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COMMENTARY

Sander Greenland and Charles Poole1 accept that P values are here to stay but recognize 
that some of their most common interpretations have problems. The casual view of the 

P value as posterior probability of the truth of the null hypothesis is false and not even close 
to valid under any reasonable model, yet this misunderstanding persists even in high-stakes 
settings (as discussed, for example, by Greenland in 2011).2 The formal view of the P value 
as a probability conditional on the null is mathematically correct but typically irrelevant to 
research goals (hence, the popularity of alternative—if wrong—interpretations). A Bayes-
ian interpretation based on a spike-and-slab model makes little sense in applied contexts in 
epidemiology, political science, and other fields in which true effects are typically nonzero 
and bounded (thus violating both the “spike” and the “slab” parts of the model).

I find Greenland and Poole’s1 perspective to be valuable: it is important to go beyond 
criticism and to understand what information is actually contained in a P value. These 
authors discuss some connections between P values and Bayesian posterior probabilities. 
I am not so optimistic about the practical value of these connections. Conditional on the 
continuing omnipresence of P values in applications, however, these are important results 
that should be generally understood.

Greenland and Poole1 make two points. First, they describe how P values approxi-
mate posterior probabilities under prior distributions that contain little information relative 
to the data:

This misuse [of P values] may be lessened by recognizing correct Bayesian interpre-
tations. For example, under weak priors, 95% confidence intervals approximate 95% 
posterior probability intervals, one-sided P values approximate directional posterior 
probabilities, and point estimates approximate posterior medians.

I used to think this way, too (see many examples in our books), but in recent years 
have moved to the position that I do not trust such direct posterior probabilities. Unfortu-
nately, I think we cannot avoid informative priors if we wish to make reasonable uncondi-
tional probability statements. To put it another way, I agree with the mathematical truth of 
the quotation above, but I think it can mislead in practice because of serious problems with 
apparently noninformative or weak priors.

Second, the main proposal made by Greenland and Poole is to interpret P values as 
bounds on posterior probabilities:

[U]nder certain conditions, a one-sided P value for a prior median provides an approxi-
mate lower bound on the posterior probability that the point estimate is on the wrong 
side of that median.

This is fine, but when sample sizes are moderate or small (as is common in epidemi-
ology and social science), posterior probabilities will depend strongly on the prior distribu-
tion. Although I do not see much direct value in a lower bound, I am intrigued by Greenland 
and Poole’s1 point that “if one uses an informative prior to derive the posterior probability of 
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the point estimate being in the wrong direction, P0/2 provides 
a reference point indicating how much the prior information 
influenced that posterior probability.” This connection could 
be useful to researchers working in an environment in which 
P values are central to communication of statistical results.

In presenting my view of the limitations of Greenland 
and Poole’s1 points, I am leaning heavily on their own work, 
in particular on their emphasis that, in real problems, prior 
information is always available and is often strong enough to 
have an appreciable impact on inferences.

Before explaining my position, I will briefly summarize 
how I view classical P values and my experiences. For more 
background, I recommend the discussion by Krantz3 of null 
hypothesis testing in psychology research.

WHAT IS A P VALUE IN PRACTICE?
The P value is a measure of discrepancy of the fit of a 

model or “null hypothesis” H to data y. Mathematically, it is 
defined as Pr(T(yrep)>T(y)|H), where yrep represents a hypothet-
ical replication under the null hypothesis and T is a test statis-
tic (ie, a summary of the data, perhaps tailored to be sensitive 
to departures of interest from the model). In a model with free 
parameters (a “composite null hypothesis”), the P value can 
depend on these parameters, and there are various ways to get 
around this, by plugging in point estimates, averaging over a 
posterior distribution, or adjusting for the estimation process. 
I do not go into these complexities further, bringing them up 
here only to make the point that the construction of P values 
is not always a simple or direct process. (Even something as 
simple as the classical chi-square test has complexities to be 
discovered; see the article by Perkins et al4).

In theory, the P value is a continuous measure of evi-
dence, but in practice it is typically trichotomized approxi-
mately into strong evidence, weak evidence, and no evidence 
(these can also be labeled highly significant, marginally sig-
nificant, and not statistically significant at conventional lev-
els), with cutoffs roughly at P = 0.01 and 0.10.

One big practical problem with P values is that they 
cannot easily be compared. The difference between a highly 
significant P value and a clearly nonsignificant P value is 
itself not necessarily statistically significant. (Here, I am using 
“significant” to refer to the 5% level that is standard in sta-
tistical practice in much of biostatistics, epidemiology, social 
science, and many other areas of application.) Consider a sim-
ple example of two independent experiments with estimates 
(standard error) of 25 (10) and 10 (10). The first experiment is 
highly statistically significant (two and a half standard errors 
away from zero, corresponding to a normal-theory P value 
of about 0.01) while the second is not significant at all. Most 
disturbingly here, the difference is 15 (14), which is not close 
to significant. The naive (and common) approach of summa-
rizing an experiment by a P value and then contrasting results 
based on significance levels, fails here, in implicitly giving 
the imprimatur of statistical significance on a comparison that 

could easily be explained by chance alone. As discussed by 
Gelman and Stern,5 this is not simply the well-known prob-
lem of arbitrary thresholds, the idea that a sharp cutoff at a 
5% level, for example, misleadingly separates the P = 0.051 
cases from P = 0.049. This is a more serious problem: even 
an apparently huge difference between clearly significant and 
clearly nonsignificant is not itself statistically significant.

In short, the P value is itself a statistic and can be a 
noisy measure of evidence. This is a problem not just with 
P values but with any mathematically equivalent procedure, 
such as summarizing results by whether the 95% confidence 
interval includes zero.

GOOD, MEDIOCRE, AND BAD P VALUES
For all their problems, P values sometimes “work” to 

convey an important aspect of the relation of data to model. 
Other times, a P value sends a reasonable message but does 
not add anything beyond a simple confidence interval. In yet 
other situations, a P value can actively mislead. Before going 
on, I will give examples of each of these three scenarios.

A P Value that Worked
Several years ago, I was contacted by a person who 

suspected fraud in a local election.6 Partial counts had been 
released throughout the voting process and he thought the 
proportions for the various candidates looked suspiciously 
stable, as if they had been rigged to aim for a particular result. 
Excited to possibly be at the center of an explosive news story, 
I took a look at the data right away. After some preliminary 
graphs—which indeed showed stability of the vote propor-
tions as they evolved during election day—I set up a hypoth-
esis test comparing the variation in the data to what would be 
expected from independent binomial sampling. When applied 
to the entire data set (27 candidates running for six offices), 
the result was not statistically significant: there was no less 
(and, in fact, no more) variance than would be expected by 
chance alone. In addition, an analysis of the 27 separate chi-
square statistics revealed no particular patterns. I was left to 
conclude that the election results were consistent with ran-
dom voting (even though, in reality, voting was certainly not 
random—for example, married couples are likely to vote at 
the same time, and the sorts of people who vote in the middle 
of the day will differ from those who cast their ballots in the 
early morning or evening). I regretfully told my correspondent 
that he had no case.

In this example, we cannot interpret a nonsignificant 
result as a claim that the null hypothesis was true or even as a 
claimed probability of its truth. Rather, nonsignificance revealed 
the data to be compatible with the null hypothesis; thus, my cor-
respondent could not argue that the data indicated fraud.

A P Value that Was Reasonable but  
Unnecessary

It is common for a research project to culminate in the 
estimation of one or two parameters, with publication turning 
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on a P value being less than a conventional level of significance. 
For example, in our study of the effects of redistricting in 
state legislatures (Gelman and King),7 the key parameters 
were interactions in regression models for partisan bias and 
electoral responsiveness. Although we did not actually report 
P values, we could have: what made our article complete 
was that our findings of interest were more than two standard 
errors from zero, thus reaching the P < 0.05 level. Had our 
significance level been much greater (eg, estimates that were 
four or more standard errors from zero), we would doubtless 
have broken up our analysis (eg, studying Democrats and 
Republicans separately) to broaden the set of claims that we 
could confidently assert. Conversely, had our regressions not 
reached statistical significance at the conventional level, we 
would have performed some sort of pooling or constraining of 
our model to arrive at some weaker assertion that reached the 
5% level. (Just to be clear: we are not saying that we would 
have performed data dredging, fishing for significance; rather, 
we accept that sample size dictates how much we can learn 
with confidence; when data are weaker, it can be possible to 
find reliable patterns by averaging.)

In any case, my point is that in this example it would 
have been just fine to summarize our results in this exam-
ple via P values even though we did not happen to use that 
formulation.

A Misleading P Value
Finally, in many scenarios P values can distract or even 

mislead, either a nonsignificant result wrongly interpreted as 
a confidence statement in support of the null hypothesis or a 
significant P value that is taken as proof of an effect. A notori-
ous example of the latter is the recent article by Bem,8 which 
reported statistically significant results from several experi-
ments on extrasensory perception (ESP). At brief glance, it 
seems impressive to see multiple independent findings that 
are statistically significant (and combining the P values using 
classical rules would yield an even stronger result), but with 
enough effort it is possible to find statistical significance any-
where (see the report by Simmons et al9).

The focus on P values seems to have both weakened 
that study (by encouraging the researcher to present only some 
of his data so as to draw attention away from nonsignificant 
results) and to have led reviewers to inappropriately view a 
low P value (indicating a misfit of the null hypothesis to data) 
as strong evidence in favor of a specific alternative hypothesis 
(ESP) rather than other, perhaps more scientifically plausible, 
alternatives such as measurement error and selection bias.

PRIORS, POSTERIORS, AND P VALUES
Now that I have established my credentials as a prag-

matist who finds P values useful in some settings but not oth-
ers, I want to discuss Greenland and Poole’s proposal to either 
interpret one-sided P values as probability statements under 
uniform priors (an idea they trace back to Gossett)10 or else to 

use one-sided P values as bounds on posterior probabilities (a 
result they trace back to Casella and Berger).11

The general problem I have with noninformatively 
derived Bayesian probabilities is that they tend to be too 
strong. At first, this may sound paradoxical, that a noninfor-
mative or weakly informative prior yields posteriors that are 
too forceful—and let me deepen the paradox by stating that 
a stronger, more informative prior will tend to yield weaker, 
more plausible posterior statements.

How can it be that adding prior information weakens the 
posterior? It has to do with the sort of probability statements 
we are often interested in making. Here is an example from 
Gelman and Weakliem.12 A sociologist examining a publicly 
available survey discovered a pattern relating attractiveness of 
parents to the sexes of their children. He found that 56% of 
the children of the most attractive parents were girls, when 
compared with 48% of the children of the other parents, and 
the difference was statistically significant at P < 0.02. The 
assessments of attractiveness had been performed many years 
before these people had children, so the researcher felt he had 
support for a claim of an underlying biological connection 
between attractiveness and sex ratio.

The original analysis by Kanazawa13 had multiple-
comparisons issues, and after performing a regression analy-
sis rather than selecting the most significant comparison, we 
get a P value closer to 0.2 rather than the stated 0.02. For the 
purposes of our present discussion, though, in which we are 
evaluating the connection between P values and posterior 
probabilities, it will not matter much which number we use. 
We shall go with P = 0.2 because it seems like a more reason-
able analysis given the data.

Let θ be the true (population) difference in sex ratios 
of attractive and less attractive parents. Then the data under 
discussion (with a two-sided P value of 0.2), combined with a 
uniform prior on θ, yield a 90% posterior probability that θ is 
positive. Do I believe this? No. Do I even consider this a rea-
sonable data summary? No again. We can derive these “No” 
responses in three different ways: first, by looking directly at 
the evidence; second, by considering the prior; and third, by 
considering the implications for statistical practice if this sort 
of probability statement were computed routinely.

First, a claimed 90% probability that θ > 0 seems too 
strong. Given that the P value (adjusted for multiple compari-
sons) was only 0.2—that is, a result that strong would occur 
a full 20% of the time just by chance alone, even with no true 
difference—it seems absurd to assign a 90% belief to the con-
clusion. I am not prepared to offer 9-to-1 odds on the basis of 
a pattern someone happened to see that could plausibly have 
occurred by chance alone, nor for that matter would I offer 
99-to-1 odds based on the original claim of the 2% signifi-
cance level.

Second, the prior uniform distribution on θ seems 
much too weak. There is a large literature on sex ratios, with 
factors such as ethnicity, maternal age, and season of birth 
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corresponding to difference in probability of girl birth of 
<0.5 percentage points. It is a priori implausible that sex-ratio 
differences corresponding to attractiveness are larger than for 
these other factors. Assigning an informative prior centered 
on zero shrinks the posterior toward zero, and the resulting 
posterior probability that θ > 0 moves to a more plausible 
value in the range of 60%, corresponding to the idea that the 
result is suggestive but not close to convincing.

Third, consider what would happen if we routinely 
interpreted one-sided P values as posterior probabilities. In 
that case, an experimental result that is 1 standard error from 
zero—that is, exactly what one might expect from chance 
alone—would imply an 83% posterior probability that the 
true effect in the population has the same direction as the 
observed pattern in the data at hand. It does not make sense 
to me to claim 83% certainty—5-to-1 odds—based on data 
that not only could occur by chance alone but in fact represent 
an expected level of discrepancy. This system-level analysis 
accords with my criticism of the flat prior: as Greenland and 
Poole1 note in their article, the effects being studied in epide-
miology are typically range from −1 to 1 on the logit scale; 
hence, analyses assuming broader priors will systematically 
overstate the probabilities of very large effects and will over-
state the probability that an estimate from a small sample will 
agree in sign with the corresponding population quantity.

Rather than relying on noninformative priors, I prefer 
the suggestion of Greenland and Poole1 to bound posterior 
probabilities using real prior information. I would prefer to 
perform my Bayesian inferences directly without using P val-
ues as in intermediate step, but given the ubiquity of P val-
ues in much applied work, I can see that it can be helpful for 
researchers to understand their connection to posterior prob-
abilities under informative priors.

SUMMARY
Like many Bayesians, I have often represented classi-

cal confidence intervals as posterior probability intervals and 
interpreted one-sided P values as the posterior probability of 
a positive effect. These are valid conditional on the assumed 
noninformative prior but typically do not make sense as 
unconditional probability statements. As Sander Greenland 
has discussed in much of his work over the years, epidemi-
ologists and applied scientists in general have knowledge of 

the sizes of plausible effects and biases. I believe that a direct 
interpretation of P values as posterior probabilities can be a 
useful start—if we recognize that such summaries systemati-
cally overestimate the strength of claims from any particular 
dataset. In this way, I am in agreement with Greenland and 
Poole’s interpretation of the one-sided P value as a lower 
bound of a posterior probability, although I am less convinced 
of the practical utility of this bound, given that the closeness 
of the bound depends on a combination of sample size and 
prior distribution.

The default conclusion from a noninformative prior 
analysis will almost invariably put too much probability on 
extreme values. A vague prior distribution assigns much of its 
probability on values that are never going to be plausible, and 
this disturbs the posterior probabilities more than we tend to 
expect—something that we probably do not think about enough 
in our routine applications of standard statistical methods. 
Greenland and Poole1 perform a valuable service by opening 
up these calculations and placing them in an applied context.
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