinear modeling and generalized linear models, CIs
provided are approximations!

Involves linear approximations to obtain standard errors and
large-sample asymptotic arguments to motivate the format of
the CI

Why not let the data do the work for us instead!

Recap

Your observed data is a sample from the underlying population

If you were able to repeatedly sample from this population,
each time estimating your statistic of interest, θ̂...

then the distribution of the θ̂ across the samples reflects the
sampling distribution of this statistics

and can be used to construct CI and for testing

Recap

In the real life case you only observe one sample

You therefore work through the properties of the statistics so
that you can compute the sampling distribution statistics
without having access to multiple samples

Example: Draw xi , i = 1, · · · , n independently from
population. Goal: estimate the mean µ of the population.

µ̂ = x̄ and from iid assumption SE (µ̂) = 1√
n
σ̂ where

σ̂ =
√∑

i (xi − x̄)2/n − 1

If we assume XÑ(µ, σ2) then µ̂−µ
SE ∼ tn−1

or even without this assumption if n is large we have
µ̂−µ
SE ∼ N(0, 1)

Recap

What if your statistic is more complicated so the format of
the SE is unknown?

Work it out? Use linear approximation methods (Taylor
expansion, delta-method)

Use the bootstrap!

The bootstrap

The idea is that you mimic the sampling from the population
with a repeated sampling from the observed data

The sampling distribution estimate you obtain by repeated
sampling from the observed data can be a very good estimate
of the true sampling distribution

It doesn’t always work: for extremes or ”weird” statistics that
are non-continuous on the true distribution or for small
sample sizes.

The bootstrap

Population

Histogram of observed sample
Histogram of xx

Histogram of bootstrap data
Histogram of xx2

The bootstrap

For b = 1, · · · ,B (B large, 1000-10000), draw a bootstrap
sample from your observed data

Non-parametric, classic: draw n samples with replacement.

Alternatives: draw m < n without replacement (m-out-of-n),
draw from a smooth density estimate of the data, draw from a
parametric distribution

Estimate your statistics θb from each of the bootstrap data

The distribution of θb across b is an estimate of the sampling
distribution of θ̂, the estimate from the original data

The bootstrap

θ̄ = 1
B

∑
b θb is NOT a better estimate than θ̂ - the purpose

of bootstrap is not to improve on the estimate this way

Bootstrap SE:

√∑
b(θb−θ̄)2

B−1 can be used to construct CI

Bias estimate: θ̂ − θ̄ can be used to construct a bias-corrected
estimate BUT it only reflects bias with respect to estimation
NOT bias induced by the wrong model assumption (that
would be magic).

Bootstrap CI

Bootstrap SE:

√∑
b(θb−θ̄)2

B−1 can be used to construct CI

Basic CI: θ̂ ± z1−α/2SE

Note: here we are using a normal assumption for the sampling
distribution BUT we could go further using the bootstrap
distribution instead

Bootstrap CI

How get around the normal assumption

Double-bootstrap

For each bootstrap estimate θb, run a second bootstrap on
this bootstrap sample to obtain SEb and compute the pivotal
element

zb =
θb − θ̂
SEb

Use the quantiles of the zb instead of the normal quantiles

This is called the bootstrap-t

Percentile method

A conceptually simple approach is the percentile method

Simple construct your confidence interval from the quantiles
of the θb (e.g. the 2.5% and 97.5%)!!!

Supersimple.... BUT behaves poorly in many real-life
situations.

The bootstrap

The rationale behind the percentile method is that for a

normally distributed θ̂−θ
σ ∼ N(0, 1) we have that

(θ̂α/2, θ̂1−α/2)

is a 1− α CI

With the percentile method, we assume that there is some
monotone transformation g(θ̂) such that its sampling
distribution is approximately normal N(0, 1)

Why does percentile method then fail sometimes?

There may not exist one transform that has this normalizing
and variance-stabilizing effect

BCa

Brad Efron (The Bootstrap Guy!) proposed an improved
percentile method as follows:

Perhaps we need to correct the simple monotone transform
with some bias constant and acceleration constant to make
the approximate normal assumption hold

φ = g(θ),
φ̂− φ
σ
∼ N(−z0, 1), σ = 1 + aφ

The bias correction is obtained by the normal quantile of
PB(θb < θ̂)

The acceleration constant is obtained from an estimate of the
skewness of the θb distribution

We adjust which quantiles in θb to actually use to construct
the 1− α CI.

R package boot()!!!

Back to big n

New methods for dealing with large sample size

Parallelization or

online updates

Bag of Little Bootstraps

This method is based on Bickel et al.’s m-out-of-n bootstrap

m-out-of-n was shown to have better properties than regular
sample-with-replacement bootstrap

When you use m-out-of-n, you need to correct the SEs by a
factor

√
m/n - but otherwise it works pretty much the same

way as regular bootstrap

Here, is it used to reduce sample size!!!

Bag of Little Bootstraps

We draw s subsets of data of size m < n

For each of the s subsets, draw r samples of size n

Obtain point estimate and e.g. CIs from the r bootstraps

Finally, combine the results across the s subsets

Bag of Little Bootstraps

Wait a minute! Didn’t this just make the computations
explode?

Actually, no - drawing a sample of size n from the subset s of
size m is equivalent to assigning weights to the m
observations in s

So the computation is actually performer only on the smaller
sample size m

Bag of Little Bootstraps

The algorithm

For j = 1, · · · , s, draw a sample of size m (or disjoint partition
of the original data)

For k = 1, · · · , r ,
Draw weights from Multinomial(n,m)
Estimate your statistics of interest

Combine by averaging quantities of interest across s (e.g.
estimates, lower and upper CI limits, etc)

Bag of Little Bootstraps

Recommended size of m = nγ , γ ∈ [.5, 1]

In the original BLB paper (Kleiner et al, 2014) they use
γ = 0.6 (reducing a data set of 106 to about 4000 for
computation).

Kleiner et al found that BLB is fairly robust to choices of m,
consistency of estimates and good convergence rates

Completely parallelizable for each set of size m so allows for
fast and scalable computing

Implemented in the datadr R package

Leveraging

Another variant for subsampling was proposed by Ma and Sun
(2013)

Like the BLB, they suggest that we estimate model
parameters from a much smaller data set and then combine
the results

However, they differ in how the subsampling is done

Leveraging

Recap from regression

y = Xβ + ε

LS: minβ ||y − Xβ||2

β̂ = (X ′X)−1X ′y

ŷ = X β̂ = X (X ′X)−1X ′y = Hy

Leveraging

Specifically, ŷi =
∑

j hijyj

Element hii is called the leverage of observation i , i.e. how
much it influences its own fitted values

Leverage basically captures if observation i is close or far from
the center of the data. Observations near the center (in
X -space) have limited contribution to the fit.

Leveraging

Sample r observations from the original n where r << n

The sampling probability πi for observations i is π = hii∑
j hjj

Estimate to regression parameters

Alt 1: use standard OLS
Alt 2: use weighted LS, where the weights are the inverse
sampling probabilities

Leveraging

Ma and Sun found that regular OLS works better than the
weighted version

Seems simple enough!

BUT we do need the leverage hii .

Hm..

The matrix H is n × n so we don’t want to have to compute
that - we only care about the diagonal anyway.

Leveraging

SVD to the rescue (again!)

X = UDV ′

H = X (X ′X)−1X ′ = UU ′

and so hii = ||ui ||2 for ui i-th row in U

Moreover, fast randomized SVD methods exist

Leveraging

Fast and simple

A bit careful about outliers....

A big pro: can use the subsample to visualize the data

Model diagnostics in a big-n world - and we could remove
outliers at this point...

