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The big topics

1. Statistical Learning
2. Supervised learning

» Classification
» Regression

3. Unsupervised learning
» Clustering

4. Data representations and dimension reduction
5. Large scale methods

1/58



The big data paradigms
» Small to medium sized data

» “Good old stats”

» Typical methods: k-nearest neighbour (kNN), linear and
quadratic discriminant analysis (LDA and QDA), Gaussian
mixture models, ...

» High-dimensional data

» big-p paradigm

» Typical methods: Feature selection, penalized regression
and classification (Lasso, ridge regression, shrunken
centroids, ...), low-rank approximations (SVD, NMF), ...

» Curse of dimensionality

> Large scale data

» big-n paradigm (sometimes in combination with big-p)

» Typical methods: Random forests (with its big-n
extensions), subspace clustering, low-rank

approximations (randomized SVD), ... e



Statistical Learning



What is Statistical Learning?

Learn a model from data by minimizing expected prediction
error determined by a loss function.

» Model: Find a model that is suitable for the data
» Data: Data with known outcomes is needed

> Expected prediction error: Focus on quality of prediction
(predictive modelling)

» Loss function: Quantifies the discrepancy between
observed data and predictions
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Statistical Learning for Regression

» Theoretically best regression function for squared error

loss
f(X) = [Ep(y|x)[y]

» Approximate (1) or make model-assumptions (2)
1. k-nearest neighbour regression

Z Vi

i ENc(x)

& =

Epymoy] =

2. linear regression (viewpoint: generalized linear models

(GLM))
Epyply] # x"8
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Statistical Learning for Classification

» Theoretically best classification rule for 0-1 loss and K
possible classes (Bayes rule)

¢(x) = argmax p(i|x)
1<i<K

» Approximate (1) or make model-assumptions (2)
1. k-nearest neighbour classification

: 1 .
P~ Y L=
XlENk(X)
2. Multi-class logistic regression
B0 1

plx) = ——g=—— and pKR) = ——p5——
14+ Y0, exteo 1+ 3, exms0
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Empirical error rates (1)

» Training error

Rtr‘:l
n

> L, fx1|7))
=1

where
T ={(y,x) :1<1<n}

» Test error

R = — 3 L3, fx|7)
I=1

where (3, %;) for 1 <1 < m are new samples from the
same distribution as 7, i.e. p(J).
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Splitting up the data

» Holdout method: If we have a lot of samples, randomly
split available data into training set and test set
» c-fold cross-validation: If we have few samples

1. Randomly split available data into ¢ equally large subsets,
so-called folds.

2. By taking turns, use ¢ — 1 folds as the training set and the
last fold as the test set
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Approximations of expected prediction error

» Use test error for hold-out method, i.e.

e _ 1 c ~ Tl
= 5 L LG Fi7)

where (3, %;) for 1 <1 < m are the elements in the test set.

» Use average test error for c-fold cross-validation, i.e.

—%Z Y Lo foal )
=1 (y1.x)€e;

where % is the j-th fold and 7_; is all data except fold j.

Note: For ¢ = 1 this is called leave-one-out cross validation
(LoocCV)
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Careful data splitting

» Note: For the approximations to be justifiable, test and
training sets need to be identically distributed

» Splitting has to be done randomly
» If data is unbalanced, then stratification is necessary.
Examples:
» Class imbalance
» Continuous outcome is observed more often in some

intervals than others (e.g. high values more often than low
values)
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Bias-Variance Tradeoff

Bias-Variance Decomposition

R

Error

+ +

Ep(ray) [0 — F&)?] Total expected prediction error
o2 Irreducible Error
~ 2)
Ep) [(f(x) — Epen [f®)]) ] Bias? averaged over x
Epeo | Varpen [f)]] Variance of f averaged over x

Underfit Overfit

Model complexity
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Classification




Overview

1. k-nearest neighbours (Lecture 1)
2. 0-1regression (Lecture 2)
» just an academic example - do not use in practice

3. Logistic regression (Lecture 2, both binary and
multi-class; Lecture 11 for sparse case)

4. Nearest Centroids (Lecture 2) and shrunken centroids
(Lecture 10)

5. Discriminant analysis (Lecture 2)

» Many variants: linear (LDA), quadratic (QDA),
diagonal/Naive Bayes, regularized (RDA; Lecture 5),
Fisher's LDA/reduced-rank LDA (Lecture 6), mixture DA
(Lecture 8)

6. Classification and Regression trees (CART) (Lecture 4)
7. Random Forests (Lecture 5 & 15)
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Multiple angles on the same problem

1. Bayes rule: Approximate p(i|x) and choose largest
» e.g. kNN or logistic regression
2. Model of the feature space: Assume models for p(x|i) and
p(i) separately
» e.g. discriminant analysis

3. Partitioning methods: Create explicit partitions of the
feature space and assign each a class

» e.g. CART or Random Forests
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Finding the parameters of DA

» Notation: Write p(i) = 7; and consider them as unknown

parameters
» Given data (i;, x;) the likelihood maximization problem is
n K
arg max HN(XlL“i,’ ¥;)m;, subjectto Z =1
wET =1 i=1

» Can be solved using a Lagrange multiplier (try it!) and

leads to

n

7, =—, with n; = Z 1, = 1)
1=1

~ 1

Mi=— 2, %

i =i
A\ 1 s AN
%=1 D50 — B — )"
L

ij=i
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Performing classification in DA

Bayes’ rule implies the classification rule

c(x) = arg max N(X|u;, Z;)7;

1<i<K

Note that since log is strictly increasing this is equivalent to

c(x) = arg max 6;(x)
1<i<K

where
6;(x) = log N(X|u;, Z;) + log ;

1 _ 1
= logm; — E(X — ) I x — ) — > log|%;| (+C)

This is a quadratic function in x.
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Different levels of complexity

» This method is called Quadratic Discriminant Analysis
(QDA)
» Problem: Many parameters that grow quickly with
dimension
» K—1forallx
» p-K forall y;
» p(p+1)/2-K for all Z; (most costly)
» Solution: Replace covariance matrices X; by a pooled
estimate

K .1 K
s_oygm—l_ o
iZ=:1 'n—-K n—K ; ilZ:zi(xl Ivll)(xl /"1)

» Simpler correlation and variance structure: All classes
are assumed to have the same correlation structure
between features
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Performing classification in the simplified case

As before, consider

c(x) = arg max 6;(x)
1<i<K

where
(%) = logm; + x"= 7y — %/x?z‘lui (+0)

This is a linear function in x. The method is therefore called
Linear Discriminant Analysis (LDA).
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Even more simplifications

Other simplifications of the correlation structure are possible

» Ignore all correlations between features but allow
different variances, i.e. ¥; = A, for a diagonal matrix A;
(Diagonal QDA or Naive Bayes’ Classifier)

» Ignore all correlations and make feature variances equal,
i.e. 3; = A for a diagonal matrix A (Diagonal LDA)

» Ignore correlations and variances, i.e. Z; = 0%I,,,
(Nearest Centroids adjusted for class frequencies 7; )
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Classification and Regression Trees (CART)

» Complexity of partitioning:
Arbitrary S Rectangular S Partition from a
Partition Partition sequence of binary splits

» Classification and Regression Trees create a sequence of
binary axis-parallel splits in order to reduce variability of
values/classes in each region

0 0 —
4 5 9% 0% o 00 [yes) X2>=22 (o)
0
00 0 0
g % Qo0 @
2 % @ ® 0 00 g x1>=3.5
2 1 1
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Bootstrap aggregation (bagging)

1. Given a training sample (y;,x;) or (i;,x;), we want to fit a
predictive model f(x)

2. Forb =1,...,B, form bootstrap samples of the training
data and fit the model, resulting in fb(x)

3. Define

~ 1 5 ~
Frag®) = 5 3 H®)
b=1

where f,(x) is a continuous value for a regression
problem or a vector of class probabilities for a
classification problem

Majority vote can be used for classification problems instead
of averaging
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Random Forests

Computational procedure
1. Given a training sample with p features, do forb =1,...,B
1.1 Draw a bootstrap sample of size n from training data (with

replacement)
1.2 Grow a tree T}, until each node reaches minimal node size

Mmin
1.21 Randomly select m variables from the p available
1.2.2 Find best splitting variable among these m

1.2.3 Split the node
2. For a new x predict
Regression: f.,(x) = % Zle Tp(x)
Classification: Majority vote at x across trees
Note: Step 1.2.1 leads to less correlation between trees built

on bootstrapped data.
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Regression and feature selection




Overview

1. k-nearest neighbours (Lecture 1)

2. Linear regression (Lecture 1)
3. Filtering (Lecture 9)
» F-score, mutual information, RF variable importance, ...
4. Wrapping (Lecture 9)
» Forward-, backward-, and best subset selection
5. Penalized regression and variable selection
» Ridge regression and lasso (Lecture 9), group lasso and
elastic net (Lecture 10), adaptive lasso and SCAD
(Lecture 11)
6. Computation of the lasso (Lecture 10)
7. Applications of penalisation
» For Discriminant Analysis: Shrunken centroids (Lecture 10)
» For GLM: sparse multi-class logistic regression (Lecture 11)
» For networks: Graphical lasso (Lecture 14)
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Intuition for the penalties

The least squares RSS is minimized for B . If @ constraint is
added (||8|| < t) then the RSS is minimized by the closest g
possible that fulfills the constraint.

Lasso Ridge
By By

ﬁOLS BOLS

Blasso Bridge

B> B>

The blue lines are the contour lines for the RSS.
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A regularisation path

Prostate cancer dataset (n = 67, p = 8)
Red dashed lines indicate the 2 selected by cross-validation

Ridge Lasso
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Potential caveats of the lasso

> Sparsity of the true model:
» The lasso only works if the data is generated from a
sparse process.
» However, a dense process with many variables and not
enough data or high correlation between predictors can
be unidentifiable either way

» Correlations: Many non-relevant variables correlated
with relevant variables can lead to the selection of the
wrong model, even for large n
» Irrepresentable condition: Split X such that X; contains
all relevant variables and X, contains all irrelevant
variables. If
IXITX)DXTX) <1-19
for some 5 > 0 then the lasso is (almost) guaranteed to
pick the true model 24/58



Elnet and group lasso

Lasso Elastic net (a = 0.7) Group lasso ({B;, Ba}, {B2})
B2 B2

» The lasso sets variables exactly to zero either on a corner (all
but one) or along an edge (fewer).

» The elastic net similarly sets variables exactly to zero on a
corner or along an edge. In addition, the curved edges
encourage coefficients to be closer together.

» The group lasso has actual information about groups of
variables. It encourages whole groups to be zero
simultaneously. Within a group, it encourages the coefficients
to be as similar as possible. 25/58



Clustering




Overview

> 8 P &

28 & e

10.

Combinatorial Clustering (Lecture 6)

k-means (Lecture 6)

Partion around medoids (PAM)/k-medoids (Lecture 7)
Cluster count selection (Lecture 7 & 8)

» Ellbow heuristic, Silhouette Width, Cluster Strength
Prediction, Bayesian Information Criterion (BIC) for GMM

Hiearchical clustering (Lecture 7)

Gaussian Hierarchical Models (GMM; Lecture 8)
DBSCAN (Lecture 8)

Non-negative matrix factorisation (NMF; Lecture 11)

Subspace clustering (Lecture 14)
» In particular, CLIQUE and ProClus

Spectral clustering (Lecture 14)
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k-means and the assumption of spherical geometry

Simulated k-means directly on data
2
1 3
> 0 > 0
_1 _3
-2
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X X
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Spectral Clustering

1. Determine the weighted adjacency matrix W and the graph
Laplacian L

2. Find the K smallest eigenvalues of L that are near zero and
well separated from the others

3. Find the corresponding eigenvectors U = (uy, ..., ug) € R™K
and use k-means on the rows of U to determine cluster

membership
Raw data (n = 500 Spectral clustering
P E N
&g A {‘
P % § 3
% s ¥ 4 a
3oy et (1 ? Y f
u- 1‘—1‘. T \AMAA

.
i SO 28/58



Hierarchical Clustering

Procedural idea:
1. Initialization: Let each observation x; be in its own
clustergf forl=1,...,n

2. Joining: In step i, join the two clusters gi=! and gi;! that
are closest to each other resulting in n — i clusters

3. After n — 1 steps all observations are in one big cluster
Subjective choices:

» How do we measure distance between observations?

» What is closeness for clusters?
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Linkage

Cluster-cluster distance is called linkage

Distance between clusters g and &

1. Average Linkage:

1
dg, ) = - 2, Dim
gl - 1hl &
Xm€Eh

2. Single Linkage
d(ga h) = g(rllélg Dl,m
Xm€Eh
3. Complete Linkage
d(g,h) = max D;

Xm€h
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Dendrograms

Hierarchical clustering applied to iris dataset

Complete Linkage

Height

012 3 456
I

» Leaf colours represent iris type: , and virginica
» Height is the distance between clusters

» The tree can be cut at a certain height to achieve a final
clustering. Long branches mean large increase in within cluster
scatter at join 31/58



Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed
p(x|i) = N (x|u;, %;) and p() =
This is known as a Gaussian Mixture Model (GMM) for x where
K K
p(x) = D, p()p(x|i) = Y, mN X|u;, ;)
i=1 i=1

QDA used that the classes i; and feature vectors x; of the
observations were known to calculate 7;, u; and ;.

What if we only know the features x;?
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Expectation-Maximization for GMMs

Finding the MLE for parameters 6 in GMMs results in an
iterative process called Expectation-Maximization (EM)

1. Initialize 6
2. E-Step: Update
TN (X |pi, Z;)

K
Zj:l 7TjN(Xl|ﬂj’ zj)

mi =

3. M-Step: Update
_ 27:1 X S 27:1 Nl

i

z:l:l Nii n
1 n
= D mu(x — p)(x — )T
Zl=1 Mi 1=1
4. Repeat steps 2 and 3 until convergence

i

%
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Density-based clusters

A cluster C is a set of points in D s.th.
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Density-based clusters

A cluster C is a set of points in D s.th.

1. If p € C and q is density-reachable from p theng € C
(maximality)
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Density-based clusters

A cluster C is a set of points in D s.th.

1. If p € C and q is density-reachable from p theng € C
(maximality)

2. Forall p,q € C: p and q are density-connected
(connectivity)
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Density-based clusters

A cluster C is a set of points in D s.th.

1. If p € C and q is density-reachable from p theng € C
(maximality)

2. Forall p,q € C: p and q are density-connected
(connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least n,,;,, points in
neighbourhood

2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster
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Density-based clusters

A cluster C is a set of points in D s.th.

1. If p € C and q is density-reachable from p theng € C
(maximality)

2. Forall p,q € C: p and q are density-connected
(connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least n,,;,, points in
neighbourhood

2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments
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DBSCAN algorithm

Computational procedure:

1. Go through each point p in the dataset D
2. If it has already been processed take the next one

3. Else determine its e-neighbourhood. If less than n,;,
points in neighbourhood, label as noise. Otherwise, start
a new cluster.

4. Find all points that are density-reachable from p and add
them to the cluster.
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Dependenceonn,,,

» Controls how easy it is to connect components in a
cluster

» Too small and most points are core points, creating many
small clusters

» Too large and few points are core points, leading to many
noise labelled observations

» A cluster has by definition at least n,;, points
» Choice of n,,;, is very dataset dependent

» Tricky in high-dimensional data (curse of dimensionality,
everything is far apart)
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Dependence on ¢

» Controls how much of the data will be
clustered

» Too small and small gaps in clusters
cannot be bridged, leading to isolated
islands in the data

» Too large and everything is connected

» Choice of ¢ is also dataset dependent
but there is a decision tool

» Determine distance to the k nearest
neighbours for each point in the
dataset

» Inside clusters, increasing k should
not lead to a large increase of d

» The optimal ¢ is supposed to be
roughly at the knee

4-NN distance

00 01 02 03 04 05 06

T
0

500 1000 1500 2000

Points (sample) sorted by distance
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Dimension reduction and data
representation




Overview

N S -

Principal Component Analysis (PCA; Lecture 5)

Singular Value Decomposition (SVD; Lecture 5, 11 & 15)
Factor Analysis (Lecture 11)

Non-negative matrix factorization (NMF; Lecture 11 & 12)
Kernel-PCA (kPCA; Lecture 12)

Multi-dimensional scaling (MDS; Lecture 13)

» Classical scaling and metric MDS for general distance
matrices

7. Isomap (Lecture 13)

t-distributed Stochastic Neighbour Embedding (tSNE;
Lecture 13)

Laplacian Eigenmaps (Lecture 14)
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Principal Component Analysis (PCA)

Computational Procedure:

1. Centre and standardize the columns of the data matrix
X € R"™P

2. Calculate the empirical covariance matrix £ = ﬁXTX

3. Determine the eigenvalues 4; and corresponding
orthonormal eigenvectors T of $ for j=1,..,p and order
them such that

M 22222520

4. The vectors r; give the direction of the principal
components (PC) rox and the eigenvalues J; are the
variances along the PC directions

Note: Set R = (ry,...,1,) and D = diag(4,, ..., 4,) then
£=RDR" and R'TR=RRT =1, 39/58



PCA and Dimension Reduction

Recall: For a matrix A € RFk with eigenvalues 4, ..., A it
holds that

k
j=1

For the empirical covariance matrix £ and the variance of the
j-th feature Var[x;]

p
tr(f) Z Var] x] = Z
J:

is called the total variatlon.
Using only the first m < p principal components leads to

A+ + A, . .
/11—_'_/1 100% of explained variance
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Better data projection for classification?

Idea: Find directions along which projections result in
minimal within-class scatter and maximal between-class
separation.

LDA decision
< _-~ " boundary
<

Projection onto

first discriminant Projection onto

first principal component
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Non-negative matrix factorization (NMF)

A non-negative matrix factorisation of X with rank g solves

argmin  ||X — WH|%# suchthat W>0,H>0
WEeRPXd HERI™

g
> Sum of positive layers: X ~ > W;H
j=1
» Non-negativity constraint leads to sparsity in basis (in W)
and coefficients (in H) [example on next slides]

» NP-hard problem, i.e. no general algorithm exists
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SVD vs NMF - Example: Reconstruction

MNIST-derived zip code digits (n = 1000, p = 256)
100 samples are drawn randomly from each class to keep the

problem balanced.
PCA 1 PCA 2

Red-ish colours are for negative values, white is around zero
and dark stands for positive values
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SVD vs NMF - Example: Basis Components

Large difference between
SVD/PCA and NMF basis
components

NMF captures sparse
characteristic parts while i
PCA components capture

more global features. : e

NMF 6 NMF 7 NMF 8 NMF 9 NMF 10
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SVD vs NMF - Example: Coefficients

SVD coefficients

NMF coefficients

Note the additional sparsity in the NMF coefficients. 45/58



t-distributed Stochastic Neighbour Embedding (tSNE)

t-distributed stochastic neighbour embedding (tSNE) follows
a similar strategy as Isomap, in the sense that it measures
distances locally.

Idea: Measure distance of feature x; to another feature x;
proportional to the likelihood of x; under a Gaussian
distribution centred at x; with an isotropic covariance matrix.
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Computation of tSNE

For feature vectors xy, ..., x,,, set

exp(—|Ix; — x;13/(251)) 2 = Dij + Py
¥ et exp(—[1%; — x¢[[3/(207) T
The variances ¢ are chosen such that the perplexity (here:

approximate number of close neighbours) of each marginal
distribution (the p;; for fixed I) is constant.

Dbip = pu=0

In the lower-dimensional embedding distance between yy,...,y, is
measured with a t-distribution with one degree of freedom or
Cauchy distribution

-1
o = 1+ lly: —will3)
il — -1
Dz A+ Ny —yil3)

To determine the y; the KL divergence between the distributions
P = (p;p)i; and Q = (g;1);; is minimized with gradient descent

KL(P||Q) = ] py log Pil 47/58
i#l qil

and qu =0



Caveats of tSNE

tSNE is a powerful method but comes with some difficulties as
well

» Convergence to local minimum (i.e. repeated runs can
give different results)
» Perplexity is hard to tune (as with any tuning parameter)

Let's see what tSNE does to our old friend, the moons dataset.

s
2,3“*"“

f?’ .‘: "
w;rw’

X 48/58



Influence of perplexity on tSNE

Transformed with tSNE
Varying perplexity

2 5 15
PRELEE
50 et e ™
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0 " e mly s o By Hoen
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= a o?s ©
50 et ot
N
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tSNE1
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tSNE multiple runs

tSNE2

40
20

40
20

0
-20

Transformed with tSNE

Perplexity = 20, multiple runs

N
\,} \\ }

6 7 {8 9 10
/‘*

:\\ T /;‘:” £
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Large scale methods




Overview

» Randomised low-rank SVD (Lecture 15)

» Divide and Conquer (Lecture 15)

» Random Forests with big-n extensions (Lecture 15)
» Leveraging (Lecture 15)
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Random projection

There are multiple possibilities how the map f in the
Johnson-Lindenstrauss theorem can be found.

Let X € R™P be a data matrix and g the target dimension.

» Gaussian random projection: Set
1
QUNN<0,E> for i=1,...,p,j=1,...,q

» Sparse random projection: For a given s > 0 set

-1 1/(2s)
Q;; = \/g 0 with probability 1-1/s
1 1/(2s)

fori=1,..,p, j=1,..,qg where oftens =3
(Achlioptas, 2003) or s = /p (Li et al., 2006)

then Y = XQ € R™ 4 is a random projection for X. 52/58



Randomized low-rank SVD

Original goal: Apply SVD in cases where both n and p are large.

Idea: Determine an approximate low-dimensional basis for
the range of X and perform the matrix-factorisation in the
low-dimensional space.

» Using a random projection X ~ QQTX = QT

» Note that T € R?*P

» Calculatethe SVDof T=U,- D - VT

gxq gxq gxp

» Set U = QU, € R™4, then X ~ UDVT
The SVD of X can therefore be found by random projection
into a g-dimensional subspace of the range of X, performing
SVD in the lower-dimensional subspace and subsequent
reconstruction of the vectors into the original space.
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Divide and conquer

All data

Divide

X,

Conquer

f(Xy)

f(X3)

Recombine

sum, mean, ...

S Xg-1)

F(Xk)
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Random forests for big-n

Instead of the standard RF with normal bootstrapping,
multiple strategies can be taken

» Subsampling (once): Take a subsample of size m and
grow RF from there. Very simple to implement, but
difficult to ensure that the subsample is representative.

» m-out-of-n sampling: Instead of standard bootstrapping,
draw repeatedly m samples and grow a tree on each
subsample. Recombine trees in the usual fashion.

» BLB sampling: Grow a forest on each subset by
repeatedly oversampling to n samples.

» Divide and Conquer: Split original data in K parts and
grow a random forest on each.
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Leverage

Problem: Representativeness
How can we ensure that a subsample is still representative?

We need additional information about the samples. Consider
the special case of linear regression and n >> p.

Recall: For least squares predictions it holds that
¥ =XB =XXTX)"'XTy = Hy
with the hat-matrix H = X(XTX)~1XT.

Specifically y; = Z;’leijyj, which means that H;; influences
its own fitted values.

Element H;; is called the leverage of the observation.
Leverage captures if the observation i is close or far from the
centre of the data in feature space. 56/58



Leveraging

Goal: Subsample the data, but make the more influential data
points, those with high leverage, more likely to be sampled.

Computational approach
» Weight sample i by
H;;

=an
Zj:l Hj;

» Draw a weighted subsample of size m < n

T

» Use the subsample to solve the regression problem

This procedure is called Leveraging (Ma and Sun, 2013).
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Outlook




Where to go from here?

» Support vector machines (SVM): Chapter 12 in ESL

(Gradient) Boosting: Chapter 10 in ESL

» Gaussian processes: Rasmussen and Williams (2006)
Gaussian Processes for Machine Learning’

» Streaming/online methods?

» Neural networks/Deep Learning: Bishop (2006) Pattern
Recognition and Machine Learning

» Natural Language Processing: Course® by Richard
Johansson, CSE, on this topic in the fall

» Reinforcement Learning: Sutton and Barto (2015)
Reinforcement Learning: An Introduction®
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Thttp://www.gaussianprocess.org/gpml/chapters/RW.pdf
2https://en.wikipedia.org/wiki/Online_machine_learning
3https://chalmers.instructure.com/courses/7916

“https://web.stanford.edu/class/psychZOQ/Readings/SuttonBartoIPRLBookZndEd.pdf /
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