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Abstract

We give a tutorial overview of several foundational methods for dimen-
sion reduction. We divide the methods into projective methods and
methods that model the manifold on which the data lies. For projective
methods, we review projection pursuit, principal component analysis
(PCA), kernel PCA, probabilistic PCA, canonical correlation analysis
(CCA), kernel CCA, Fisher discriminant analysis, oriented PCA, and
several techniques for sufficient dimension reduction. For the manifold
methods, we review multidimensional scaling (MDS), landmark MDS,
Isomap, locally linear embedding, Laplacian eigenmaps, and spectral
clustering. Although this monograph focuses on foundations, we also
provide pointers to some more modern techniques. We also describe
the correlation dimension as one method for estimating the intrinsic
dimension, and we point out that the notion of dimension can be a
scale-dependent quantity. The Nyström method, which links several of
the manifold algorithms, is also reviewed. We use a publicly available
data set to illustrate some of the methods. The goal is to provide a
self-contained overview of key concepts underlying many of these algo-
rithms, and to give pointers for further reading.



1
Introduction

Dimension reduction1 is the mapping of data to a lower dimensional
space such that uninformative variance in the data is discarded, or such
that a subspace in which the data lives is detected. Dimension reduction
has a long history as a method for data visualization, and for extracting
key low dimensional features (for example, the two-dimensional orien-
tation of an object, from its high dimensional image representation). In
some cases the desired low dimensional features depend on the task at
hand. Apart from teaching us about the data, dimension reduction can
lead us to better models for inference. The need for dimension reduc-
tion also arises for other pressing reasons. Stone [85] showed that, under
certain regularity assumptions (including that the samples be IID),
the optimal rate of convergence2 for nonparametric regression varies

1 We follow both the lead of the statistics community and the spirit of the paper to reduce
‘dimensionality reduction’ and ‘dimensional reduction’ to ‘dimension reduction’.

2 The definition of ‘optimal rate of convergence’ is technical and for completeness we repro-
duce Stone’s definitions here [85]. A ‘rate of convergence’ is defined as a sequence of
numbers, indexed by sample size. Let θ be the unknown regression function, Θ the col-
lection of functions to which θ belongs, T̂n an estimator of θ using n samples, and {bn}
a sequence of positive constants. Then {bn} is called a lower rate of convergence if there
exists c > 0 such that limn infT̂n

supΘ P (‖T̂n − θ‖ ≥ cbn) = 1, and it is called an achiev-

able rate of convergence if there is a sequence of estimators {T̂n} and c > 0 such that
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as m−p/(2p+d), where m is the sample size, the data lies in Rd, and
where the regression function is assumed to be p times differentiable.
We can get a very rough idea of the impact of sample size on the rate
of convergence as follows. Consider a particular point in the sequence
of values corresponding to the optimal rate of convergence: m = 10,000
samples, for p = 2 and d = 10. Suppose that d is increased to 20; what
number of samples in the new sequence gives the same value? The
answer is approximately 10 million. If our data lies (approximately) on
a low dimensional manifold L that happens to be embedded in a high
dimensional manifold H, then modeling the data directly in L rather
than in H may turn an infeasible problem into a feasible one.

The purpose of this monograph is to describe the mathematics and
key ideas underlying the methods, and to provide some links to the
literature for those interested in pursuing a topic further.3 The sub-
ject of dimension reduction is vast, so we use the following criterion
to limit the discussion: we restrict our attention to the case where the
inferred feature values are continuous. The observables, on the other
hand, may be continuous or discrete. Thus this review does not address
clustering methods, or, for example, feature selection for discrete data,
such as text. This still leaves a very wide field, and so we further limit
the scope by choosing not to cover probabilistic topic models (in par-
ticular, latent Dirichlet allocation, nonnegative matrix factorization,
probabilistic latent semantic analysis, and Gaussian process latent vari-
able models). Furthermore, implementation details, and important the-
oretical details such as consistency and rates of convergence of sample
quantities to their population values, although important, are not dis-
cussed. For an alternative, excellent overview of dimension reduction
methods, see Lee and Verleysen [62]. This monograph differs from that
work in several ways. In particular, while it is common in the litera-
ture to see methods applied to artificial, low dimensional data sets such
as the famous Swiss Roll, in this monograph we prefer to use higher
dimensional data: while low dimensional toy data can be valuable to

limn supΘ P (‖T̂n − θ‖ ≥ cbn) = 0; {bn} is called an optimal rate of convergence if it is
both a lower rate of convergence and an achievable rate of convergence. Here the inf T̂n

is

over all possible estimators T̂n.
3 This monograph is a revised and extended version of Burges [17].
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express ideas and to illustrate strengths and weaknesses of a method,
high dimensional data has qualitatively different behavior from two-
or three-dimensional data. Here, we use the publicly available KDD
Cup [61] training data. This is anonymized breast cancer screening
data for 1,712 patients, 118 of whom had a malignant cancer; each
feature vector has 117 features, and a total of 102,294 such samples
are available. The goal of the Cup was to identify those patients with
a malignant tumor from the corresponding feature vectors in a test
set. We use the data here because it is relevant to an important real-
world problem, it is publicly available, and because the training data
has labels (some of the techniques we describe below are for supervised
problems).

Regarding notation: we denote the sample space (the high dimen-
sional space in which the data resides) as H, the low dimensional space
(to which many of the methods discussed below map the data) as L,
and we reserve F to denote a feature space (often a high or infinite-
dimensional Hilbert space, to which the kernel versions of the methods
below map the data as an intermediate step). Vectors are denoted by
boldface, whereas components are denoted by xa, or by (xi)a for the
a-th component of the i-th vector. Random variables are denoted by
upper case; we use E[X|y] as shorthand for the function E[X|Y = y],
in contrast to the random variable E[X|Y ]. Following Horn and John-
son [54], the set of p by q matrices is denoted Mpq, the set of (square) p

by p matrices by Mp, the set of symmetric p by p matrices by Sp, and
the set of (symmetric) positive semidefinite matrices by S+

p (all matri-
ces considered are real). e with no subscript is used to denote the
vector of all ones; on the other hand ea denotes the a-th eigenvector.
We denote sample size by m, and dimension usually by d or d′, with
typically d′� d. δij is the Kronecker delta (the ij-th component of the
unit matrix).

We place dimension reduction techniques into two broad categories:
methods that rely on projections (Section 3) and methods that attempt
to model the manifold on which the data lies (Section 4). Section 3 gives
a detailed description of principal component analysis; apart from its
intrinsic usefulness, PCA is interesting because it serves as a start-
ing point for many modern algorithms, some of which (kernel PCA,
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probabilistic PCA, and oriented PCA) are also described here. How-
ever, it has clear limitations: it is easy to find even low dimensional
examples where the PCA directions are far from optimal for feature
extraction [33], and PCA ignores correlations in the data that are
higher than second order. We end Section 3 with a brief look at pro-
jective methods for dimension reduction of labeled data: sliced inverse
regression, and kernel dimension reduction. Section 4 starts with an
overview of the Nyström method, which can be used to extend, and
link, several of the algorithms described in this monograph. We then
examine some methods for dimension reduction which assume that the
data lies on a low dimensional manifold embedded in a high dimen-
sional space, namely locally linear embedding, multidimensional scal-
ing, Isomap, Laplacian eigenmaps, and spectral clustering.

Before we begin our exploration of these methods, however, let’s
investigate a question that is more fundamental than, and that can
be explored independently of, any particular dimension reduction tech-
nique: if our data lives on a manifold M that is embedded in some
Euclidean space, how can we estimate the dimension of M?



2
Estimating the Dimension

Consider the data shown schematically in Figure 2.1. Think of the
circle as representing the view through a microscope, with magnifica-
tion increasing from left to right. The data is embedded in R2, but
at different magnifications its intrinsic dimensionality appears to vary:
on the left, the data appears to have zero dimensions; at intermediate
magnification a one-dimensional structure emerges; and at higher mag-
nifications, the microscope detects a two-dimensional structure, which
in this schematic example we are imagining to be due to noise. In order
to run any kind of distance-dependent analysis on this data, it would
seem advantageous to operate, somehow, at the scale shown in the cen-
ter panel in the figure, and to ignore variance in the data at much
smaller scales.

Now suppose that you are observing through the microscope and
you turn down the magnification a little (increase the radius of the
circle in Figure 2.1). On the far left, the number of points included in
the field of view will not increase; in the center, it will increase linearly;
and on the right, as the square of the radius. Thus for the i-th data
point, we can compute the number of neighboring data points Ci(ε)
that fall in a sphere of radius ε around it; if the points are sufficiently

280
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Fig. 2.1 A microscope (circle) examining data (the curves) with added noise (the curves
have finite width). The magnification increases from left to right.

dense we expect that Ci(ε) will grow as εd, where d is the intrinsic
dimension. Finally, with limited data, we can improve our estimates by
summing: C(ε) ≡∑m

i=1 Ci(ε).
This method for estimating an intrinsic dimension was introduced

by Grassberger and Procaccia [43]1 who used it for one- and two-
dimensional time series data for which arbitrarily large sample sizes
could be artificially generated. They define:

C(ε) = lim
m→∞

1
m(m − 1)

×{number of pairs {xi,xj}for which |xi − xj | < ε}, (2.1)

and estimate the intrinsic dimension ν as the slope of log(C(ε)) as a
function of log(ε) in the limit as ε approaches zero.

2.1 A Cautionary Note

High dimensional data behaves qualitatively very differently from low
dimensional data. For example, if the data consists of vectors in Rd

and is very sparse (meaning that most components of most vectors are
zero), then most vectors will be orthogonal (their inner products will
be zero), and so if in addition they have fixed length, then those pairs

1 Grassberger and Procaccia refer to the quantity as the correlation exponent and they note
its close relation to the fractal dimension.
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Fig. 2.2 High dimensional data can be equidistant.

of vectors with zero inner product will be equidistant. If the samples
are, in general, close to equidistant, then no distance-based dimension
reduction technique will work very well. This is illustrated schemat-
ically in Figure 2.2, where an artificial data set is built by adding a
dimension, and a point, repeatedly, to build a high dimensional regular
simplex for which all pairs of points have distance equal to one. In that
case, not surprisingly, the dependence of C(ε) on ε simply tells us that
the data fills the space. As a second example, consider a d-dimensional
data set for which the vector components take values in {±1} and are
IID with zero mean. Then for any pair i, j, we have E[‖xi − xj‖2] = 2d

and we can apply Hoeffding’s bound to give:

P (|‖xi − xj‖2 − 2d| ≥ dε) = P (|x1 · x2| ≥ dε/2) ≤ 2exp
(
−dε2

8

)
.

(2.2)

Thus for ε = 0.2 and d = 500, the probability that the pairwise dis-
tance squared exceeds its mean is bounded above by 0.164; and for
ε = 0.2 and d = 5,000, the probability is bounded above by 2.8 × 10−11.
Happily most real data sets have more structure: the features are not
IID and distance-based algorithms such as k-th nearest neighbor can
often work well. If k-th nearest neighbor (for supervised classification)
often works well, we can hope that distance-based dimension reduction
techniques will too. We will encounter another way of looking at this
problem in the next section.
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2.2 Empirical Investigation

Although Grassberger and Procaccia [43] only considered the limit as
ε→ 0, it’s interesting to extend their argument to consider the effec-
tive dimension of the data at different length scales. One way to visu-
alize this is to plot log(C(ε)) versus log(ε) and examine how the slope
varies with log(ε). Figure 2.3 shows two 2-spheres; on the left, the data
is uniformly distributed, while on the right, the data becomes denser
toward the poles (the Matlab code to generate this data is given below).
Here 20,000 points were sampled. The corresponding plots of log(C(ε))
versus log(ε) are shown in Figure 2.4, together with straight line fits.
A straight line fit to the uniform data gives the slope (estimated dimen-
sion) as 1.9924: the data has the same dimension over a wide range of
scales. Although the method is clearly invariant to a global scaling of
the density of the data, it’s interesting to test its sensitivity to local
variations; a straight line fit to the “snowy sphere” data gives a slope
of 1.76 on all the data, 1.89 for the 10,000 smallest pairwise distances,
and 1.92 for just the first 1,000 pairwise distances (the plot shows the
straight line fit using all the data). However, note that this sensitivity
(of the estimate using all available distances to variations in density)
is a different issue from the notion of a scale-dependent dimension,

Fig. 2.3 Left: samples uniformly distributed over the 2-sphere. Right: samples whose density
varies as the cosine of the azimuth. (Note that the spheres are transparent, so all points are
visible.)
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Fig. 2.4 Straight line fits for the pairwise distance sphere data shown in Figure 2.3.
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Fig. 2.5 Slope of log(C(ε)) versus log(ε), versus log(ε), for spherical Gaussians in 2, 5, 10,
50, and 100 dimensions, 50,000 samples, and using a smoothing window of size 5,000 points
to estimate the slope. The modeled dimension underestimates the actual dimension more
severely as the dimension increases.

which would be computed as the slope of log(C(ε)) versus log(ε) at a
given ε.

Next we examine the sensitivity of the estimates to the dimension of
the problem at hand. Figure 2.5 shows plots of estimates of the slopes
of the log(C(ε)) versus log(ε) curves for spherical Gaussians in 2, 5,
10, 50, and 100 dimensions. The figures were generated by sampling
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50,000 points from each distribution, and using a smoothing window
containing 5,000 points; note that the slopes are generated from graphs
with 2.5 billion pairwise distances. We see that the estimates increas-
ingly underestimate the true dimension as that dimension increases.

Finally, we apply the method to the 2008 KDD CUP data. We take
the first 500 patients and compute the pairwise distances. The plot
on the left in Figure 2.6 is included simply as a “cautionary tail”: the
densities along the tails of the plot are very low, and a straight line fit
along the main body of the curve will fail: most of the data lives on
the upper lip of the curve, as the histogram superimposed on the left
figure shows. (One can also see this in Figure 2.4.) This effect is an
echo of the observation made in the previous section: put simply (but
imprecisely), high dimensional data tends to be close to equidistant.
A straight line fit in log(ε) ∈ [2,3] gives a slope of 2.45 with an error of
δ = 0.2122 (by “error” we mean that, making the approximation that
the deviations from the fit are independent, normal, and have constant
variance, then y ± δ contains at least 50% of the predictions). However,
as the above examples suggest, although these estimates of the intrinsic
dimension are more accurate when they are lower, the estimates are
only approximate; but they can nevertheless be useful as guidance for
choosing starting points for manifold modeling methods that require
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Fig. 2.6 A näıve line plot (left) suggests different dimensions (slopes) at several scales, but
plotting the individual points and overlaying the histogram (right) reveals that the leftmost
tail is almost empty, and in fact most of the data sits close to the right inflection point.
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that one has in hand an estimate of the intrinsic dimension. Note also
that this method is just one of many possible techniques for estimating
the intrinsic dimension: see for example Lee and Verleysen [62].

Algorithm 1 Generating data on the 2-sphere
n← 20000;
theta = randn(n,1) ∗ pi − pi/2;
phi = randn(n,1) ∗ 2 ∗ pi;
ctr = 1;
snowy = false;
for i = 1 : n do

t = theta(i);
p = phi(i);
if rand ≤ abs(cos(t)) ∨ snowy then

positions(ctr,1) = cos(t) ∗ cos(p);
positions(ctr,2) = cos(t) ∗ sin(p);
positions(ctr,3) = sin(t);
ctr = ctr + 1;

end if
end for



3
Projective Methods

If dimension reduction is so desirable, how should we go about it?
Perhaps, the simplest approach is to attempt to find low dimensional
projections that extract useful information from the data, by maximiz-
ing a suitable objective function. This is the idea of projection pursuit
(Friedman and Tukey, [37]). The name “pursuit” arises from the iter-
ative version, where the currently optimal projection is found in light
of previously found projections (in fact originally this was done manu-
ally1). Apart from handling high dimensional data, projection pursuit
methods can be robust to noisy or irrelevant features [57], and have
been applied to regression [35], where the regression is expressed as a
sum of “ridge functions” (functions of the one-dimensional projections)
and at each iteration the projection is chosen to minimize the residuals;
to classification; and to density estimation [36]. How are the interesting
directions found? One approach is to search for projections such that
the projected data departs from normality [57]. One might think that,
since a distribution is normal if and only if all of its one-dimensional
projections are normal, if the least normal projection of some data set is

1 See J. H. Friedman’s interesting response to Huber [57] in the same issue.

287
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still approximately normal, then the data set is also necessarily approxi-
mately normal, but this is not true; Diaconis and Freedman have shown
that most projections of high dimensional data are approximately nor-
mal [31] (see also below). Given this, finding projections along which
the density departs from normality, if such projections exist, should be
a good exploratory first step.

The sword of Diaconis and Freedman cuts both ways, however. If
most projections of most high dimensional data sets are approximately
normal, perhaps projections are not always the best way to find low
dimensional representations. Let’s review their results in some more
detail. The main result can be stated informally as follows: consider a
model where the data, the dimension d, and the sample size m depend
on some underlying parameter ν, such that as ν tends to infinity, so
do m and d. Suppose that as ν tends to infinity, the fraction of vectors
which are not approximately the same length tends to zero, and suppose
further that under the same conditions, the fraction of pairs of vectors
which are not approximately orthogonal to each other also tends to
zero.2 Then (Diaconis and Freedman [31], Theorem 1.1) the empirical
distribution of the projections along any given unit direction tends
to N(0,σ2) weakly in probability.3 However, if the conditions are not
fulfilled, as for some long-tailed distributions, then the opposite result
can hold — that is, most projections are not normal (for example, most
projections of Cauchy distributed data4 will be Cauchy [31]).

As a concrete example, consider data uniformly distributed over the
unit n + 1-sphere Sn+1 for odd5 n. Let’s compute the density projected
along any line I passing through the origin. By symmetry, the result
will be independent of the direction we choose. The setup is shown
in Figure 3.1. If the distance along the projection is parameterized by
ξ ≡ cosθ, where θ is the angle between I and the line from the origin

2 More formally, the conditions are: for σ2 positive and finite, and for any
positive ε, (1/m)card{j ≤ m : |‖xj‖2 − σ2d| > εd} → 0 and (1/m2)card{1 ≤ j,k ≤ m :
|xj · xk| > εd} → 0 [31].

3 Some authors refer to convergence “weakly in probability” simply as convergence in prob-
ability. A sequence Xn of random variables is said to converge in probability to a random
variable X if limn→∞P (|Xn − X| > ε) = 0 for all ε > 0 [45].

4 The Cauchy distribution in one dimension has density c/(c2 + x2) for constant c.
5 The story for even n is similar but the formulas are slightly different.
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θ

s n+1

sn

Fig. 3.1 Data distributed over the surface of an n + 1-sphere. Although the distribution is
far from Gaussian (and in fact the data is constrained to lie on a manifold, so the data has
zero density in most of its convex hull), projections of the data along one dimension give
densities that are close to Gaussian, and those densities become closer to Gaussian as n
increases.

to a point on the sphere, then the density at ξ is proportional to the
volume of an n-sphere of radius sinθ: ρ(ξ) = C(1 − ξ2)

n−1
2 . Requiring

that
∫ 1
−1 ρ(ξ)dξ = 1 gives the constant C:

C = 2− 1
2 (n+1) n!!

(1
2(n − 1))!

. (3.1)

Let’s plot this density and compare against a one-dimensional Gaussian
density fitted using maximum likelihood. For that we just need the vari-
ance, which can be computed analytically: σ2 = 1

n+2 , and the mean,
which is zero. Figure 3.2 shows the result for the 20-sphere. Although
data uniformly distributed on S20 is far from Gaussian, its projec-
tion along any direction is close to Gaussian for all such directions,
and we cannot hope to uncover such structure using one-dimensional
projections.

3.1 Independent Component Analysis

The notion of searching for non-normality, which is at the heart of pro-
jection pursuit (the goal of which is dimension reduction), is also a key
idea underlying independent component analysis (ICA) [58], so we give
a brief description here. ICA views the data as being generated by a
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Fig. 3.2 Dotted line: a Gaussian density with zero mean and variance 1/21. Solid line: the
density projected from data distributed uniformly over the 20-sphere, to any line passing
through the origin.

mixture of unknown latent variables, and although typically the num-
ber of latent variables is assumed to equal the dimension of the data,
the method has parallels with dimension reduction. ICA searches for
projections such that the probability distributions of the data along
those projections are statistically independent. Consider for example
the case of two speakers speaking into two microphones, where each
microphone captures sound from both speakers. The microphone sig-
nals may be written y = Ax, x,y ∈ R2, where the components of x are
the (assumed statistically independent and zero mean) signals from
each individual speaker, and where A is a fixed two-dimensional mix-
ing matrix. In principle, we could separate out the source signals by
finding A and inverting it. However, both A and x are unknown here,
and any invertible scaling of each component of x, followed by any per-
mutation of the components of the rescaled x (the net result of which
is another pair of statistically independent variables) can be compen-
sated for by redefining A. We can remove the scaling degrees of freedom
from the problem by whitening the data y and then assuming that A is
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a rotation matrix, which amounts to choosing a coordinate system in
which x is white (which, since the xi are independent and zero mean,
is equivalent to just rescaling the xi). Note that this also means that
if x happens to be normally distributed, then ICA fails, since A can
then be any orthogonal matrix (since any orthogonal matrix applied
to independent, unit variance Gaussian variables results in indepen-
dent, unit variance Gaussian variables). To give nontrivial results, ICA
therefore requires that the original signals be non-Gaussian (or more
precisely, that at most one is Gaussian distributed), and in fact it turns
out that finding the maximally non-Gaussian component (under the
assumptions that the x are IID, zero mean, and unit variance) will yield
an independent component [58]. ICA components may also be found
by searching for components with minimum mutual information, since
zero mutual information corresponds to statistical independence. Such
functions — whose optimization leads to the desired independent com-
ponents — are called contrast functions. Bach and Jordon [5] approach
ICA by proposing contrast functions based on canonical correlation
analysis (CCA) in Reproducing Kernel Hilbert Spaces (RKHSs); we
will encounter CCA, and RKHSs used in similar ways, below.

3.2 Principal Component Analysis (PCA)

3.2.1 PCA: Finding an Informative Direction

Given data xi ∈ Rd, i = 1, . . . ,m, suppose you’d like to find a direction
v ∈ Rd for which the projection xi · v gives a good one-dimensional rep-
resentation of your original data: that is, informally, the act of project-
ing loses as little information about your expensively gathered data as
possible (we will examine the information theoretic view of this below).
Suppose that unbeknownst to you, your data in fact lies along a line I
embedded in Rd, that is, xi = µ + θin, where µ is the sample mean,6

θi ∈ R,
∑

i θi = 0, and n ∈ Rd has unit length. The sample variance of

6 Note that if all xi lie on a given line then so does µ.
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the projection along n is then7:

vn ≡ 1
m

m∑
i=1

((xi − µ) · n)2 =
1
m

m∑
i=1

θ2
i , (3.2)

and that along some other unit direction n′ is:

v′
n ≡

1
m

m∑
i=1

((xi − µ) · n′)2 =
1
m

m∑
i=1

θ2
i (n · n′)2. (3.3)

Since (n · n′)2 = cos2 φ, where φ is the angle between n and n′, we see
that the projected variance is maximized if and only if n = ±n′. Hence
in this case, finding the projection for which the projected variance
is maximized gives you the direction you are looking for, namely n,
regardless of the distribution of the data along n, as long as the data
has finite variance. You would then quickly find that the variance along
all directions orthogonal to n is zero, and conclude that your data in
fact lies along a one-dimensional manifold embedded in Rd. This is one
of several basic results of PCA that hold for arbitrary distributions, as
we shall see.

Even if the underlying physical process generates data that ide-
ally lies along I, noise will usually modify the data at various stages
up to and including the measurements themselves, and so your data
will very likely not lie exactly along I. If the overall noise is much
smaller than the signal, it makes sense to try to find I by searching for
that projection along which the projected data has maximal variance.
If instead your data lies in a two (or higher) dimensional subspace, the
above argument can be repeated, picking off the highest variance direc-
tions in turn. The next section investigates how that works. There, and
in the following section, we will follow the intuitive description used
in this section, using projections to describe the properties of PCA;
in Section 3.2.6, we will describe the same results using more con-
cise matrix-based methods, which will also provide a transition to the
matrix methods used in the rest of the review.

7 When the choice is immaterial to the argument, we use denominator m (sample viewed
as the whole population) rather than m − 1 (unbiased estimator of population variance).
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3.2.2 PCA: Ordering by Variance

We have seen that directions of maximum variance can be interesting,
but how can we find them? From here on, unless otherwise stated, we
allow the xi to be arbitrarily distributed. The sample variance along
an arbitrary unit vector n is nT Cn where C is the sample covariance
matrix. Since C is positive semidefinite, its eigenvalues are positive or
zero; let us choose the indexing such that the (unit norm) eigenvectors
ea, a = 1, . . . ,d are arranged in order of decreasing size of the corre-
sponding eigenvalues λa. Since the {ea} span the space (or can be so
chosen, if several share the same eigenvalue), we can expand any n in
terms of them: n =

∑d
a=1 αaea, and we would like to find the αa that

maximize nT Cn = nT
∑

a αaCea =
∑

a λaα
2
a, subject to

∑
a α2

a = 1
(to give unit normed n). This is just a convex combination of the λs,
and since a convex combination of any set of numbers is maximized by
taking the largest, the optimal n is just e1, the principal eigenvector
(or any one of the principal eigenvectors, if the principal eigenvalue has
geometric multiplicity greater than one), and furthermore, the sample
variance of the projection of the data along n is then just λ1.

The above construction captures the variance of the data along the
direction n. To characterize the remaining variance of the data, let’s
find that direction m which is both orthogonal to n, and along which
the projected data again has maximum variance. Since the eigenvectors
of C form an orthonormal basis (or can be so chosen), we can expand
m in the subspace Rd−1 orthogonal to n as m =

∑d
a=2 βaea. Just as

above, we wish to find the βa that maximize mT Cm =
∑d

a=2 λaβ
2
a,

subject to
∑d

a=2 β2
a = 1, and by the same argument, the desired direc-

tion is given by the (or any) remaining eigenvector with largest eigen-
value, and the corresponding variance is just that eigenvalue. Repeating
this argument gives d orthogonal directions, in order of monotonically
decreasing projected variance. PCA for feature extraction thus amounts
to projecting the data to a lower dimensional space: given an input
vector x, the mapping consists of computing the projections of x along
the ea, a = 1, . . . ,d′, thereby constructing the components of the pro-
jected d′-dimensional feature vectors. Finally, since the d directions are
orthogonal, they also provide a complete basis. Thus if one uses all d
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directions, no information is lost; and as we’ll see below, given that one
wants to project to a d′ < d-dimensional space, if one uses the d′ princi-
pal directions, then the mean-squared error introduced by representing
the data by their projections along these directions is minimized.

3.2.3 PCA Decorrelates the Data

Now suppose we’ve performed PCA on our samples, and instead of
using it to construct low dimensional features, we simply use the full
set of orthonormal eigenvectors as a choice of basis. In the old basis, a
given input vector x is expanded as x =

∑d
a=1 xaua for some orthonor-

mal set {ua}, and in the new basis, the same vector is expanded as
x =

∑d
b=1 x̃beb, so x̃a ≡ x · ea = ea ·

∑
b xbub. The mean µ ≡ 1

m

∑
i xi

has components µ̃a = µ · ea in the new basis. The sample covariance
matrix depends on the choice of basis: if C is the covariance matrix
in the old basis, then the corresponding covariance matrix in the
new basis is C̃ab ≡ 1

m

∑
i(x̃ia − µ̃a)(x̃ib − µ̃b) = 1

m

∑
i{ea · (

∑
p xipup −

µ)}{(∑q xiquq − µ) · eb} = e′
aCeb = λbδab. Hence in the new basis the

covariance matrix is diagonal and the samples are uncorrelated. It’s
worth emphasizing two points: first, although the covariance matrix
can be viewed as a geometric object in that it transforms as a tensor
(since it is a summed outer product of vectors, which themselves have
a meaning independent of coordinate system), nevertheless, the notion
of correlation is basis-dependent (data can be correlated in one basis
and uncorrelated in another). Second, no assumptions regarding the
distribution of X have been made here.

3.2.4 PCA: Reconstruction with Minimum Squared Error

The basis provided by the eigenvectors of the covariance matrix is also
optimal for dimension reduction in the following sense. Again consider
some arbitrary orthonormal basis {ua, a = 1, . . . ,d}, and take the first
d′ of these to perform the dimension reduction: x̃ ≡∑d′

a=1(x · ua)ua.
The chosen ua form a basis for Rd′

, so we may take the components of
the dimensionally reduced vectors to be x · ua, a = 1, . . . ,d′ (although
here we leave x̃ with dimension d). Define the reconstruction error
summed over the data set as

∑m
i=1 ‖xi − x̃i‖2. Again assuming that the
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eigenvectors {ea} of the covariance matrix are indexed in order of non-
increasing eigenvalues, then choosing those eigenvectors as basis vectors
will give minimal reconstruction error, as we will show. If the data is
not centered, then the mean should be subtracted first, the dimension
reduction performed, and the mean then added back8; thus in this case,
the dimensionally reduced data will still lie in the subspace Rd′

, but
that subspace will be offset from the origin by the mean. Bearing this
caveat in mind, to prove the claim we can assume that the data is
centered. Expanding ua ≡

∑d
p=1 βapep, we have:

1
m

∑
i

‖xi − x̃i‖2 =
1
m

∑
i

‖xi‖2 − 1
m

d′∑
a=1

∑
i

(xi · ua)2, (3.4)

with orthogonality constraints
∑d

p=1 βapβbp = δab. The second term on
the right is:

−
d′∑

a=1

uT
a Cua = −

d′∑
a=1

(
d∑

p=1

βapeT
p )C(

d∑
q=1

βaqeq) = −
d′∑

a=1

d∑
p=1

λpβ
2
ap. (3.5)

Introducing Lagrange multipliers ωab to enforce the orthogonality con-
straints [16], in order to minimize the reconstruction error we must
maximize:

F =
d′∑

a=1

d∑
p=1

λpβ
2
ap −

d′∑
a,b=1

ωab


 d∑

p=1

βapβbp − δab


. (3.6)

Choosing9 ωab ≡ ωaδab and taking derivatives with respect to βcq gives
λqβcq = ωcβcq. Both this and the constraints can be satisfied by choos-
ing ωa = λa and βap = δap for p ≤ d′, βap = 0 otherwise. The objective
function then simply becomes

∑d′
p=1 λp, which is maximized by choos-

ing the first d′ largest λp. Note that this also amounts to a proof that,
for projections that give minimal reconstruction error, the “greedy”

8 The principal eigenvectors are not necessarily the directions that give minimal reconstruc-
tion error if the data is not centered: imagine data whose mean is both orthogonal to
the principal eigenvector and far from the origin. The single direction that gives minimal
reconstruction error will be close to the mean.

9 Recall that Lagrange multipliers can be chosen in any way that results in a solution
satisfying the constraints.
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approach to PCA dimension reduction — solve for a single optimal
direction (which gives the principal eigenvector as first basis vector),
then project your data into the subspace orthogonal to that, then
repeat — also results in the global optimal solution, found by solv-
ing for all directions at once. The same observation applies to finding
projections that maximally reduce the residual variance. Again, note
that this argument is distribution independent.

3.2.5 PCA Maximizes Mutual Information
on Gaussian Data

Now consider some proposed set of projections W ∈Md′d, where the
rows of W are orthonormal, so that the projected data is y ≡Wx,
y ∈ Rd′

, x ∈ Rd, d′ ≤ d. Suppose that X ∼ N (0,C). Then since the
ys are linear combinations of the xs, they are also normally dis-
tributed, with zero mean and sample covariance Cy ≡ (1/m)

∑m
i yiy′

i =
(1/m)W (

∑m
i xix′

i)W
′ = WCW ′. It’s interesting to ask how W can be

chosen so that the mutual information between the distribution of X

and that of Y is maximized [6, 32]. Since the mapping W is determinis-
tic, the conditional entropy H(Y |X) vanishes, and the mutual informa-
tion is just I(X,Y ) = H(Y ) − H(Y |X) = H(Y ). Using a small, fixed
bin size, we can approximate this by the differential entropy,

H(Y ) = −
∫

p(y) log2 p(y)dy =
1
2

log2(e(2π)d′
) +

1
2

log2 det(Cy).

(3.7)
This is maximized by maximizing det(Cy) = det(WCW ′) over choice
of W , subject to the constraint that the rows of W are orthonor-
mal. The general solution to this is W = UE, where U is an arbi-
trary d′ by d′ orthogonal matrix, and where the rows of E ∈Md′d
are formed from the first d′ principal eigenvectors of C, and at
the solution, det(Cy) is just the product of the first d′ principal
eigenvalues. Clearly, the choice of U does not affect the entropy,
since det(UECE′U ′) = det(U)det(ECE′)det(U ′) = det(ECE′). In the
special case where d′ = 1, so that E consists of a single unit length
vector e, we have det(ECE′) = e′Ce, which is maximized by choos-
ing e to be the principal eigenvector of C, as shown above. (The other
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extreme case, where d′ = d, is easy too, since then det(ECE′) = det(C)
and E can be any orthogonal matrix.) We refer the reader to Wilks [97]
for a proof for the general case 1 < d′ < d.

3.2.6 The Matrix View of PCA

Here we revisit the maximal variance projection and decorrelation prop-
erties of PCA using the more succinct matrix based approach.10 If E

is the (orthonormal) matrix of column eigenvectors of the covariance
matrix C, and Λ the diagonal matrix of (nonnegative) eigenvalues of C,
then

CE = EΛ, (3.8)

and we can always choose the ordering of the columns of E so that the
λi ≡ Λii are ordered: λi ≤ λi+1 ∀ i = 1, . . . ,d − 1. Now for some unit
vector n1 ∈ Rd consider the quantity:

n′
1E

T CEn1 = n′
1Λn1. (3.9)

The left-hand side is the variance of the projections of the (centered)
data along the unit vector En1. The right-hand side is

∑
i n

2
1iλi, and

since
∑

i n
2
1i = 1, this is a convex combination of the λs, which is max-

imized by choosing the largest λ, i.e., by choosing n1i = δi,1. For that
choice of n1, En1 is the principal eigenvector, and the variance of the
data projected along that direction is just λ1. We can repeat the same
argument for the direction that is orthogonal to E.1 by searching for
the unit vector n2 that is orthogonal to n1 (i.e., for which n21 = 0) and
which maximizes the right-hand side, which is given by n2i = δi,2, and
the corresponding direction (that maximizes the variance of the pro-
jections of the centered data in the subspace orthogonal to n1) is just
En2, the second principal eigenvector. Applying the same argument
iteratively shows that the eigenvectors of C give the desired directions,
and the corresponding variances are the λs.

10 The above vector-based views are useful to facilitate our intuitive understanding of the
properties of PCA, but once one has this, matrix-based methods are usually preferred
for their brevity and rich mathematical support.
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Regarding decorrelating the data, suppose that we replace the data
by their projections along the eigenvectors of C, that is, x→ ETx.
Then if µ is the mean data vector, we also have x − µ→ ET (x − µ),
and the covariance matrix of the transformed data is:

C ′ =
1
m

m∑
i=1

ET (x − µ)(x − µ)T E = ET CE = Λ, (3.10)

so C ′ is diagonal (and thus the data in the new coordinate system is
decorrelated).

3.2.7 Dimension Reduction with PCA

Given the above, one method for performing dimension reduction is to
compute the principal components for the data, and to take projections
of the feature vectors along them. For example, if only two eigenvalues
are nonzero, this will map the data to a two-dimensional space with no
error. Figure 3.3 shows the eigenspectrum, and the results of projecting
along the first three principal directions, for the features corresponding
to the first 500 patients in the KDD Cup data. The 24,406 points that
are labeled negatively are shown in black; the 162 positives are overlaid
in yellow. Clearly, the projections have some structure that may be
worth investigating with PCA, but that structure does not appear to
be useful in predicting the labels.

3.3 Probabilistic PCA (PPCA)

Suppose you’ve applied PCA to obtain low dimensional feature vectors
for your data, but that you have also somehow found a partition of the
data such that the PCA projections you obtain on each subset are quite
different from those obtained on the other subsets. It would be tempting
to perform PCA on each subset and use the relevant projections on new
data, but how do you determine what is “relevant”, and how in general
would you even find such subsets? These problems could be addressed
if we could learn a mixture of generative models for the data, where
each model corresponded to its own PCA decomposition. Tipping and
Bishop [89, 88] proposed such a model — “Probabilistic PCA” — build-
ing on earlier work linking PCA decomposition to factor analysis. The
advantages of a probabilistic model are numerous: for example, the
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Fig. 3.3 Top left: the eigenspectrum. Top right and bottom: data viewed by its projections
along the first three principal components. Samples with positive labels are colored yellow.

weight that each mixture component gives to the posterior probability
of a given data point can be computed, solving the “relevance” problem
stated above. In this section we briefly review PPCA.

The approach is in fact a form of factor analysis, which itself is a
classical dimension reduction technique. Factor analysis first appeared
in the behavioral sciences community over a century ago, when Spear-
man hypothesized that intelligence could be reduced to a single underly-
ing factor [83]. If, given an n-by-n correlation matrix between variables
Xi ∈ R, i = 1, . . . ,n, there is a single variable g such that the condi-
tional correlation between Xi and Xj vanishes for i 
= j given the value



300 Projective Methods

of g, then g is the underlying “factor” and the off-diagonal elements of
the correlation matrix can be written as the corresponding off-diagonal
elements of zz′ for some z ∈ Rn [28]. Modern factor analysis usually
considers a model where the underlying factors X ∈ Rd′

are Gaussian,
and where a Gaussian noise term ε ∈ Rd is added:

Y = WX + µ + ε (3.11)

X ∼ N (0,1)

ε ∼ N (0,Ψ).

Here Y ∈ Rd are the observations, the parameters of the model are
W ∈Mdd′ (d′ ≤ d), Ψ and µ, and Ψ is assumed to be diagonal. By
construction, Y has mean µ and “model covariance” WW ′ + Ψ. For
this model, given X, the vectors Y − µ become uncorrelated, and εi

captures the variance that is unique to Yi. Since X and ε are Gaussian
distributed, so is Y , and so the maximum likelihood estimate of µ is
just the empirical expectation of the y’s. However, in general, W and Ψ
must be estimated iteratively, using for example the EM algorithm [30].
There is an instructive exception to this [7]. Suppose that Ψ = σ21, so
that the d − d′ smallest eigenvalues of the model covariance are the
same and are equal to σ2. Suppose also that S, the sample covariance
of the y’s, is equal to the model covariance; we can then read off d′ as
the multiplicity of the smallest eigenvalue σ2 of S. Let e(j) be the j-th
orthonormal eigenvector of S with eigenvalue λj . Then it is straight-
forward to check that Wij =

√
(λj − σ2)e(j)

i , i = 1, . . . ,d, j = 1, . . . ,d′

satisfies WW ′ + Ψ = S if the e(j) are in principal order. The model
thus arrives at the PCA directions, but in a probabilistic way. Proba-
bilistic PCA (PPCA) assumes a model of the form (Equation (3.11))
with Ψ = σ21, but it drops the above assumption that the model and
sample covariances are equal (which in turn means that σ2 must now
be estimated). The resulting maximum likelihood estimates of W and
σ2 can be written in closed form, as [89]:

WML = U(Λ − σ21)R, (3.12)

σ2
ML =

1
d − d′

d∑
i=d′+1

λi, (3.13)
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where U ∈Mdd′ is the matrix of the d′ principal column eigenvectors of
S, Λ is the corresponding diagonal matrix of principal eigenvalues, and
R ∈Md′ is an arbitrary orthogonal matrix. Thus σ2 captures the vari-
ance lost in the discarded projections and the PCA directions appear
in the maximum likelihood estimate of W (and in fact re-appear in
the expression for the expectation of X given Y , in the limit σ→ 0, in
which case the components of X become the PCA projections of Y ).
This closed form result is rather striking in view of the fact that for
general factor analysis (for example, for diagonal but non-isotropic Ψ)
we must resort to an iterative algorithm. The probabilistic formulation
makes PCA amenable to a rich variety of probabilistic methods: for
example, PPCA allows one to perform PCA when some of the data
has missing components; and d′ (which so far we’ve assumed known)
can itself be estimated using Bayesian arguments [11]. Returning to the
problem posed at the beginning of this Section, a mixture of PPCA
models, each with weight πi ≥ 0,

∑
i πi = 1, can be computed for the

data using maximum likelihood and EM [30], thus giving a principled
approach to combining several local PCA models [88].

3.4 The Kernel Trick

Before describing our next extension of PCA — Kernel PCA — we
outline a mathematical device it shares with many other algorithms
(for example, support vector machines (SVMs); for a simple example
see Burges [15]). Given samples xi, i = 1, . . . ,m, suppose you have an
algorithm (for example, k-th nearest neighbor) which depends only
the inner products 〈xi,xj〉. Note that here we assume only that such
inner products can be defined, and in particular we do not assume that
xi ∈ Rd; for example the xi could be graphs, or sets of categories. Now
suppose we map the data to a (possibly infinite dimensional) vector
space F via the mapping Φ : Φ(x) ∈ F . We further require that F be
complete and come equipped with an inner product (in other words, F
is a Hilbert space). Now consider applying the same algorithm to the
transformed data Φ(xi). Since the algorithm depends only on the inner
products between (the representations of the) samples, the algorithm is
also well defined in F . Now suppose there exists a (symmetric) “kernel”
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function k(xi,xj) such that for all xi, xj , k(xi,xj) = 〈Φ(xi),Φ(xj)〉.
Since your algorithm depends only on inner products, Φ(x) need never
be explicitly computed; one can always just substitute the value of
the kernel, whenever the value of an inner product is needed. This
is the “kernel trick”: given any algorithm that depends only on inner
products between samples, the algorithm can be computed implicitly in
any space F for which k can be defined, which means, for example, that
linear algorithms can be mapped to one of a very rich set of possible
nonlinear versions by simple choice of the function k.

When does such a k exist for a Hilbert space? Take F to be a space
whose elements are real-valued functions. Consider the set of linear
evaluation functionals Ix : f ∈ F → f(x) ∈ R, indexed by x. If every
such linear functional is continuous, then there is a special function kx

associated with F , also indexed by x, and called a reproducing kernel,
for which 〈f,kx〉 = f(x) for every f ∈ F . Such Hilbert spaces are called
Reproducing Kernel Hilbert Spaces (RKHSs) and this particular rela-
tion is called the reproducing property. In particular, the function kx1

evaluated at some other point x2 is defined as k(x1,x2) ≡ kx1(x2), and
using the reproducing property on kx itself yields 〈kx1 ,kx2〉 = k(x1,x2).
It follows from this that the kernels are symmetric in their arguments
and are positive definite functions. Mapping the notation back to our
description above, Φ(x) is simply kx. RKHSs were first introduced
as a method to work implicitly in high dimensional spaces (in which
classifiers are linear separating hyperplanes), by Aizerman et al. [2] in
the theory of potential functions (although the formalism in Aizerman
et al. [2] was not cast in terms of Hilbert spaces and kernels, the poten-
tial functions introduced are kernels in RKHSs); RKHSs gained further
traction in the work of Kimeldorf and Wahba [60], who introduced the
“Representer Theorem”, which shows that under general conditions,
the solution to a general regularized optimization problem in an RKHS
can be written as an expansion over functions kxi , where the xi are
training samples; and RKHSs appeared on the machine learning scene
in Boser et al. [13], where they were first applied to support vector
machines, to obtain classifiers that, although linear in the RKHS, are
nonlinear when viewed as functions over the sample space.
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Finally, note that the mapping Φ in general has no inverse: there will
exist points z ∈ F for which there exists no x such that z = Φ(x). This
means that in practice, the evaluation of a kernel algorithm requires
that inner products in F be computed using the above kernel expansion,
which can be computationally expensive. An early and very effective
way to reduce this computational load is given in Burges [18].11

3.5 Kernel PCA

PCA is a linear method, in the sense that the reduced dimension repre-
sentation is generated by linear projections (although the eigenvectors
and eigenvalues depend nonlinearly on the data), and this can severely
limit the usefulness of the approach. Several versions of nonlinear PCA
have been proposed in the hope of overcoming this problem (see e.g.,
Diamantaras and Kung [32]). In this section we describe one such algo-
rithm called kernel PCA [81].

Kernel PCA applies the kernel trick to create a nonlinear version of
PCA in sample space by performing ordinary PCA in F . It’s striking
that, since projections are being performed in a space whose dimension
can be much larger than d, the number of useful such projections can
actually exceed d (although the hope for those doing dimension reduc-
tion is that a number d′� d of projections will suffice). It is not imme-
diately obvious that PCA is eligible for the kernel trick, since in PCA
the data appears in expectations over products of individual compo-
nents of vectors, not over inner products between the vectors. However,
Schölkopf et al. [81] show how the problem can indeed be formulated
entirely in terms of inner products. They make two key observations:
first, that the eigenvectors of the covariance matrix in F lie in the span
of the (centered) mapped data, and second, that therefore no informa-
tion in the eigenvalue equation is lost if the equation is replaced by
m equations, formed by taking the inner product of each side of the
eigenvalue equation with each (centered) mapped data point. Let’s see

11 I am told that this method is used to speed up SVM classifiers that recognize all hand-
written addresses, and approximately 20% of machine print addresses, by the United
States Postal Service today, as well as in several other countries [M. Parakhin, Private
Communication, 2010].
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how this works. The covariance matrix of the mapped data in feature
space is:

C ≡ 1
m

m∑
i=1

(Φi − µ)(Φi − µ)T , (3.14)

where Φi ≡ Φ(xi) and µ ≡ 1
m

∑
i Φi. Define Ψi ≡ Φi − µ. We are

looking for solutions v of:

Cv = λv. (3.15)

Since this can be written as 1
m

∑m
i=1 Ψi〈Ψi,v〉 = λv, the eigenvectors v

lie in the span of the Ψis, so the k-th eigenvector can be expanded as:

vk =
∑

i

αk
i Ψi (3.16)

for some αk
i . Note that, although the dimension of Ψi may be very high

(or even infinite), there are only m αis (for a given eigenvector): we will
denote the vector whose i-th component is αi by α ∈ Rm. Since the vs
lie in the span of the Ψis, we can equivalently look for solutions of the
m equations:

〈Ψi,Cv〉 = λ〈Ψi,v〉. (3.17)

Now consider:

〈Ψi,Ψj〉 = Kij − 1
m

∑
k

〈Φi,Φk〉 − 1
m

∑
k

〈Φk,Φj〉 + 1
m2

∑
kl

〈Φk,Φl〉,
(3.18)

where Kij ≡ k(xi,xj) is the matrix of inner products12 in F . Letting I
denote the m-by-m matrix with all entries equal to 1

m , then the second
term on the right-hand side is,13 for any j,

− 1
m

∑
k

Kik = −
∑

k

KikIkj = (−KI)ij , (3.19)

12 A matrix of inner products is called a Gram matrix. Any Gram matrix G is necessar-
ily positive semidefinite, as is easily seen in this case from z′Kz =

∑
ij zizj〈Φi,Φj〉 =

‖∑
i ziΦi‖2.

13 The above derivation emphasizes the relation between kernels and inner products. A more
compact derivation for general Gram matrices is given in Section 4.2.
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the third term is, for any i,

− 1
m

∑
k

Kkj = −
∑

k

IikKkj = (−IK)ij , (3.20)

and the fourth term is, for any i, j,

1
m2

∑
kl

Kkl =
∑
lk

IikKklIlj = (IKI)ij , (3.21)

so

〈Ψi,Ψj〉 = K − KI − IK + IKI = (1 − I)K(1 − I) ≡ PKP,

(3.22)
where we have introduced the projection matrix P ≡ 1 − I and where 1
is the m-by-m unit matrix. Thus the centered version of the kernel
matrix is K̄ ≡ PKP . Combining Equations (3.14), (3.16), (3.17), and
(3.22) gives:

K̄K̄α = mλK̄α. (3.23)

Now every solution to

K̄α = mλα (3.24)

is also a solution of Equation (3.23), and it turns out that for our pur-
poses, it is sufficient to solve Equation (3.24). To see this, note that
every solution of (3.23) can be written as αN + α⊥, where αN lies in
the null space N of K̄ and where α⊥ lies in the orthogonal subspace
N⊥; then αN is also a solution to Equation (3.23), and (K̄α⊥) is also
a solution to Equation (3.24). Hence the solutions to Equation (3.23)
that are in N⊥, and the solutions to Equation (3.24), are in 1–1 cor-
respondence. We can ignore solutions αN ∈ N since to compute the
projection of a given mapped sample xj we only need to compute:

〈Ψj ,v〉 =
∑

i

αi〈Ψj ,Ψi〉 = (K̄(αN + α⊥))j = (K̄α⊥)j . (3.25)

Thus we can find all relevant solutions to Equation (3.23) by taking
all solutions to Equation (3.24) and pre-multiplying by K̄. Finally, to
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compute the projections we need to normalize the eigenvectors in F to
have unit length: that is,

〈v,v〉 =
∑
ij

αiαj〈Ψi,Ψj〉 = mλ
∑

i

αiαi, (3.26)

so the αs must be normalized to have length 1√
mλ

. Since the eigen-
values of K̄ are mλ, we can accomplish this by computing a given
eigenvector of K̄, normalizing it to have length one, and then divid-
ing by the square root of its eigenvalue. We summarize the kernel PCA
algorithm schematically below, for projections of the “in sample” points
(the points used to construct K).

Algorithm 2 Kernel Principal Component Analysis (Schematic)
Given: m samples xi ∈ Rd, i = 1, . . . ,m

Compute the kernel matrix K ∈ Sm, Kij = k(xi,xj)
Compute the centered kernel matrix K̄ ≡ PKP , Pij = δij − 1

m

Compute the eigenvectors αi and eigenvalues ηi of K̄ (i = 1, . . . ,m)
Choose the i-th eigenvector αi along which you’d like to project
Normalize αi to have length 1√

ηi

Then for sample xi, i ∈ 1, . . . ,m, the value of the projection of
Φ(xi) ∈ F along the j-th eigenvector vj of the covariance matrix
of the samples in F is just 〈Ψi,vj〉 =

∑
k αj

k〈Ψi,Ψk〉 =
∑

k K̄ikα
j
k =

ηjα
j
i .

We have not yet addressed the question of how to extend kernel
PCA to an out-of-sample point x. One could certainly just add x to
the given samples and repeat the above computations, but this is com-
putationally very inefficient. One could also just approximate the exact
computation by computing 〈Ψ(x),vj〉. This gives for the projection the
value

(Φ(x) − µ) · v =
∑

i

αik(x,xi) − 1
m

∑
i,j

αik(x,xj)

− 1
m

∑
i,j

αik(xi,xj) +
1

m2

∑
i,j,n

αik(xj ,xn),
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where the last two terms can be dropped since they are additive con-
stants (they don’t depend on x). One might worry that this is an ill-
controlled approximation because the mean µ is no longer correct, and
even if we assume that we can ignore the change in µ, the above argu-
ment is no longer correct either, since there is no reason why Ψ(x)
should lie in the span of the Ψ(xi) (in fact for RBF kernels, unless x
happens to coincide with one of the xi, it won’t). However, Williams
and Seeger [99] show that in fact, this approximation is equivalent
to using the well-understood Nyström approximation, which we will
describe below.

Kernel PCA may be viewed as a way of putting more effort into
the up-front computation of features, rather than on the classifier
or regression algorithm. Kernel PCA followed by a linear SVM on a
pattern recognition problem has been shown to give similar results to
using a nonlinear SVM using the same kernel [81]. It shares with other
kernel methods the attractive property of mathematical tractability
and of having a clear geometrical interpretation: for example, this has
led to using kernel PCA for de-noising data, by finding that vector
z ∈ Rd such that the Euclidean distance between Φ(z) and the vector
computed from the first few PCA components in F is minimized [67].
Classical PCA has the significant limitation that it depends only on
first and second moments of the data, whereas kernel PCA does not (for
example, a polynomial kernel k(xi,xj) = (xi · xj + b)p contains powers
up to order 2p, which is particularly useful for image classification,
where one expects that products of several pixel values will be informa-
tive as to the class). Kernel PCA has the computational limitation of
having to compute eigenvectors for square matrices of side m, but again
this can be addressed, for example by using a subset of the training
data, or by using the Nyström method for approximating the eigenvec-
tors of a large Gram matrix (see below). Figure 3.4 shows an example of
applying kernel PCA to three overlapping two-dimensional Gaussians.

3.6 Canonical Correlation Analysis

Suppose we have two paired data sets x1i ∈ Rd1 ,x2i ∈ Rd2 , i = 1, . . . ,m.
Note that d1 may not equal d2. Canonical Correlation Analysis



308 Projective Methods

F
ig

.
3.

4
T
op

le
ft

:
90

0
p
oi

nt
s

sa
m

pl
ed

fr
om

th
re

e
G

au
ss

ia
ns

(3
00

sa
m

pl
es

ea
ch

),
w

it
h

co
va

ri
an

ce
m

at
ri

ce
s

[0
.3

,0
;0

.0
.1

]
(r

ig
ht

m
os

t
cl

us
te

r)
,

[0
.1

,0
;0

,0
.3

](
le

ft
m

os
t
cl

us
te

r)
,a

nd
[0

.1
,0

;0
,0

.1
](

to
p

cl
us

te
r)

.T
op

ri
gh

t:
th

e
da

ta
pl

ot
te

d
us

in
g

th
e

fir
st

tw
o

K
P

C
A

pr
oj

ec
ti
on

s
as

co
or

di
na

te
s

(w
hi

ch
ar

e
ju

st
th

e
ro

w
s

of
th

e
tw

o
pr

in
ci

pa
l

sc
al

ed
ei

ge
nv

ec
to

rs
),

fo
r

th
e

R
B

F
ke

rn
el

K
(x

i
,x

j
)
=

ex
p

(
−

‖x
i
−

x
j
‖2

2
σ
2

)
w

it
h

σ
2

=
0.

05
.

B
ot

to
m

:c
on

to
ur

pl
ot

s
fo

r
th

e
pr

oj
ec

ti
on

s
of

a
gr

id
of

p
oi

nt
s

in
L

(c
ho

se
n

in
eq

ua
ls

te
ps

of
0.

2
fr

om
x
,y

=
−3

to
3)

us
in

g
th

e
th

re
e

pr
in

ci
pa

l
ei

ge
nv

ec
to

rs
in

F.
N

ot
e

th
at

th
e

fir
st

di
re

ct
io

n
se

pa
ra

te
s

al
l
th

re
e

cl
us

te
rs

,
th

e
se

co
nd

se
pa

ra
te

s
tw

o,
an

d
th

e
th

ir
d

sp
lit

s
a

cl
us

te
r.



3.6 Canonical Correlation Analysis 309

(CCA) [55] finds paired directions {w1i,w2i}, w1i ∈ Rd1 , w2i ∈ Rd2 ,
i ≤ min(d1,d2) such that the projection of the first data set along w1i

is maximally correlated with the projection of the second data set
along w2i. In addition, for i 
= j, the projections of the first data set
along the pairs {w1i,w1j}, of the second data set along the pairs
{w2i,w2j}, and of the first and second data sets along the pairs
{w1i,w2j}, respectively, are all uncorrelated. Furthermore, the values
of the w.x’s themselves are invariant to invertible affine transforma-
tions of the data, which gives CCA a coordinate independent meaning,
in contrast to ordinary correlation analysis. Hotelling gives the follow-
ing example, taken from Kelly [59]: 140 seventh-grade school children
were tested for their ability in reading and arithmetic. Two measures of
efficacy were used for reading (speed and “power”) and two for arith-
metic (also called speed and “power”). In this case CCA revealed that,
according to this data, reading and arithmetic involve one and only
one common mental factor, with a p-value of approximately 0.0001.
The underlying assumption in CCA is that x1i and x2i are different
views of the same object (for example, measurements of mathematical
ability, and reading ability, for the i-th seventh-grader). For a more
recent treatment of CCA, see for example Anderson [4].

CCA may be summarized as follows (in this section, we will reserve
the subscripts {p,q} to lie in {1,2}, and we remind the reader that
subscripts {i, j} index vectors, and {a,b} index vector components).
We are given two random vectors X1, X2 with ranges in Rd1 and Rd2 .
We assume that we are able to compute expectations of products of
the random variables that are the components of the X’s. To keep the
discussion uncluttered we also assume that E[X1a] = E[X2b] = 0, a =
1, . . . ,d1; b = 1, . . . ,d2. Let us define random variables U ≡X1 · w1 and
V ≡X2 · w2 for some w1 ∈ Rd1, w2 ∈ Rd2 . We wish to find w1, w2,
such that the correlation:

ρ ≡ E[UV ]√
E[U2]E[V 2]

=
w′

1C12w2√
(w′

1C11w1)(w′
2C22w2)

≡ A12√
A11A22

(3.27)

is maximized, where Cpq ≡ E[XpX′
q] is the (matrix) covariance (for

p = q) or cross-covariance (for p 
= q) and where we have introduced
scalars Apq ≡ w′

pCpqwq. Setting the derivative of ρ2 with respect to
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wpa equal to zero for p ∈ {1,2} gives:

C−1
11 C12w2 =

A12

A11
w1, (3.28)

C−1
11 C12C

−1
22 C21w1 = ρ2w1, (3.29)

(where we have assumed that the covariance matrices C11 and C22 are
nonsingular; note that A12 = A21 and that C12 = C ′

21), and similarly
for {1⇔ 2}.

The matrices left-multiplying the w’s in Equations (3.28) and (3.29)
are not necessarily symmetric (note that C12 is not necessarily square).
Since the eigenvalues of general square matrices need not be real, it
would be comforting to check that solving Equations (3.28) and (3.29)
will always result in real, positive ρ2. We can use Cholesky decompo-
sition to write Cpp ≡ RppR

′
pp, where Rpp is lower triangular [54]: then

writing z1 ≡ R′
11w1, Equation (3.29) becomes:

R−1
11 C12C

−1
22 C21R

′−1
11 z1 = ρ2z1. (3.30)

The left hand multiplicand is now a (symmetric) positive definite
matrix, since for any vector s ∈ Rd1, we have:

s′R−1
11 C12C

−1
22 C21R

′−1
11 s = t′t, (3.31)

where t ≡ R−1
22 C21R

−1
11 s, so ρ2 is indeed real and positive.

While we are on the subject of sanity checks, it is conceivable that
Equation (3.29) is necessary but not sufficient: that is, can there exist
eigenvalues of the eigenvector Equation (3.29) for which ρ does not
take the form ρ2 = A2

12/(A11A22)? No, because Equation (3.29) and
the {1⇔ 2} version of Equation (3.28) gives:

ρ2A11 = w′
1C12C

−1
22 C21w1 = w′

1C12
A12

A22
w2 =

A2
12

A22
. (3.32)

3.6.1 CCA Decorrelates the Data

CCA shares with PCA the property that the projections decorrelate the
data. For CCA, the projections decorrelate the individual data sets just
as for PCA, but in addition, the cross-correlation of the projected data
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vanishes, and the directions are conjugate with respect to the cross-
covariance matrices. To see this, consider the set of solutions w1i and
corresponding w2i. First note that from Equation (3.29), for ρi 
= ρj ,

w′
1jC12C

−1
22 C21w1i = ρ2

i w
′
1jC11w1i = ρ2

jw
′
1iC11w1j = 0. (3.33)

Hence w′
1iC11w1j = 0 = w′

2iC22w2j . Similarly from Equation (3.28), we
have w′

2jC21w1i = (A12/A22)w′
2jC22w2i = 0, again for distinct eigen-

values. For repeated eigenvalues, the w’s may again be chosen to be
conjugate with respect to the covariance matrices. Thus in the new
basis, the variables are uncorrelated:

E[UiU
′
j ] = E[w1i · X1w1j · X1] = w′

1iC11w1j = 0 for i 
= j, (3.34)

and similarly E[ViV
′
j ] = E[UiV

′
j ] = 0 if i 
= j.

3.6.2 CCA is Invariant under Invertible Affine
Transformations

What happens to the w · x projections if we translate, rotate, or scale
the data? For example, do the projections change if we whiten the data
sets first? One of the strengths of CCA is that this is not necessary: the
projected values are invariant under invertible affine transformations
x ∈ Rd→ Bx + b, B ∈Md, b ∈ Rd, provided the w’s are appropriately
transformed.

Invariance with respect to translations follows directly from the defi-
nition of ρ, since covariance matrices are functions of the centered data.
We can check invariance under the invertible transformation x̄1 ≡ Bx1

as follows: in the new coordinate system, Equation (3.29) becomes:

C̄−1
11 C̄12C

−1
22 C̄21w̄1 = ρ2w̄1, (3.35)

where C̄11 = BC11B
′, C̄12 = BC12 and C̄21 = C21B

′, so that

C−1
11 C12C

−1
22 C21B

′w̄ = ρ2B′w̄. (3.36)

Hence the eigenvalues ρ take the same values. Thus solving in the
transformed coordinate system we see that we will find w̄1 which are
related to w1 by w1 = B′w̄1, so that for any x1 ∈ S1, w1 · x1 = (w̄1B) ·
(B−1x̄1) = w̄1 · x̄1. Thus the projections themselves remain invariant,
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and hence the correlations between projections remain invariant. By
simply swapping {1↔ 2} in the above argument we see that in this
sense, CCA is invariant under invertible affine transformations of both
S1 and S2 independently.

Note that the property of affine invariance is not shared by ordinary
correlation analysis, in the sense that the matrix whose ab-th element
is E[x1ax2b]/

√
E[x2

1a]E[x2
2b] can take very different forms in different

coordinate systems. For example, given a set of random variables that
are distributed as the components of a multivariate Gaussian, one can
choose an affine transformation to a new coordinate system in which
the data are uncorrelated: correlation alone is a coordinate-dependent
concept.

3.6.3 CCA in Practice; Kernel CCA

The expectations in the above analysis require knowledge of the under-
lying distributions, and this is often not available. In that case one
usually uses the empirical distribution:

P (Xpia = xpia, Xqjb = xqjb) = (1/m)δij , (3.37)

giving covariance matrices (for zero mean data):

Cpa,qb = (1/m)
m∑

i,j=1

xpiaxqjbP (Xpia = xpia, Xqjb = xqjb)

= (1/m)
m∑

i=1

xpiaxqib. (3.38)

Since CCA may be viewed as an extension of PCA to two paired
data sets, and since the kernel trick can be applied to PCA, it’s rea-
sonable to expect that a kernel version of CCA might be developed.
This is indeed the case, as first shown independently in Akaho [3] and
in Bach and Jordan [5].

Kernel CCA follows kernel PCA in spirit. The data x1 ∈ Rd1 ,
x2 ∈ Rd2 are mapped to feature spaces F1 and F2 by maps Φ1, Φ2,
respectively (note that F1 and F2 may or may not be the same). Since
the w1i ∈ F1, w2i ∈ F2 are used only to take projections, we can assume
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that they lie in the span of the data, so that there exist αp such that:

wp =
m∑

i=1

αpiΦp(xpi), (3.39)

where we have dropped the index enumerating the w’s (and the cor-
responding index on the αs) for clarity. Thus, for a given solution,
αp ∈ Rm. Since CCA depends only on inner products the Φ’s are never
explicitly needed:

wp · Φp(xpj) =
m∑

i=1

αpi〈Φp(xpi),Φp(xpj)〉 =
m∑

i=1

αpiKp(xpi,xpj). (3.40)

Following the above analysis, but in the spaces Fp, yields:

ρ = max
α1,α2

α′
1K1K2α2√

α′
1K

2
1α1α′

2K
2
2α2

, (3.41)

where Kp ∈Mm. For any data and mapping Φp for which the K’s are
invertible, this can be solved analytically; however, the solutions have
perfect correlation (or anticorrelation): ρ = ±1. An example of such a
choice of F is the space corresponding to radial basis function kernels.
Such a mapping clearly gives too much “wiggle room” to the data; we
need to regularize. This can be achieved with the same regularization
device used in partial least squares, by penalizing the norm of the wp

vectors. For large data sets, an additional problem must be addressed:
a square matrix with number of rows equal to the sample size must be
inverted. This can be overcome using approximate techniques such as
incomplete Cholesky decomposition. We refer the reader to Bach and
Jordan [5] and to Hardoon et al. [47] for details.

While CCA was originally proposed as a kind of factor analysis
for paired data sets, the projections can also be used as (heuristic)
similarity measures: Hardoon et al. [47] consider the problem of content-
based image retrieval from the Web, where vectors in S1 represent
the image content and vectors in S2 represent the text surrounding
the image. At run time, the user enters some text, and an appropriate
image is hopefully retrieved. The similarity of a piece of text and an
image is defined as the cosine between the vector whose i-th component
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is x1 · w1i and the vector whose i-th component is x2 · w2i; the lookup
requires a scan over the image database for each incoming text query.

Kernel CCA also immediately yields a way to use kernels to
assess statistical independence, which Bach and Jordan [5] exploited
to develop kernel ICA, and which has led to many works on kernel-
based assessment of independence: see for example Gretton et al. [44],
as well as Fukumizu et al. [38], which is discussed in Section 3.9.4.

3.7 Linear Discriminant Analysis

In the following few sections we will consider the supervised setting,
where some form of signal for each data point is available (for exam-
ple, a class label; or an annotation that defines whether the point is
an undistorted signal, or is a distorted version of that signal). Here for
completeness, and because Distortion Discriminant Analysis (described
in the next section) is closely related, we briefly describe the classical
approach to dimension reduction for labeled data: Fisher Linear Dis-
criminant Analysis (LDA) for binary labels, and its multiclass gener-
alization, Multiple Discriminant Analysis (MDA). These methods may
be viewed as natural extensions of PCA to the case of labeled data.
Consider the task of binary classification, and consider the problem
of finding a unit vector n such that the projections of the two classes
along n are well separated. We can make a first attempt at defining
what we mean by “well separated” by asking that the difference of the
means of the two classes, µ1 − µ2, have maximum projection along n,
that is by maximizing:

(n · (µ1 − µ2))2 ≡ n′SBn, ‖n‖2 = 1, (3.42)

where SB ≡ (µ1 − µ2)(µ1 − µ2)′ is known as the “between-class
scatter” [33]. Equation (3.42) is trivially satisfied by setting:

n =
µ1 − µ2

‖µ1 − µ2‖2 . (3.43)

This is clearly a sensible thing to do if one happens to know that each
class is spherically distributed and that the classes are linearly separa-
ble. However, consider the data shown in the left panel of Figure 3.5.
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Fig. 3.5 Both panels: Two sets of 1,000 Gaussian distributed points, with one class on the
left and the other on the right. Left panel: the difference of the means, the positions of which
are denoted by the small circles, can give a poor projection direction for class separation.
Right panel: the direction shown is that given by LDA for this data. Note that only the
direction matters; the placement of the lines denoting the unit vectors is arbitrary.

There, the above n is clearly suboptimal because each class has projec-
tions along n that strongly overlaps: that is, the value of the projection
along n is not a good predictor of class membership. Instead, we would
like to maximize the inter-class projection along n as above, but simul-
taneously minimize the variance of the intra-class projections along n,
where we can represent the latter using the pooled variance (recall that
for a data set with covariance matrix C, the variance along the unit
vector n is just n′Cn):

n′ 1
m

{
m1∑
i=1

(x1i − µ1)(x1i − µ1)′+
m2∑
i=1

(x2i − µ2)(x2i − µ2)′
}

n ≡ n′SWn,

(3.44)
where the number of samples in class i ∈ {1,2} is denoted mi, where
m ≡m1 + m2, and where SW is known as the “within-class scat-
ter” [33]. Fisher linear discriminant analysis thus finds directions that
maximize the ratio SB

SW
; this ratio is known as a “Rayleigh quotient”

and the maximizing directions n are found as the eigenvectors of the
generalized eigenvalue equation:

SBn = λSWn. (3.45)
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The right panel of Figure 3.5 shows the direction given by the principal
eigenvector of Equation (3.45) for the data shown. Note that Equa-
tion (3.45) is equivalent to an ordinary eigenvalue equation if SW is of
full rank.

Extending these ideas to the multiclass case is straightforward. If C

is the number of classes, a simple approach is to compute C LDA direc-
tions, one for each “one versus rest” problem (i.e., separate class 1 from
the rest, then class 2, etc.) (note that these directions in general will
not be orthogonal). One can also extend the above argument directly
to the multiclass case, resulting again in a problem whose solution
maximizes a Rayleigh quotient. There, the mapping is to a space of
dimension C − 1 (this approach assumes that the original dimension d

satisfies d ≥ C − 1); the within-class scatter SW becomes the obvious
extension of the binary case, where the terms on the left-hand side of
Equation (3.44) are replaced by C such terms, one for each class; and
the between-class scatter becomes the weighted sum:

SB =
1
m

C∑
i=1

mi(µi − µ)(µi − µ)′, (3.46)

where µ is the overall mean. Again the directions are the generalized
eigenvectors of Equation (3.45), using the new definitions of SB and
SW . For more details see for example Dusa and Hart [33].

3.8 Oriented PCA and Distortion Discriminant Analysis

Before leaving projective methods, we describe another extension of
PCA, which has proven very effective at extracting robust features
from audio [19, 20]. We first describe the method of oriented PCA
(OPCA) [32]. Suppose we are given a set of “signal” vectors xi ∈ Rd,
i = 1, . . . ,m, where each xi represents an undistorted data point, and
suppose that for each xi, we have a set of N distorted versions x̃k

i , k =
1, . . . ,N . Define the corresponding “noise” difference vectors to be zk

i ≡
x̃k

i − xi. For example, the xi could be a spectral representation of a
piece of music recorded in a studio, while the x̃k

i , could be the same
representation of the same music, recorded after applying a noise filter
(for example, recording the output of an FM radio playing the piece,
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Fig. 3.6 OPCA searches for directions in which the projections of a signal vector (filled tri-
angle), and of its noisy variants (open triangles), are close, while the projections of different
signal vectors (star, filled triangle) are far from each other.

or simply the data encoded using a low bit rate). In order to map the
noisy data to a representation which is as close as possible (in some
metric) to the original, we wish to find linear projections which are
as orthogonal as possible to the difference vectors, but along which
the variance of the signal data is simultaneously maximized: this is
illustrated in Figure 3.6.

Denote the unit vectors defining the desired projections by ni, i =
1, . . . ,d′, ni ∈ Rd, where d′ will be chosen by the user. By analogy
with PCA, we could construct a feature extractor n which minimizes
the mean-squared reconstruction error 1

mN

∑
i,k(xi − x̂k

i )
2, where x̂k

i ≡
(x̃k

i · n)n. The n that solves this problem is that eigenvector of R1 − R2

with largest eigenvalue, where R1 and R2 are the correlation matrices
of the xi and zi, respectively. However, this feature extractor has the
undesirable property that the direction n will change if the noise and
signal vectors are globally scaled with two different scale factors. OPCA
[32] solves this problem. The first OPCA direction is defined as that
direction n that maximizes the generalized Rayleigh quotient [32, 33]
q0 = n′C1n

n′C2n
, where C1 is the covariance matrix of the signal and C2
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that of the noise. For d′ directions collected into a column matrix N ∈
Mdd′, we instead maximize det(N ′C1N )

det(N ′C2N ) . For Gaussian data, this amounts
to maximizing the ratio of the volume of the ellipsoid containing the
data, to the volume of the ellipsoid containing the noise, where the
volume is that lying inside an ellipsoidal surface of constant probability
density. We in fact use the correlation matrix of the noise rather than
the covariance matrix, since we wish to penalize the mean noise signal
as well as its variance (consider the extreme case of noise that has zero
variance but nonzero mean). Explicitly, we take:

C ≡ 1
m

∑
i

(xi − E[x])(xi − E[x])′, (3.47)

R ≡ 1
mN

∑
i,k

zk
i (z

k
i )

′, (3.48)

and maximize q = n′Cn
n′Rn , whose numerator is the variance of the pro-

jection of the signal data along the unit vector n, and whose denomi-
nator is the projected mean-squared error (the mean-squared modulus
of all noise vectors zk

i projected along n). We can find the directions
nj by setting ∇q = 0, which gives the generalized eigenvalue problem
Cn = qRn; those solutions are also the solutions to the problem of
maximizing det(N ′CN )

det(N ′RN ) . If R is not of full rank, it must be regularized
for the problem to be well-posed. It is straightforward to show that, for
positive semidefinite C and R, the generalized eigenvalues are positive,
and that scaling either the signal or the noise leaves the OPCA direc-
tions unchanged, although the eigenvalues will change. Furthermore,
the ni are, or may be chosen to be, linearly independent, and although
the ni are not necessarily orthogonal, they are conjugate with respect
to both matrices C and R, that is, n′

iCnj ∝ δij , n′
iRnj ∝ δij .

OPCA is similar mathematically to multiclass discriminant analysis
(MDA) where the number of classes is equal to m [33], but there is
a crucial difference: in MDA, there is no notion of a “canonical” (or
“signal”) sample for each class; the MDA within-class scatter for a given
class is computed as the covariance matrix for that class. In OPCA,
for each class, the mean vector used in MDA is replaced by the single
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canonical (zero noise) point, which can lie far from the sample mean.
This is done in both the numerator, where each MDA class mean is
replaced by the corresponding signal point, and where the overall mean
is replaced by the mean of the signal points; and in the denominator,
where the sample covariance for a given class is replaced by sums of
squares of differences between noise vectors for that class and the signal
vector for that class. This amounts to leveraging additional, valuable
information about the problem, and can lead to significantly improved
results for problems where such data is available (such as the audio
fingerprinting task, where a very clean version of each original clip can
be obtained).

“Distortion Discriminant Analysis” [19, 20] uses layers of OPCA
projectors both to reduce dimensionality (a high priority for audio or
video data) and to make the features more robust. The above features,
computed by taking projections along the n’s, are first translated and
normalized so that the signal data has zero mean and the noise data
has unit variance. For the audio application, for example, the OPCA
features are collected over several audio frames and are simply con-
catenated into new “signal” vectors, the corresponding “noise” vectors
are measured, and the OPCA directions for the next layer found. This
has the further advantage of allowing different types of distortion to
be penalized at different layers, since each layer corresponds to a dif-
ferent time scale in the original data (for example, a distortion that
results from comparing audio whose frames are shifted in time to fea-
tures extracted from the original data — “alignment noise” — can be
penalized at larger time scales).

3.9 Sufficient Dimension Reduction

In this section we continue the supervisory thread and consider tech-
niques for dimension reduction where the data consists of predictor–
response pairs {xi,yi}, i = 1, . . . ,m. There are several reasons one might
want to do this: if the x’s appear in the underlying functional depen-
dence only through a small number of projections, then those projec-
tions may be used to construct various plots to visualize the data; and
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smaller, more accurate models of the regression itself can be constructed
if one knows that an entire subspace can be ignored.

We follow Cook’s characterization of sufficient dimension reduction
(SDR) [23]: let X be the random vector and Y the random variable
taking the values {xi,yi}, xi ∈ Rd, yi ∈ R, respectively, and assume
that the pair (Y,X) has joint distribution P . The goal of sufficient
dimension reduction is then to find a map Φ :Rd→Rq, q < d, such that
Y |X ∼ Y |Φ(X) (that is, Y conditioned on X has the same distribution
as Y conditioned on Φ(X)). The following are then equivalent:

X|(Y,Φ(X)) ∼ X|Φ(X) (inverse regression) (3.49)

Y |X ∼ Y |Φ(X) (forward regression) (3.50)

Y ⊥⊥ X|Φ(X) (sufficient reduction) (3.51)

An equivalent formulation is as follows. We consider models of the
form:

y = f(a′
1x,a′

2x, . . . ,a′
kx, ε), ai,x ∈ Rd, ε ∈ R, (3.52)

where the ε’s model the noise and are assumed independent of X. The
goal is to find the minimal number of vectors a′

i for which the above
relation holds, in which case the a′

i span a “minimal dimension reduc-
tion subspace” (DRS) [22]. Note that this problem is ill-posed in the
sense that given any solution, another solution can be constructed by
changing f and the a′

i appropriately. The presence of the y’s can dras-
tically change the picture: for example, X could be distributed in such
a way that no useful dimension reduction of the X alone is possible,
whereas Y might depend only on a single component of X. Now let
A denote that matrix whose columns are the ai. Then the above list
of inner products may be written as ATx and the DRS is that sub-
space spanned by the columns of AT : we will denote this by SA. Again
we can write this as a statement about statistical independence as
follows:

Y ⊥⊥ X | AT X. (3.53)
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The goal of Sufficient Dimension Reduction14 is to estimate a DRS,
when it exists. Let’s start by describing one of the earliest approaches
to SDR.

3.9.1 Sliced Inverse Regression

Sliced Inverse Regression (SIR) was introduced in a seminal paper by
Li [64]. Since this paper sparked a fruitful line of research, we will
examine the basic ideas in detail here. Normal (forward) regression
estimates E[Y |x]. Inverse regression instead estimates E[X|y], which
is a much easier problem since it amounts to solving d one-dimensional
regression problems. It is a remarkable fact that a DRS for the above
problem (Equation (3.52)) can be estimated, up to degeneracies we will
describe below, when the marginal p(X) is elliptic,15 and assuming that
the xi are IID. This can be done despite the fact that, as mentioned
above, the problem as stated is ill-posed, and despite the fact that we
know nothing about f or ε directly. As y varies, E[X|y] will trace a
curve in Rd. Noting that, given the form (Equation (3.52)), for fixed ε,
a small change x→ x + δx in the subspace orthogonal to SA leaves y

unchanged, one might hope to find conditions under which E[X|y] can
be shown to lie in SA. Li [64] gives us one such sufficient condition,
which we explore next.

Theorem 3.1. Given Equation (3.52), further assume that E[X|a′
1x,

a′
2x, . . . ,a′

kx] lies in the subspace spanned by ΣXai, where ΣX is the
covariance matrix of X. Then the centered inverse regression curve
E[X|y] − E[X] lies in that subspace.

Proof. Here we will sacrifice brevity and a little generality in the cause
of gaining further insight: we will assume that p(X) is elliptic, and first
show that this leads to the condition in the proof. We will denote the

14 The phrase Sufficient Dimension Reduction was introduced to the statistics community
by Cook and Lee [25]. The phrase Sufficient Dimensionality Reduction was introduced
to the machine learning community by Globerson and Tishby [39]. The approaches are
quite different; we briefly summarize the latter below.

15 An elliptic density is one for which the contours of constant density are ellipsoids, such
as the Gaussian.
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hyperplane defined by ∩k
i {x : a′

ix = αi}, simply by {a′
ix = αi}. First

note that for any density p(X), E[X|{a′
ix = αi}] must itself lie on the

hyperplane {a′
ix = αi}, since

a′
jE[X|{a′

ix = αi}] = E[a′
jX|{a′

ix = αi}] = E[αj |{a′
ix = αi}] = αj .

(3.54)
However, this is not quite what we need: while this does mean that
the expectation lies in a subspace, that subspace will vary as the αi

vary. We are interested in a stronger characterization of a subspace
that depends on the ai only.

Let’s change coordinates to a basis in which the density is spher-
ical,16 z = Σ−1/2

X x. Introducing bi = Σ1/2
X ai, in this coordinate sys-

tem the constraints a′
ix = αi become a′

iΣ
1/2
X z ≡ b′

iz = αi. Consider the
quantity:

E[Z|{b′
iz = αi}]. (3.55)

The bi need not be orthogonal: however, we can always introduce an
orthonormal set ui such that for some βi, the hyperplane:

H ≡ {a′
ix = αi} = {b′

iz = αi} = {u′
iz = βi} (3.56)

(since any n − k hyperplane can be expressed as the intersection of k

n − 1 hyperplanes with orthogonal normals). Since p(Z) is spherical
and is centered at the origin, the induced density on H will also be
spherical, and will be centered on the point of closest approach of H

to the origin. Now points on H can be written as z =
∑k

i=1uiβi + u⊥,
where u′

⊥ui = 0: the u⊥ lies in H. The nearest point on H to the origin
is therefore

∑k
i=1uiβi, since u⊥ = 0 minimizes ‖∑k

i=1uiβi + u⊥‖2, and
so transforming back to the b’s, there must exist scalars γi such that:

E[Z|{u′
iz = βi}] =

k∑
i=1

uiβi =
k∑

i=1

biγi =
k∑

i=1

Σ1/2
X aiγi. (3.57)

16 We assume that ΣX has been regularized if necessary so that Σ−1
X (and the density p(X)

itself) exists.
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Applying Σ1/2
X to both sides gives the result:

E[X|{a′
ix = αi}] =

k∑
i=1

ΣXaiγi, (3.58)

so E[X|{a′
ix = αi}] is spanned by the ΣXai.

This geometric argument has brought us quite close to the desired
result: we wish to show a similar result for

E[X|Y ] = E[X|f(a′
1X,a′

2X,. . . ,a′
kX,ε)]. (3.59)

By the tower property [74, 73], and by conditional independence,
E[X|Y ] = E[E[X|{aiX},Y ]|Y ] = E[E[X|{aiX}]|Y ], so by linearity of
expectation, for any s in the space orthogonal to the ΣXai, we have
that s′E[X|Y ] = E[s′E[X|{aiX}]|Y ] = 0.

The SIR algorithm is summarized below.

Algorithm 3 Sliced Inverse Regression
Choose number of buckets NB

Whiten the data: x→ z ≡ Σ−1/2
X (x − µ)

For each bucket bi compute the mean µi ≡ 1
|bi|
∑

j∈bi
zj

Compute weighted sample covariance: C = 1
m

∑NB
i=1 |bi|µiµ

′
i

Compute principal eigenvectors ηk

Output ak = ηkΣ
−1/2
X

3.9.2 Sliced Average Variance Estimation

Note that SIR may only estimate a subspace of SA. Consider the one-
dimensional example shown in Figure 3.7. There, the estimated sub-
space has dimension zero, since E[X|Y ] = 0.

SIR is a first moment method; using second or higher moments
would help solve the symmetry problem, and Cook and Weisberg [26]
propose Sliced Average Variance Estimate (SAVE) to this end. In
SAVE, var(X|Y ) rather than E[X|Y ] is expanded in terms of the cen-
tral subspace directions. Again let zi denote the centered, whitened
version of the xi, let Pη be the projection operator to SA (the DRS for
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x

y

Fig. 3.7 SIR is only guaranteed to find a subspace of a minimum Dimension Reduction
Subspace.

the z’s), and let Qη ≡ 1 − Pη be the complementary projection opera-
tor that projects to the subspace orthogonal to SA. Then if the x’s are
elliptically distributed, we have [26]:

cov(z|y) = wyQη + Pηcov(z|y)Pη, (3.60)

where wy is just one, if the x are Gaussian distributed, or a function
of y if not. Rearranging terms we see that:

wy1 − cov(z|y) = Pη(wy1 − cov(z|y))Pη (3.61)

in other words, the matrix wy1 − cov(z|y) is equal to its projection to
SA, which means that its eigenvectors are elements of SA. Cook and
Weisberg [26] thus propose the kernel:

1
m

∑
i

|bi|(1 − cov(z|y)i)2, (3.62)

using the same notation as above (taking the square results in a positive
semidefinite matrix). The algorithm is given below.

3.9.3 SIR and SAVE Compared

Let’s compare SIR and SAVE on a simple problem: spherical Gaussian
data in ten dimensions (for these experiments we used 100,000 sam-
ples). Figure 3.8 shows the eigenvalues and eigenvectors for the two
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Algorithm 4 Sliced Average Variance Estimation
Choose number of buckets NB

Whiten the data: x→ z ≡ Σ−1/2
X (x − µ)

For each bucket bi compute the covariance Ci(zi), i ∈ bi

Compute the kernel K ≡ 1
m

∑NB
i=1 |bi|(1 − Ci)2

Compute principal eigenvectors ηk

Output ak = ηkΣ
−1/2
X

Sliced Inverse Regression Sliced Average Variance Estimation

Eigenvalues Eigenvectors Eigenvalues Eigenvectors 

Fig. 3.8 A comparison of SIR versus SAVE for conditional dimension reduction on Gaussian
data.

approaches, given the chosen y-dependence shown in the first col-
umn. To read this, one would determine which eigenvalues are above
some threshold, and estimate SA as the span of the corresponding
eigenvectors.

For y = x1 + x2 + x3, we see that the SIR eigenvalues identify a
subspace of dimension one (and the corresponding eigenvector lies
in that subspace), while the SAVE results correctly identify the
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three-dimensional subspace (and note that the three principal eigen-
vectors have the correct span). For y = x2

1 + x2
2 + x2

3, SIR fails in a
different way: the eigenvalues do not show a clear cutoff at three dimen-
sions. However, as expected (since it uses second moments), SAVE
succeeds. For y = x1 + x2x3, SIR again underestimates the dimen-
sion but SAVE saves the day. For y = x1 + log(1 + 5ex2), both meth-
ods succeed in identifying a two-dimensional subspace. Finally, for
y = x1 + 5sin(πx2), both methods identify the subspace spanned by
x1 but fail to identify the full subspace. (The factor of 5 was chosen to
ensure that the oscillation is significant where the data has large sup-
port; too small an amplitude would give a y that is well-approximated
by a one-dimensional subspace.)

We end this section with a brief tour of some related work. Li [65]
also proposes a second-order method, “principal Hessian directions”
(pHd), to handle the symmetry problem. The idea is based on the fact
that the Hessian of the forward regression function will be degener-
ated along directions orthogonal to the central subspace. A basis is
chosen in which, for the first coordinate, the average curvature of the
regression function along that axis is maximal, then this is repeated
for each successive coordinate. Those coordinates are then identified as
central subspace directions. Li [65] recommends using both SIR and
pHd for any given problem, since the former tends to be more stable,
but the latter handles symmetric cases. Li et al. [63] propose approach-
ing SDR by estimating contour directions of small variations in the
response; the method solves the problem of finding the full set of cen-
tral subspace directions (unlike SIR and pHd), but it still assumes ellip-
tic X, although robustness to departures from ellipticity is claimed.
More recently, Cook and Forzani [24] present a maximum likelihood
estimator of the DRS which empirically shows significantly improved
performance over SIR and SAVE.

3.9.4 Kernel Dimension Reduction

SIR, where applicable, has the significant advantages, that is, easy
to implement and can handle large data sets. However, as noted
above it has some limitations. First, SIR, and the above methods
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it inspired, assumes elliptically distributed data. SIR can miss find-
ing central subspace directions, for example if the data has symme-
tries under which the inverse regression is invariant, and similarly,
pHd can miss such directions if the corresponding coordinates only
appear as variances in f . In fact, the dimension of the space that SIR
finds is bounded above, for tasks in which y takes one of c discrete
values, by c − 1, which limits its applicability to classification tasks.
Kernel dimension reduction (KDR) [38] addresses all of these issues,
and the approach is aimed directly at the defining condition for Suffi-
cient Dimension Reduction: Y ⊥⊥ X|ATx. Furthermore, the approach
is very general. We briefly summarize the ideas here and refer the
reader to Fukumizu et al. [38] for details. Associate with the random
variables X and Y (where the latter is no longer restricted to be a
scalar), Reproducing Kernel Hilbert Spaces (RKHSs) FX , and FY . In
addition assign to FX and FY the Lebesque measures of the probabil-
ity spaces over which X and Y are defined (so that, for example, for
f1,f2 ∈ FX , 〈f1,f2〉 =

∫
f1(x)f2(x)dP (X)). Then a “cross-covariance”

operator ΣY X : FX →FY can be defined so that:

〈g,ΣY Xf〉 = EXY [(f(X) − EX [f(X)])(g(Y ) − EY [g(Y )])]. (3.63)

A conditional covariance operator ΣY Y |X ≡ ΣY Y − ΣY XΣ−1
XXΣXY is

then defined.17 Next, introduce a matrix whose d columns (if X takes
values in Rd) are orthonormal, so that BBT is a projection operator
to the subspace spanned by those columns. Let kX , kY be the ker-
nels associated with RKHS’s FX and FY , respectively. Define a cor-
responding kernel over the subspace by kB(x1,x2) ≡ k(BTx1,B

Tx2).
Since the Σ operators can be defined in terms of the kernels, this
leads to a cross-covariance operator for the subspace: ΣB

Y Y |X ≡ ΣY Y −
ΣB

Y XΣB −1
XX ΣB

XY . Fukumizu et al. [38] then show that, subject to some
weak conditions on FX , FY and the probability measures, ΣB

Y Y |X ≥
ΣY Y |X (where the inequality refers to an ordering that can be defined
for self-adjoint operators), and that ΣB

Y Y |X = ΣY Y |X ⇔ Y ⊥⊥ X|BT X.
Thus the conditional covariance operator for the projected space is

17 This is shorthand for a form in which the last term is written in terms of bounded
operators between the Hilbert spaces, and in fact is well defined when Σ−1

XX does not
exist.
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directly related to the conditional independence quantity we are after.
Finally, the authors write a sample version of the objective function,
using centered Gram matrices GB

X , GY of the data (we will encounter
such quantities again below), as:

Tr[GY (GB
X + mεmIm)−1]

subject to BT B = 1, (3.64)

where m is the sample size and ε a regularization parameter. B is then
found using gradient descent.

So far, we have not considered the case in which there is structure
in the high dimensional space. For example, suppose that your 100-
dimensional data actually lies on a two-dimensional torus, with noise
added in the remaining 98 directions. Nilsson et al. [69] solve such
structured problems for the supervised (regression) case by combining
KDR with the Laplacian eigenmaps approach to manifold modeling.
We will cover the latter, which is an unsupervised version of dimension
reduction on manifolds, in the next section.

We end by noting that, while KDR is appealing in how it directly
solves the SDR problem, and in its freedom from the drawbacks attend-
ing the previously mentioned methods, the above optimization prob-
lem, as stated, will be intractable for large data sets (the Gram matrices
are in Mmm; the kernels are required to be universal [84], and will in
general have high rank). However, as for kernel PCA, this could be
addressed by subsampling, or by using the Nyström method. Recent,
parallel work by Hsing and Ren [56] also proposes RKHSs as providing a
unified framework for dimension reduction through inverse regression.
Here we have not considered the issue of consistency or convergence
properties of the methods: we refer the reader to the papers for details.

3.9.5 Sufficient Dimensionality Reduction

Here we briefly describe Sufficient Dimensionality Reduction (SDR’),
a similarly named but quite different technique [39]. SDR’ is not a
supervised method. Rather than searching for a subspace that satis-
fies Equation (3.53), SDR’ models the density p(X), parameterized by
y, using two-way contingency tables. X and the model parameters Y
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are discrete variables (the parameters are also treated as random vari-
ables), and SDR’ is a dimension reduction method in the sense that the
number of parameters needed to describe p(X) is reduced from |X||Y |
to (d + 1)(|X| + |Y |), where d is the dimension of a feature space to
which X is mapped and |X| and |Y | are the cardinalities of the sets X

and Y , respectively. The key idea of SDR’ is to identify feature map-
pings φ(x) such that the y’s can be described by a small set of such
features. When p is in the exponential family, such sufficient statistics
can be constructed, but this is not the case otherwise: SDR’ uses an
information theoretic max–min framework to quantify the information
about the y’s that can be gleaned from the φ(x)’s: hence the term
“sufficient” in the designation. Although interesting, the method is not
dimension reduction in the usual sense and so we will not pursue it here.



4
Manifold Modeling

In Section 3 we gave an example of data with a particular geometric
structure which would not be immediately revealed by examining one-
dimensional projections in input space.1 How, then, can such underly-
ing structure be found? This chapter outlines some methods designed
to accomplish this. We first describe the Nyström method (hereafter
simply abbreviated as “Nyström”), which provides a thread linking
several of the algorithms we describe.

4.1 The Nyström Method

Suppose that K ∈Mn and that the rank of K is r� n. Nyström gives
a way of approximating the eigenvectors and eigenvalues of K using
those of a small submatrix A. If A has rank r, then the approxima-
tion is exact. This is a powerful method that can be used to speed up
kernel algorithms [99], to efficiently extend some algorithms (described
below) to out-of-sample (test) points [9], and in some cases, to make

1 Although in that simple example, the astute investigator would notice that all her data
vectors have the same length, and conclude from the fact that the projected density is
independent of projection direction that the data must be uniformly distributed on the
sphere.

330
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an otherwise infeasible algorithm feasible [34]. In this section only, we
adopt the notation that matrix indices refer to sizes unless otherwise
stated, so that Amm means that A ∈Mm.

4.1.1 Original Nyström

The Nyström method originated as a method for approximating
the solution of Fredholm integral equations of the second kind [71].
Let’s consider the homogeneous d-dimensional form with density
p(x), x ∈ Rd. This family of equations has the form:∫

k(x,y)u(y)p(y)dy = λu(x). (4.1)

The integral is approximated using the quadrature rule [71]:

λu(x) ≈ 1
m

m∑
i=1

k(x,xi)u(xi), (4.2)

which when applied to the sample points becomes a matrix equation
Kmm um = mλum (with components Kij ≡ k(xi,xj) and ui ≡ u(xi)).
This eigensystem is solved, and the value of the integral at a new point x
is approximated by using Equation (4.2), which gives a much bet-
ter approximation using simple interpolation [71]. Thus, the original
Nyström method provides a way to smoothly approximate an eigen-
function u, given its values on a sample set of points. If a different
number m′ of elements in the sum are used to approximate the same
eigenfunction, the matrix equation becomes Km′m′um′ = m′λum′ so
the corresponding eigenvalues approximately scale with the number
of points chosen. Note that we have not assumed that K is symmetric
or positive semidefinite; however, from now on we will assume that K

is positive semidefinite.

4.1.2 Exact Nyström Eigendecomposition

Suppose that a kernel matrix K̃mm has rank r < m. Since K̃mm is
positive semidefinite it is a Gram matrix and can be written as K̃ =
ZZ ′, where Z ∈Mmr and Z is also of rank r [54]. Order the row vectors
in Z so that the first r are linearly independent: this just reorders rows
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and columns in K̃ to give a new kernel matrix K, but in such a way that
K is still a (symmetric) Gram matrix. Then the principal submatrix
A ∈ Sr of K (which itself is the Gram matrix of the first r rows of Z)
has full rank. Now letting n ≡m − r, write the matrix K as:

Kmm ≡
[
Arr Brn

B′
nr Cnn

]
. (4.3)

Since A has full rank, the r rows
[
Arr Brn

]
are linearly independent,

and since K has rank r, the n rows
[
B′

nr Cnn

]
can be expanded in

terms of them, that is, there exists Hnr such that:[
B′

nr Cnn

]
= Hnr

[
Arr Brn

]
. (4.4)

The first r columns give H = B′A−1, and the last n columns then give
C = B′A−1B. Thus K must be of the form2:

Kmm =
[

A B

B′ B′A−1B

]
=
[

A

B′

]
mr

A−1
rr

[
A B

]
rm

. (4.5)

The fact that we’ve been able to write K in this “bottleneck” form sug-
gests that it may be possible to construct the exact eigendecomposition
of Kmm (for its nonvanishing eigenvalues) using the eigendecomposi-
tion of a (possibly much smaller) matrix in Mr, and this is indeed the
case [34]. First use the eigendecomposition of A, A = UΛU ′, where U

is the matrix of column eigenvectors of A and Λ the corresponding
diagonal matrix of eigenvalues, to rewrite this in the form:

Kmm =
[

U

B′UΛ−1

]
mr

Λrr

[
U ′ Λ−1U ′B

]
rm
≡ DΛD′. (4.6)

This would be exactly what we want (dropping all eigenvectors whose
eigenvalues vanish), if the columns of D were orthogonal, but in general
they are not. It is straightforward to show that, if instead of diagonaliz-
ing A we diagonalize Qrr ≡ A + A−1/2BB′A−1/2 ≡ UQΛQU ′

Q, then the

2 It’s interesting that this can be used to perform “kernel completion”, that is, reconstruction
of a kernel with missing values; for example, suppose K has rank 2 and that its first two
rows (and hence columns) are linearly independent, and suppose that K has met with
an unfortunate accident that has resulted in all of its elements, except those in the first
two rows or columns, being set equal to zero. Then the original K is easily regrown using
C = B′A−1B.
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desired matrix of orthogonal column eigenvectors is:

Vmr ≡
[

A

B′

]
A−1/2UQΛ−1/2

Q (4.7)

(so that Kmm = V ΛQV ′ and V ′V = 1rr) [34].
Although this decomposition is exact, this last step comes at a price:

to obtain the correct eigenvectors, we had to perform an eigendecom-
position of the matrix Q which depends on B. If our intent is to use this
decomposition in an algorithm in which B changes when new data is
encountered (for example, an algorithm which requires the eigendecom-
position of a kernel matrix constructed from both train and test data),
then we must recompute the decomposition each time new test data is
presented. If instead we’d like to compute the eigendecomposition just
once, we must approximate.

4.1.3 Approximate Nyström Eigendecomposition

Two kinds of approximation naturally arise. The first occurs if K is only
approximately low rank, that is, its spectrum decays rapidly, but not
to exactly zero. In this case, B′A−1B will only approximately equal C

above, and the approximation can be quantified as
∥∥C − B′A−1B

∥∥
for some matrix norm ‖·‖, where the difference is known as the Schur
complement of A for the matrix K [41].

The second kind of approximation addresses the need to compute
the eigendecomposition just once, to speed up test phase. The idea is
simply to take Equation (4.2), sum over m′ elements on the right-hand
side where m′�m and m′ > r, and approximate the eigenvector of
the full kernel matrix Kmm by evaluating the left-hand side at all m

points [99]. Empirically, it has been observed that choosing m′ to be
some small integer factor larger than r works well.3 How does using
Equation (4.2) correspond to the expansion in Equation (4.6), in the
case where the Schur complement vanishes? Expanding A, B in their
definition in Equation (4.3) to Am′m′ , Bm′n, so that Um′m′ contains the
column eigenvectors of A and Umm′ contains the approximated (high

3 J. Platt, Private Communication.
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dimensional) column eigenvectors, Equation (4.2) becomes:

Umm′Λm′m′ ≈Kmm′Um′m′ =
[

A

B′

]
Um′m′ =

[
UΛm′m′

B′Um′m′

]
, (4.8)

so multiplying by Λ−1
m′m′ from the right shows that the approximation

amounts to taking the matrix D in Equation (4.6) as the approximate
column eigenvectors: in this sense, the approximation amounts to drop-
ping the requirement that the eigenvectors be exactly orthogonal.

We end with the following observation [99]: the expression for com-
puting the projections of a mapped test point along principal compo-
nents in a kernel feature space is, apart from proportionality constants,
exactly the expression for the approximate eigenfunctions evaluated at
the new point, computed according to Equation (4.2). Thus the com-
putation of the kernel PCA features for a set of points can be viewed
as using the Nyström method to approximate the full eigenfunctions
at those points.

4.2 Multidimensional Scaling

We begin our look at manifold modeling algorithms with multidimen-
sional scaling (MDS), which arose in the behavioral sciences [12]. MDS
starts with a measure of dissimilarity between each pair of data points
in the data set (note that this measure can be very general, and in
particular can allow for non-vectorial data). Given this, MDS searches
for a mapping of the (possibly further transformed) dissimilarities to a
low dimensional Euclidean space such that the (transformed) pairwise
dissimilarities become squared distances. The low dimensional data can
then be used for visualization, or as low dimensional features.

We start with the fundamental theorem upon which “classical
MDS” is built (in classical MDS, the dissimilarities are taken to be
squared distances and no further transformation is applied [27]). We
give a detailed proof because it will serve to illustrate a recurring theme.
Let e be the column vector of m ones. Consider the “centering” matrix
P ≡ 1 − 1

mee′ ≡ 1 − I. We already encountered P (also called a pro-
jection operator) in our discussion of kernel PCA, where we found that
for any kernel matrix, PKP gives the centered form (the inner product
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matrix between centered points). Here we will explore centering a little
further. Let X be the matrix whose rows are the data points x ∈ Rd,
X ∈Mmd. Since ee′ ∈Mm is the matrix of all ones, PX subtracts the
mean vector from each row x in X (hence the name “centering”), and
in addition, Pe = 0. In fact e is the only eigenvector (up to scaling)
with eigenvalue zero, for suppose P f = 0 for some f ∈ Rm. Then each
component of f must be equal to the mean of all the components of f , so
all components of f are equal. Hence P has rank m − 1, and P projects
onto the subspace Rm−1 orthogonal to e.

By a “distance matrix” we will mean a matrix whose ij-th element
is ‖xi − xj‖2 for some xi, xj ∈ Rd, where ‖·‖ is the Euclidean norm.
Notice that the elements are squared distances, despite the name. Now
P can be used to center both Gram matrices and distance matrices. We
can see this as follows. Let [C(i, j)] be that matrix whose ij-th element
is C(i, j). Then,

P [xi · xj ]P = PXX ′P = (PX)(PX)′ = [(xi − µ) · (xj − µ)].

In addition, using this result together with Pe = 0, we have that:

P [‖xi − xj‖2]P = P [‖xi‖2eiej + ‖xj‖2eiej − 2xi · xj ] P

= −2Pxi · xjP = −2[(xi − µ) · (xj − µ)].

For the following theorem, the earliest form of which is due to
Schoenberg [78], we first note that, for any A ∈Mm, and letting
I ≡ 1

mee′,

PAP = {(1 − I)A(1 − I)}ij = Aij − AR
ij − AC

ij + ARC
ij , (4.9)

where AC ≡ AI is the matrix A with each column replaced by the
column mean, AR ≡ IA is A with each row replaced by the row mean,
and ARC ≡ IAI is A with every element replaced by the mean of all
the elements. Also we define a set of Gram vectors xi for a Gram matrix
G to be any vectors for which Gij = xi · xj .

Theorem 4.1. Consider the class of symmetric matrices A ∈ Sn such
that Aij ≥ 0 and Aii = 0 ∀i, j. Then Ā ≡ −PAP is positive semidefinite
if and only if A is a distance matrix (with embedding space Rd for
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some d). Given that A is a distance matrix, the minimal embedding
dimension d is the rank of Ā, and the embedding vectors are any set of
Gram vectors of Ā, scaled by a factor of 1√

2
.

Proof. Assume that A ∈ Sm, Aij ≥ 0 and Aii = 0 ∀i, and that Ā is
positive semidefinite. Since Ā is positive semidefinite it is also a Gram
matrix, that is, there exist vectors xi ∈ Rm, i = 1, . . . ,m such that Āij =
xi · xj . Introduce yi = 1√

2
xi. Then from Equation (4.9),

Āij = (−PAP )ij = xi · xj = −Aij + AR
ij + AC

ij − ARC
ij , (4.10)

so

2(yi − yj)2 ≡ (xi − xj)2

= AR
ii + AC

ii − ARC
ii + {i→ j} − 2(−Aij + AR

ij + AC
ij − ARC

ij )

= 2Aij ,

using Aii = 0, AR
ij = AR

jj , and AC
ij = AC

ii . Thus A is a distance matrix
with embedding vectors yi. Now suppose that A ∈ Sn is a distance
matrix, so that Aij = (yi − yj)2 for some yi ∈ Rd, for some d, and let
Y be the matrix whose rows are the yi. Then since each row and column
of P sums to zero, we have Ā = −(PAP ) = 2(PY )(PY )′, hence Ā is
positive semidefinite. Finally, given a distance matrix Aij = (yi − yj)2,
we wish to find the dimension of the minimal embedding Euclidean
space. First note that we can assume that the yi have zero mean
(
∑

i yi = 0), since otherwise we can subtract the mean from each yi

without changing A. Then Āij = xi · xj , again introducing xi ≡
√

2yi,
so the embedding vectors yi are a set of Gram vectors of Ā, scaled by
a factor of 1√

2
. Now let r be the rank of Ā. Since Ā = XX ′, and since

rank(XX ′) = rank(X) for any real matrix X [54], and since rank(X) is
the number of linearly independent xi, the minimal embedding space
for the xi (and hence for the yi) has dimension r.

4.2.1 General Centering

Is P the most general matrix that will convert a distance matrix into
a matrix of dot products? Since the embedding vectors are not unique
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(given a set of Gram vectors, any global orthogonal matrix applied to
that set gives another set that generates the same positive semidefi-
nite matrix), it’s perhaps not surprising that the answer is no. A dis-
tance matrix is an example of a conditionally negative definite (CND)
matrix. A CND matrix D ∈ Sm is a symmetric matrix that satisfies∑

i,j aiajDij ≤ 0 ∀{ai ∈ R :
∑

i ai = 0}; the class of CND matrices is
a superset of the class of negative semidefinite matrices [10]. Defin-
ing the projection matrix P c ≡ (1 − ec′), for any c ∈ Rm such that
e′c = 1, then for any CND matrix D, the matrix −P cDP ′c is posi-
tive semidefinite (and hence a dot product matrix) [10, 79] (note that
P c is not necessarily symmetric). This is straightforward to prove:
for any z ∈ Rm, P ′cz = (1 − ce′)z = z − c(

∑
a za), so

∑
i(P

′cz)i = 0,
hence (P ′cz)′D(P ′cz) ≤ 0 from the definition of CND. Hence we can
map a distance matrix D to a dot product matrix K by using P c in
the above manner for any set of numbers ci that sum to unity.

4.2.2 Constructing the Embedding

To actually find the embedding vectors for a given distance matrix,
we need to know how to find a set of Gram vectors for a positive
semidefinite matrix Ā. Let E be the matrix of column eigenvectors e(α)

(labeled by α), ordered by eigenvalue λα, so that the first column is the
principal eigenvector, and ĀE = EΛ, where Λ is the diagonal matrix
of eigenvalues. Then Āij =

∑
α λαe

(α)
i e

(α)
j . The rows of E form the dual

(orthonormal) basis to e
(α)
i , which we denote ẽ

(i)
α . Then we can write

Āij =
∑

α(
√

λαẽ
(i)
α )(
√

λαẽ
(i)
α ). Hence the Gram vectors are just the dual

eigenvectors with each component scaled by
√

λα. Defining the matrix
Ẽ ≡ EΛ1/2, we see that the Gram vectors are just the rows of Ẽ.

If Ā ∈ Sn has rank r ≤ n, then the final n − r columns of Ẽ will
be zero, and we have directly found the r-dimensional embedding
vectors that we are looking for. If Ā ∈ Sn is full rank, but the last
n − p eigenvalues are much smaller than the first p, then it’s reason-
able to approximate the i-th Gram vector by its first p components√

λαẽ(i)
α , α = 1, . . . ,p, and we have found a low dimensional approxi-

mation to the ys. This device — projecting to lower dimensions by
lopping off the last few components of the dual vectors corresponding
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to the (possibly scaled) eigenvectors — is shared by MDS, Laplacian
eigenmaps, and spectral clustering (see below). Just as for PCA, where
the quality of the approximation can be characterized by the unex-
plained variance, we can characterize the quality of the approximation
here by the squared residuals. Let Ā have rank r, and suppose we only
keep the first p ≤ r components to form the approximate embedding
vectors. Then denoting the approximation with a hat, the summed
squared residuals are:

m∑
i=1

‖ŷi − yi‖2 =
1
2

m∑
i=1

‖x̂i − xi‖2

=
1
2

m∑
i=1

p∑
a=1

λaẽ
(i)2
a +

1
2

m∑
i=1

r∑
a=1

λaẽ
(i)2
a −

m∑
i=1

p∑
a=1

λaẽ
(i)2
a

but
∑m

i=1 ẽ
(i)2
a =

∑m
i=1 e

(a)2
i = 1, so

m∑
i=1

‖ŷi − yi‖2 =
1
2

(
r∑

a=1

λa −
p∑

a=1

λa

)
=

r∑
a=p+1

λa. (4.11)

Thus the fraction of “unexplained residuals” is
∑r

a=p+1 λa/
∑r

a=1 λa, in
analogy to the fraction of ’unexplained variance’ in PCA.

If the original symmetric matrix A is such that Ā is not positive
semidefinite, then by the above theorem there exist no embedding
points such that the dissimilarities are distances between points in
some Euclidean space. In that case, we can proceed by adding a suf-
ficiently large positive constant to the diagonal of Ā, or by using the
closest positive semidefinite matrix, in Frobenius norm, to Ā, which
is Â ≡∑α:λα>0 λαe(α)e(α)′

(see the Appendix). Methods such as clas-
sical MDS, that treat the dissimilarities themselves as (approximate)
squared distances, are called metric scaling methods. A more general
approach — “non-metric scaling” — is to minimize a suitable cost
function of the difference between the embedded squared distances,
and some monotonic function of the dissimilarities [27]; this allows for
dissimilarities which do not arise from a metric space; the monotonic
function, and other weights which are solved for, are used to allow
the dissimilarities to nevertheless be represented approximately by low
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dimensional squared distances. An example of non-metric scaling is
ordinal MDS, whose goal is to find points in the low dimensional space
so that the distances there correctly reflect a given rank ordering of the
original data points.

We end this section with two remarks. First, for classical metric
MDS, we are provided with a Euclidean distance matrix and wish to
find the lowest dimensional representation of the data points the repro-
duces the distance matrix. If we had been given the coordinates of the
original data, we could perform the same task (find the subspace in
which the data lies) using PCA, which would give the same solution.
Second, the above analysis shows that one can easily map from the dis-
tance matrix to the centered dot product matrix, and vice versa, using
projection matrices. This suggests that one might apply the kernel trick
to algorithms that are distance-based by first mapping the distances to
dot products and then replacing the dot products by kernels. This is
exactly the trick used by kernel PCA.

4.2.3 Landmark MDS

MDS is computationally expensive: since the distances matrix is not
sparse, the computational complexity of the eigendecomposition is
O(m3). This can be significantly reduced by using a method called
Landmark MDS (LMDS) [29]. In LMDS the idea is to choose q points,
called “landmarks”, where q > r (where r is the rank of the distance
matrix), but q�m, and to perform MDS on landmarks, mapping them
to Rd. The remaining points are then mapped to Rd using only their
distances to the landmark points (so in LMDS, the only distances con-
sidered are those to the set of landmark points). As first pointed out
in Bengio et al. [9] and explained in more detail in Platt [70], LMDS
combines MDS with the Nyström algorithm. Let E ∈ Sq be the matrix
of landmark distances and U (Λ) the matrix of eigenvectors (eigenval-
ues) of the corresponding kernel matrix A ≡ −1

2P cEP ′c, so that the
embedding vectors of the landmark points are the first d elements of
the rows of UΛ1/2. Now, extending E by an extra column and row
to accommodate the squared distances from the landmark points to a
test point, we write the extended distance matrix and corresponding
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kernel as:

D =
[
E f
f ′ g

]
, K ≡ −1

2
P cDP ′c =

[
A b
b′ c

]
. (4.12)

Then from Equation (4.6) we see that the Nyström method gives the
approximate column eigenvectors for the extended system as:[

U

b′UΛ−1

]
. (4.13)

Thus the embedding coordinates of the test point are given by the
first d elements of the row vector b′UΛ−1/2. However, we only want
to compute U and Λ once — they must not depend on the test point.
Platt [70] has pointed out that this can be accomplished by choosing
the centering coefficients ci in P c ≡ 1 − ec′ such that ci = 1/q for i ≤ q

and cq+1 = 0: in that case, since

Kij = −1
2

(
Dij − ei

(
q+1∑
k=1

ckDkj

)
− ej

(
q+1∑
k=1

Dikck

)

+eiej


 q+1∑

k,m=1

ckDkmcm






the matrix A (found by limiting i, j to 1, . . . , q above) depends only on
the matrix E above. Finally, we need to relate b back to the measured
quantities — the vector of squared distances from the test point to
the landmark points. Using bi = (−1

2P cDP ′c)q+1,i, i = 1, . . . , q, we find
that:

bk = −1
2


Dq+1,k − 1

q

q∑
j=1

Dq+1,jek − 1
q

q∑
i=1

Dik +
1
q2


 q∑

i,j=1

Dij


ek


 .

(4.14)
The first term in the square brackets is the vector of squared distances
from the test point to the landmarks, f . The third term is the row mean
of the landmark distance squared matrix, Ē. The second and fourth
terms are proportional to the vector of all ones e, and can be dropped4

4 The last term can also be viewed as an unimportant shift in origin; in the case of a single
test point, so can the second term, but we cannot rely on this argument for multiple test
points, since the summand in the second term depends on the test point.
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since U ′e = 0. Hence, modulo terms which vanish when constructing
the embedding coordinates, we have b � −1

2(f − Ē), and the coordi-
nates of the embedded test point are 1

2Λ−1/2U ′(Ē − f); this reproduces
the form given in De Silva and Tenenbaum [29]. Landmark MDS has
two significant advantages: first, it reduces the computational com-
plexity from O(m3) to O(q3 + q2(m − q) = q2m); and second, it can be
applied to any non-landmark point, and so gives a method of extending
MDS (using Nyström) to out-of-sample data.

4.3 Isomap

MDS is valuable for extracting low dimensional representations for
some kinds of data, but it does not attempt to explicitly model the
underlying manifold. Two methods that do directly model the man-
ifold are Isomap and Locally Linear Embedding. Suppose that as in
Section 3.2.1, again unbeknownst to you, your data lies on a curve,
but in contrast to Section 3.2.1, the curve is not a straight line; in fact
it is sufficiently complex that the minimal embedding space Rd that
can contain it has high dimension d. PCA will fail to discover the one-
dimensional structure of your data; MDS will also, since it attempts to
faithfully preserve all distances. Isomap (isometric feature map) [87],
on the other hand, will succeed. The key assumption made by Isomap is
that the quantity of interest, when comparing two points, is the distance
along the curve between the two points; if that distance is large, it is
to be taken, even if in fact the two points are close in Rd (this example
also shows that noise must be handled carefully). The low dimensional
space can have more than one dimension: Tenenbaum [87] gives an
example of a five-dimensional manifold embedded in a 50-dimensional
space. The basic idea is to construct a graph whose nodes are the data
points, where a pair of nodes are adjacent only if the two points are
close in Rd, and then to approximate the geodesic distance along the
manifold between any two points as the shortest path in the graph,
computed using the Floyd algorithm [42]; and finally to use MDS to
extract the low dimensional representation (as vectors in Rd′

, d′� d)
from the resulting matrix of squared distances (Tenenbaum [87] sug-
gests using ordinal MDS, rather than metric MDS, for robustness).
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Isomap shares with the other manifold mapping techniques we
describe the property that it does not provide a direct functional form
for the mapping I :Rd→Rd′

that can simply be applied to new data,
so computational complexity of the algorithm is an issue in test phase.
The eigenvector computation is O(m3), and the Floyd algorithm also
O(m3), although the latter can be reduced to O(hm2 logm) where h

is a heap size [29]. Landmark Isomap simply employs landmark MDS
[29] to addresses this problem, computing all distances as geodesic dis-
tances to the landmarks. This reduces the computational complexity
to O(q2m) for the LMDS step, and to O(hqm logm) for the shortest
path step.

4.4 Locally Linear Embedding

Locally linear embedding (LLE) [75, 76] models the manifold by treat-
ing it as a union of linear patches, in analogy to using coordinate charts
to parameterize a manifold in differential geometry. Suppose that each
point xi ∈ Rd has a small number of close neighbors indexed by the
set N (i), and let yi ∈ Rd′

be the low dimensional representation of xi.
The idea is to express each xi as a linear combination of its neigh-
bors, and then construct the yi so that they can be expressed as the
same linear combination of their corresponding neighbors (the latter
also indexed by N (i)). To simplify the discussion let’s assume that the
number of the neighbors is fixed to n for all i. The condition on the
x’s can be expressed as finding that W ∈Mmn that minimizes the sum
of the reconstruction errors,

∑
i ‖xi −

∑
j∈N (i) Wijxj‖2. Each recon-

struction error Ei ≡ ‖xi −
∑

j∈N (i) Wijxj‖2 should be unaffected by
any global translation xi→ xi + δ, δ ∈ Rd, which gives the condition∑

j∈N (i) Wij = 1 ∀i. Note that each Ei is also invariant to global rota-
tions and reflections of the coordinates. Thus the objective function we
wish to minimize is:

F ≡
∑

i

Fi ≡
∑

i


1

2
‖xi −

∑
j∈N (i)

Wijxj‖2 − λi


 ∑

j∈N (i)

Wij − 1




 ,

where the constraints are enforced with Lagrange multipliers λi.
Since the sum splits into independent terms we can minimize each
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Fi separately. Thus fixing i and letting x ≡ xi, v ∈ Rn, vj ≡Wij ,
and λ ≡ λi, and introducing the matrix C ∈ Sn, Cjk ≡ xj · xk, j,k ∈
N (i), and the vector b ∈ Rn, bj ≡ x · xj , j ∈ N (i), then requiring
that the derivative of Fi with respect to vj vanishes gives v =
C−1(λe + b). Imposing the constraint e′v = 1 then gives λ = (1 −
e′C−1b)/(e′C−1e). Thus W can be found by applying this for each i.

Given the W s, the second step is to find a set of yi ∈ Rd′
that

can be expressed in terms of each other in the same manner. Again no
exact solution may exist and so

∑
i ‖yi −

∑
j∈N (i) Wijyj‖2 is minimized

with respect to the y’s, keeping the W ’s fixed. Let Y ∈Mmd′ be the
matrix of row vectors of the points y. Roweis and Saul [75] enforce the
condition that the y’s span a space of dimension d′ by requiring that
(1/m)Y ′Y = 1, although any condition of the form Y ′PY = Z, where
P ∈ Sm and Z ∈ Sd′ is of full rank would suffice (see Section 4.5.1). The
origin is arbitrary; the corresponding degree of freedom can be removed
by requiring that the y’s have zero mean, although in fact this need
not be explicitly imposed as a constraint on the optimization, since
the set of solutions can easily be chosen to have this property. The
rank constraint requires that the y’s have unit covariance; this links
the variables so that the optimization no longer decomposes into m

separate optimizations: introducing Lagrange multipliers λαβ to enforce
the constraints, the objective function to be minimized is:

F =
1
2

∑
i

‖yi −
∑

j

Wijyj‖2 − 1
2

∑
αβ

λαβ

(∑
i

1
m

YiαYiβ − δαβ

)
,

(4.15)
where for convenience we treat the W s as matrices in Mm, where Wij ≡
0 for j /∈ N (i). Taking the derivative with respect to Ykδ and choosing
λαβ = λαδαβ ≡ Λαβ gives5 the matrix equation:

(1 −W )′(1 −W )Y =
1
m

Y Λ. (4.16)

Since (1 −W )′(1 −W ) ∈ Sm, its eigenvectors are, or can be chosen to
be, orthogonal; and since (1 −W )′(1 −W )e = 0, choosing the columns

5 Again, we are free to choose any conditions on the λαβ providing a solution can be found;
see Burges [16] for background on Lagrange multipliers.
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of Y to be the next d′ eigenvectors of (1 −W )′(1 −W ) with the small-
est eigenvalues guarantees that the y are zero mean (since they are
orthogonal to e). We can also scale the y so that the columns of Y

are orthonormal, thus satisfying the covariance constraint Y ′Y = 1.
Finally, the lowest-but-one weight eigenvectors are chosen because their
corresponding eigenvalues sum to m

∑
i ‖yi −

∑
j Wijyj‖2, as can be

seen by applying Y ′ to the left of Equation (4.16).
Thus, LLE requires a two-step procedure. The first step (finding

the W ’s) has O(n3m) computational complexity; the second requires
eigendecomposing the product of two sparse matrices in Mm. LLE has
the desirable property that it will result in the same weights W if the
data is scaled, rotated, translated, and/or reflected.

4.5 Graphical Methods

In this section we review two interesting methods that connect with
spectral graph theory. Let’s start by defining a simple mapping from
a data set to an undirected graph G by forming a one-to-one corre-
spondence between nodes in the graph and data points. If two nodes
i, j are connected by an arc, associate with it a positive arc weight
Wij , W ∈ Sm, where Wij is a similarity measure between points xi

and xj . The arcs can be defined, for example, by the minimum span-
ning tree, or by forming the N -nearest neighbors, for N sufficiently
large. The normalized Laplacian matrix for any weighted, undirected
graph is defined [21] by L ≡ D−1/2LD−1/2, where Lij ≡ Dij −Wij and
Dij ≡ δij(

∑
k Wik). We can see that L is positive semidefinite as follows:

for any vector z ∈ Rm, since Wij ≥ 0,

0 ≤ 1
2

∑
i,j

(zi − zj)2Wij =
∑

i

z2
i Dii −

∑
i,j

ziWijzj = z′Lz,

and since L is positive semidefinite, so is the normalized Laplacian.
Note that L is never positive definite since the vector of all ones, e, is
always an eigenvector with eigenvalue zero (and similarly LD1/2e = 0).

Let G be a graph and m its number of nodes. For Wij ∈ {0,1},
the spectrum of G (defined as the set of eigenvalues of its Laplacian)
characterizes its global properties [21]: for example, a complete graph
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(that is, one for which every node is adjacent to every other node) has a
single zero eigenvalue, and all other eigenvalues are equal to m

m−1 ; if G is
connected but not complete, its smallest nonzero eigenvalue is bounded
above by unity; the number of zero eigenvalues is equal to the number
of connected components in the graph, and in fact the spectrum of
a graph is the union of the spectra of its connected components; and
the sum of the eigenvalues is bounded above by m, with equality if G

has no isolated nodes. In light of these results, it seems reasonable to
expect that global properties of the data — how it clusters, or what
dimension manifold it lies on — might be captured by properties of the
Laplacian. The following two approaches leverage this idea. We note
that using similarities in this manner results in local algorithms: since
each node is only adjacent to a small set of similar nodes, the resulting
matrices are sparse and can therefore be eigendecomposed efficiently.

4.5.1 Laplacian Eigenmaps

The Laplacian eigenmaps algorithm [8] uses Wij = exp−‖xi−xj‖2/2σ2
.

Let y(x) ∈ Rd′
be the embedding of sample vector x ∈ Rd, and

let Yij ∈Mmd′ ≡ (yi)j . We would like to find y’s that minimize∑
i,j ‖yi − yj‖2 Wij , since then if two points are similar, their y’s will

be close, whereas if W ≈ 0, no restriction is put on their y’s. We have:∑
i,j

‖yi − yj‖2 Wij = 2
∑
i,j,a

(yi)a(yj)a(Diiδij −Wij) = 2Tr(Y ′LY ).

(4.17)
In order to ensure that the target space has dimension d′ (minimiz-
ing Equation (4.17) alone has solution Y = 0), we require that Y

have rank d′. Any constraint of the form Y ′PY = Z, where P ∈ Sm

and m ≥ d′, will suffice, provided that Z ∈ Sd′ is of full rank. This
can be seen as follows: since the rank of Z is d′ and since the rank
of a product of matrices is bounded above by the rank of each,
we have that d′ = rank(Z) = rank(Y ′PY ) ≤ min(rank(Y ′), rank(P ),
rank(Y )), and so rank(Y ) ≥ d′; but since Y ∈Mmd′ and d′ ≤m,
the rank of Y is at most d′; hence rank(Y ) = d′. However, min-
imizing Tr(Y ′LY ) subject to the constraint Y ′DY = 1 results in
the simple generalized eigenvalue problem Ly = λDy [8]. It’s useful
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to see how this arises: we wish to minimize Tr(Y ′LY ) subject
to the d′(d′ + 1)/2 constraints Y ′DY = 1. Let a,b = 1, . . . ,d and
i, j = 1, . . . ,m. Introducing (symmetric) Lagrange multipliers λab leads
to the objective function

∑
i,j,a yiaLijyja −

∑
i,j,a,b λab(yiaDijyjb − δab),

with extrema at
∑

j Lkjyjβ =
∑

α,i λαβDkiyiα. We choose λαβ ≡ λβδαβ ,
giving

∑
j Lkjyjα =

∑
i λαDkiyiα. This is a generalized eigenvector

problem with eigenvectors the columns of Y . Hence once again the
low dimensional vectors are constructed from the first few components
of the dual eigenvectors, except that in this case, the eigenvectors with
lowest eigenvalues are chosen (omitting the eigenvector e), and in con-
trast to MDS, they are not weighted by the square roots of the eigen-
values. Thus unlike MDS, Laplacian eigenmaps must use some criteria
other than the sizes of the eigenvalues for deciding what d′ should be.
Finally, note that the y’s are conjugate with respect to D (as well as
L), so we can scale them so that the constraints Y ′DY = 1 are indeed
met, and our drastic simplification of the Lagrange multipliers did no
damage; and left-multiplying the eigenvalue equation by y′

α shows that
λα = y′

αLyα, so choosing the smallest eigenvalues indeed gives the low-
est values of the objective function, subject to the constraints.

4.5.2 Spectral Clustering

Although spectral clustering is a clustering method, it is very closely
related to dimension reduction. In fact, since clusters may be viewed
as large-scale structural features of the data, any dimension reduc-
tion technique that maintains these structural features will be a good
preprocessing step prior to clustering, to the point where very simple
clustering algorithms (such as K-means) on the preprocessed data can
work well [82, 66, 68]. If a graph is partitioned into two disjoint sets by
removing a set of arcs, the cut is defined as the sum of the weights of
the removed arcs. Given the mapping of data to graph defined above,
a cut defines a split of the data into two clusters, and the minimum cut
encapsulates the notion of maximum dissimilarity between two clus-
ters. However, finding a minimum cut tends to just lop off outliers, so
Shi and Malik [82] define a normalized cut, which is now a function of
all the weights in the graph, but which penalizes cuts which result in a
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subgraph g such that the cut divided by the sum of weights from g to G

is large; this solves the outlier problem. Now suppose we wish to divide
the data into two clusters. Define a scalar on each node, zi, i = 1, . . . ,m,
such that zi = 1 for nodes in one cluster and zi = −1 for nodes in the
other. The solution to the normalized min-cut problem is given by:

min
y

y′Ly
y′Dy

such that yi ∈ {1,−b} and y′De = 0 (4.18)

[82] where y ≡ (e + z) + b(e − z), and b is a constant that depends
on the partition. This problem is solved by relaxing y to take real
values: the problem then becomes finding the second smallest eigenvec-
tor of the generalized eigenvalue problem Ly = λDy (the constraint
y′De = 0 is automatically satisfied by the solutions), which is exactly
the same problem found by Laplacian eigenmaps (in fact the objective
function used by Laplacian eigenmaps was proposed as Equation (10)
in Shi and Malik [82]). The algorithms differ in what they do next. The
clustering is achieved by thresholding the element yi so that the nodes
are split into two disjoint sets. The dimension reduction is achieved by
treating the element yi as the first component of a reduced dimension
representation of the sample xi. There is also an interesting equiva-
lent physical interpretation, where the arcs are springs, the nodes are
masses, and the y are the fundamental modes of the resulting vibrat-
ing system [82]. Meila and Shi [66] point out that matrix P ≡ D−1L

is stochastic, which motivates the interpretation of spectral clustering
as the stationary distribution of a Markov random field: the intuition
is that a random walk, once in one of the mincut clusters, tends to
stay in it. The stochastic interpretation also provides tools to analyze
the thresholding used in spectral clustering, and a method for learn-
ing the weights Wij based on training data with known clusters [66].
The dimension reduction view also motivates a different approach to
clustering, where instead of simply clustering by thresholding a single
eigenvector, simple clustering algorithms are applied to the low dimen-
sional representation of the data [68]. Zhang and Jordan [100] present a
more general approach to the relaxation (of binary values denoting clus-
ter membership, to reals) and rounding (mapping the solution back to
binary indicators of cluster membership) problems shared by graph-cut
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approaches. Their view of the relaxation problem builds on an observa-
tion of Rahimi and Recht [72], namely that the normalized cut problem
of Shi and Malik [82] can be interpreted as searching for a hyperplanar
gap in the empirical distribution. Zhang and Jordan [100] show that
this idea can be naturally extended to handle multiway spectral clus-
tering, and they suggest a Procrustes analysis to solve the rounding
problem.

4.6 Pulling the Threads Together

At this point the reader is probably struck by how similar the mathe-
matics underlying all of these approaches is. We’ve used essentially the
same Lagrange multiplier trick to enforce constraints three times; all
of the methods in this section (and most in this review) rely heavily on
eigendecompositions. Isomap, LLE, Laplacian eigenmaps, and spectral
clustering all share the property that in their original forms, they do not
provide a direct functional form for the dimension-reducing mapping, so
the extension to new data requires re-training. Landmark Isomap solves
this problem; the other algorithms could also use Nyström to solve it
(as pointed out by Bengio et al. [9]). Isomap is often called a “global”
dimension reduction algorithm, because it attempts to preserve all
geodesic distances; by contrast, LLE, spectral clustering and Lapla-
cian eigenmaps are local (for example, LLE attempts to preserve local
translations, rotations, and scalings of the data). Landmark Isomap is
still global in this sense, but the landmark device brings the computa-
tional cost more in line with the other algorithms. Although they start
from different geometrical considerations, LLE, Laplacian eigenmaps,
spectral clustering, and MDS all look quite similar under the hood: the
first three use the dual eigenvectors of a symmetric matrix as their low
dimensional representation, and MDS uses the dual eigenvectors with
components scaled by square roots of eigenvalues. In light of this it’s
perhaps not surprising that relations linking these algorithms can be
found: for example, given certain assumptions on the smoothness of
the eigenfunctions and on the distribution of the data, the eigendecom-
position performed by LLE can be shown to coincide with the eigen-
decomposition of the squared Laplacian [8]; and Ham et al. [46] show
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how Laplacian eigenmaps, LLE, and Isomap can be viewed as variants
of kernel PCA. Platt [70] links several flavors of MDS by showing how
landmark MDS and two other MDS algorithms (not described here) are
in fact all Nyström algorithms. Despite the mathematical similarities
of LLE, Isomap, and Laplacian Eigenmaps, their different geometrical
roots result in different properties: for example, for data which lies on
a manifold of dimension d embedded in a higher dimensional space, the
eigenvalue spectrum of the LLE and Laplacian Eigenmaps algorithms
do not reveal anything about d, whereas the spectrum for Isomap (and
MDS) does.

The connection between MDS and PCA goes further than the form
taken by the “unexplained residuals” in Equation (4.11). If X ∈Mmd is
the matrix of m (zero mean) sample vectors, then PCA diagonalizes the
covariance matrix X ′X, whereas MDS diagonalizes the kernel matrix
XX ′; but XX ′ has the same eigenvalues as X ′X [54], and m − d addi-
tional zero eigenvalues (if m > d). In fact if v is an eigenvector of the
kernel matrix so that XX ′v = λv, then clearly X ′X(X ′v) = λ(X ′v),
so X ′v is an eigenvector of the covariance matrix, and similarly if u
is an eigenvector of the covariance matrix, then Xu is an eigenvector
of the kernel matrix. This provides one way to view how kernel PCA
computes the eigenvectors of the (possibly infinite dimensional) covari-
ance matrix in feature space in terms of the eigenvectors of the kernel
matrix. There’s a useful lesson here: given a covariance matrix (Gram
matrix) for which you wish to compute those eigenvectors with nonva-
nishing eigenvalues, and if the corresponding Gram matrix (covariance
matrix) is both available, and more easily eigendecomposed (has fewer
elements), then compute the eigenvectors for the latter, and map to
the eigenvectors of the former using the data matrix as above. Along
these lines, Williams [98] has pointed out that kernel PCA can itself
be viewed as performing MDS in feature space. Before kernel PCA
is performed, the kernel is centered (i.e., PKP is computed), and for
kernels that depend on the data only through functions of squared
distances between points (such as radial basis function kernels), this
centering is equivalent to centering a distance matrix in feature space.
Williams [98] further points out that for these kernels, classical MDS
in feature space is equivalent to a form of metric MDS in input space.
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Although ostensibly kernel PCA gives a function that can be applied
to test points, while MDS does not, kernel PCA does so by using the
Nyström approximation (see Section 4.1.3), and exactly the same can
be done with MDS.



5
Pointers and Conclusions

5.1 Pointers to Further Reading

Dimension reduction is a very active field of research. While this review
has focused on the foundations underlying the classical (and related)
techniques, here we give pointers to some other well-known methods
(in approximate order of appearance); the list below is incomplete, but
we hope useful nevertheless. Again we use H (L) to denote the high
and low dimensional space with elements x ∈ Rd and y ∈ Rd′

(d′� d),
respectively.

In the Method of Principal Curves, the idea is to find that smooth
curve that passes through the data in such a way that the sum of
shortest distances from each point to the curve is minimized, thus pro-
viding a nonlinear, one-dimensional summary of the data [48]; the idea
has since been extended by applying various regularization schemes
(including kernel-based), and to manifolds of higher dimension [80].

The Information Bottleneck method [90] may also be viewed as a
dimension reduction method. Information Bottleneck aims to distill
the information in a random (predictor) variable X that is needed
to describe a (response) variable Y , using a model variable Z, by
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maximizing the (weighted) difference in mutual information between
Y and Z, and between X and Z. The use of information theory is intu-
itively appealing, although the method requires that the joint density
p(X,Y ) be estimated.

Neighborhood Components Analysis (NCA) [40] applies a global lin-
ear transformation yi = Axi, A ∈Md′d to the data such that, in the
transformed space, k-nearest neighbor performs well. The probability
that point xi belongs to class k, pik, is computed using a simple softmax

distribution in the transformed space: pik =
∑

j∈Sk
exp(−‖Axi−Axj‖2)

∑
j exp(−‖Axi−Axj‖2) ,

where Sk is the set of indices of points in class k. Given this, NCA
applies gradient descent to maximize the expected number of correctly
classified points. By simply choosing d′ < d in the definition of A, NCA
also performs supervised linear dimension reduction. The reduction can
significantly speed up the KNN computation, both because the dimen-
sion itself is smaller and also because data partitioning schemes such
as kd-trees work better in lower dimensions.

Maximum Variance Unfolding (MVU) [96, 86, 77] preserves dis-
tances ‖xi − xj‖ = ‖yi − yj‖, as does Isomap, but it differs from
Isomap in that it does so only locally: only distances between neigh-
boring points are so constrained, as opposed to Isomap’s striving to
preserve geodesic distances between points that may or may not be
close. As with Isomap, the idea is that the folding of the manifold
upon itself in H is information that can be usefully discarded in form-
ing the low dimensional representation, but MVU additionally allows
local rotations and translations, which allows it to choose from a still
larger class of mappings. Let Iij(k) be the indicator variable denoting
that xi and xj are k-nearest neighbors, or that there exists a point xm

such that xi and xm are k-nearest neighbors and that xj and xm are
k-nearest neighbors.1 MVU maximizes

∑
i ‖yi‖2 subject to constraints

‖xi − xj‖ = ‖yi − yj‖ ∀i, j : Iij(k) = 1 and such that the mapped data

1 This statement is actually imprecise: k-nearest neighbor is not necessarily a symmet-
ric relation. Let Si(k) be the set of indices of points that lie in the k-nearest neighbors
of xi. One can define a symmetric Iij(k) by setting Iij(k) = 1 : {i, j : {i ∈ Sj(k) ∧ j ∈
Si(k)} ∨ {∃m : i ∈ Sm(k) ∧ j ∈ Sm(k)}}, 0 otherwise, or a (less sparse but still symmet-
ric) Iij(k) by setting Iij(k) = 1 : {i, j : {i ∈ Sj(k) ∨ j ∈ Si(k)} ∨ {∃m : i ∈ Sm(k) ∧ j ∈
Sm(k)}}, 0 otherwise.
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is centered (
∑

i yi = 0). This is a computationally tractable approxima-
tion for minimizing the rank of the Gram matrix of the samples in L
(i.e., to minimize the dimension in L), and it’s very striking that it can
be rewritten as a convex semidefinite programming problem.

Restricted Boltzmann Autoencoders [53] use a stack of Restricted
Boltzmann Machines (RBMs) [1, 50] to create an autoencoder — a
neural net that learns to minimize the error between its inputs and
outputs. Autoencoders have a central hidden layer whose activations
form the low dimensional representation of the data (and so the number
of units in that layer is equal to d′� d, where d is the number of
input (and output) units). Fully connected nets trained using gradient
descent tend to be poor autoencoders due to the weight vectors getting
stuck in local minima: choosing good initial values for the weights (and
thresholds) is key, a task which is accomplished by using individually
trained RBMs, and stacking them by treating the outputs of the so-far-
trained RBMs as inputs for the next layer RBM. Deep Belief Nets [51]
have the fascinating property of being able to be run in a generative
mode, which gives the researcher a direct window as to what the model
has learned; if a DBN (which is also composed of a stack of RBMs)
reconstructs convincing “inputs” in generative mode, it’s good evidence
that the features that the model has learned are informative for the task
at hand, so it’s perhaps not surprising that autoencoders built in this
manner perform so well.

Stochastic Neighbor Embedding (SNE) [52] places a spherical Gaus-
sian distribution NH,xi,σi(‖x − xi‖2) over each data point xi ∈ H =Rd

(with mean xi and variance σ2
i ) and thus models the conditional prob-

ability that point xi would pick any other point xj as its neighbor
(so that if for some j,k, ‖xi − xj‖ < ‖xi − xk‖, then xi assigns higher
probability to xj than to xk). Similarly, a Gaussian NL,yi,σL

(‖y − yi‖2
is attached to each point yi ∈ L =Rd′

, d′� d. Note that while each
Gaussian NH(xi) in H has a variance σi that is learned, the Gaussians
in L are all assigned fixed, equal variances σL. For some index i, for the
low dimensional representation yi, one can imagine moving the points
yj �=i around so as to make pL,yi,σL

(‖yi − yk‖2) as close as possible (in
some sense) to pH,xi,σi(‖xi − xk‖2). SNE uses the Kullback–Leilbler
divergence and minimizes the sum over all such pairs of points, using
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gradient descent (for which the variables are the positions of the points
yi; the σi are set using an entropy-based criterion that can be thought
of as setting the effective number of nearest neighbors). The optimiza-
tion problem is non-convex, and further tricks (momentum, and a form
of simulated annealing) are employed to avoid local minima; see Hinton
and Roweis [52].

SNE has recently been extended to t-distributed SNE [93]. t-SNE
differs from SNE in that it uses a simpler version of the cost func-
tion, and it uses Student t-distributions rather than Gaussians in L, to
overcome an “overcrowding” problem that is observed in SNE. Matlab
code for t-SNE is available from van Der Maaten [91] and we used it
to perform t-SNE on data for the first 500 patients in our KDD Cup
data set. The results are shown in Figure 5.1, where the negatives are
shown in light gray and the positives in red (with larger font). Note
that t-SNE finds an interesting double cluster structure, although this
does not (by eye) appear to be predictive as to class. Finally, we note
that t-SNE has also been extended to a parametric form (which can be

Fig. 5.1 One thousand iterations of t-SNE applied to the KDD Cup data. The points with
positive label are shown in larger font in red.
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used to easily find the mapping for new test points) by combining it
with ideas from autoencoders: see van der Maaten [92].

Finally, we note that this monograph is far from being the first
to review methods for dimension reduction. For reviews of spectral
methods, see Saul et al. [77]; von Luxurg [95]; and Zhang and Jordan
[100]. For a comparison of many different methods, including methods
to estimate the intrinsic dimension, see Lee and Verleysen [62] and more
recently, van der Maaten [94].

5.2 Conclusions

The student who has read this far may be asking him or herself the
following question: “A lot of work has already been done on dimension
reduction — what interesting research directions are left?”. Since I’d
like to try to leave the reader excited about the future of this sub-
ject, let me offer a few observations on this question here. One key
ingredient that is missing is a solid theoretical foundation, akin, for
example, to the learning theory we now have for the classification task.
The first step in developing such a theory is to be clear about what the
problem is that we wish to solve. For example, some of the methods
described above are very intuitive, and effective at discarding variance
that is deemed not useful (the shape of the manifold in H upon which
the data approximately lie) but one can imagine situations where that
information may instead be important for the task at hand. Visual-
ization itself is usually not the end of the story: a useful visualization
should be actionable. It would be advantageous to have precise objec-
tive functions which reflect that end utility. As seen above, conditional,
or supervised, dimension reduction — the presence of labels — can com-
pletely change the story. If the goal is, for example, to map the data to
a lower dimensional space where standard classifiers (or regressors, or
rankers) can do a better job, one might extend the parameterization to
include the dimension reduction mapping itself. NCA is a step in this
direction, but it is a global, linear method, for which the target dimen-
sion is an input; methods that relax these restrictions (for conditional
dimension reduction) would be interesting directions for research. The
notion of scale-dependent dimension has not yet been investigated in
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the machine learning community, to the best of my knowledge. It may
be that a level of noise that completely defeats standard classifiers could
be overcome if the system could home in on the length scales at which
the signal resides. Dimension reduction may also be viewed as a form of
regularization when it is used in conjunction with supervised learning:
one very common approach to regularization in machine learning is to
form the objective function by adding a regularization term to a loss
function, but that method, although simple, is ultimately a very coarse
approach: one would like much more control over modeling the noise,
and new approaches to regularization, including dimension reduction,
may prove to be fertile grounds for investigation. Finally, in the longer
term, the ease with which humans can extract low dimensional, very
informative data from their high dimensional visual and aural inputs is
an inspiration for those who would like to build machines that can do
the same, for a wider variety of high dimensional data; we are clearly
far from this goal today.



A
Appendix: The Nearest Positive

Semidefinite Matrix

The following result is generally useful (and was used in Section 4.2.2):

Theorem A.1. Let B ∈ S+
m be the closest positive semidefinite matrix,

in Frobenius norm, to a real square matrix A ∈Mm. Let S be the
symmetric part of A and let S = UΛUT be its eigendecomposition,
so that U is the orthogonal matrix of column eigenvectors and Λ is
the diagonal matrix of eigenvalues of S. Let Λ′ be Λ with all negative
eigenvalues replaced by zero. Then B = UΛ′UT .

The problem is equivalent to:

Minimize ‖A − B‖2F subject to B ∈ S+
m, (A.1)

where subscript F denotes the Frobenius norm. This is a convex opti-
mization problem with a strictly convex objective function [14], which
therefore has a unique solution (that is, at the solution, both B and
the value of the objective function are unique). The problem can be
solved as follows.
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Proof. Our proof follows Higham [49]. Split A into its symmetric and
antisymmetric parts S and T :

A =
1
2
(A + AT ) +

1
2
(A − AT ) ≡ S + T.

The Frobenius norm has an inner product defined: for C,D ∈Mmn,
〈C,D〉 = Tr(CT D) = Tr(CDT ). Symmetric and antisymmetric matri-
ces are thus orthogonal in Frobenius norm:

Tr(T T S) =
∑
ij

TjiSji = −
∑
ij

TijSij = −Tr(T T S) = 0,

hence ‖A − B‖2F = ‖S − B‖2F + ‖T‖2F (since B is symmetric by
assumption) and so we only have to consider the minimization over
symmetric matrices S ∈ Sm. Now the Frobenius norm is unitarily
invariant: for real A and orthogonal U ,

‖UA‖2F =
∑
ijkm

UikAkjUimAmj =
∑
ijkm

UikU
T
miAkjAmj

=
∑
jkm

δkmAkjAmj =
∑
jk

AkjAkj = ‖A‖2F .

Replace S by its eigenvalue decomposition, that is, write S = UΛUT ,
with U orthogonal. Then,

‖S − B‖2 = ‖UΛUT − B‖2 = ‖Λ − UT BU‖2 ≡ ‖Λ − C‖2.
Note that B ∈ S+

m implies that C ∈ S+
m (since, for arbitrary z ∈ Rm,

zT Cz = (Uz)T B(Uz) ≥ 0), and so Cii ≥ 0 for i = 1, . . . ,m. Let λi,
i = 1, . . . ,m be the eigenvalues of S. Then,

‖S − B‖2F = ‖Λ − C‖2F =
∑
i�=j

C2
ij +

∑
i

(λi − Cii)2

≥
∑

i:λi<0

(λi − Cii)2 ≥
∑

i:λi<0

λ2
i . (A.2)

The last expression provides a lower bound that is independent of C,
hence choosing any C ∈ S+

m for which the inequalities become equalities
minimizes ‖S − B‖2F and hence minimizes ‖A − B‖2F . By defining B∗

as the eigendecomposition of S, but with negative eigenvalues replaced
by zero, the inequalities in Equation (A.2) indeed become equalities,
and so B∗ solves Equation (A.1).
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