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1 The natural habitat of the stochastic integral

We now come to the point when we start making demands on our stochastic
integral. Any integral worthy of the name, should have no problem with in-
tegrating continuous functions. Unfortunately, the stochastic integral we have
constructed so far does not meet this requirement. In order for the stochastic
integral I(f) to exist, we need to impose the condition that f € H?. The most
restrictive of the conditions defining the space H?2 is

IEJ{ /OTf(w,s)2ds} < 0.

If we consider the process f(w,t) = 6{34(“”t)}, where B is Brownian motion,
then f ¢ H?. (The reason is that the process f grows too fast for too many

w € Q for the integral fOT f(w, s)? ds to have finite expectation. )

Definition 1 (The space L ). The space L} _ is the collection of all stochas-

loc loc

tic processes f: Q x [0,T] = R having the following properties:
e The process f is Fr X Bjo,r)-measurable;

e For every t € [0,T], the map w — f(w,t) is Fy-measurable;

]P{ /OTfZ(w,t) dt < oo} =1

For any random variable, X, if E{|X|*} < oo then P{|X|* < co} = 1, which
shows that the space H? is a subspace of L2 .

Let g : R — R be any continuous function and define the stochastic process

flw,t) = g(B(w,1)).

For every fixed w € €, on the closed interval [0,7] the map ¢t — g(B(w,t))
defines a bounded function, because the map ¢ — B(w,t) is continuous and a
continuous function over a closed interval attains its maximum and minimum
values. Consequently,

for any continuous function, g, the process g(B) is an element of L7 .

Since we have been so successful in constructing a stochastic integral in the
space H2, it would be a shame if could not use our knowledge to construct them



in the larger space L}, .. For us to be able to do this we need a link between the
spaces H? and L , just as we needed a link between the spaces H3 and H>.

That link is established by localising sequences.

Definition 2 (Localising sequence for #?). An increasing sequence, {7, }°2,
of {Ft}ieo,m-stopping times is called a localising sequence for f if the following
conditions are satisfied:

o Every stopping time T, is associated with a stochastic process fn, € H?2,

defined by
fo(w,t) = fw, ) 10,7, ) (1);

]P’{ g{w €0 Th(w) = T}} =1

Definition 3 (Stopping time). Let 7 : Q@ — R U {oo} be a random variable
and {Fi}icio,00) @ filtration on Q. The random variable T is a stopping time
with respect to the filtration {F;}/c0,00) if

for every t € [0, 00) the events {w € Q: 7(w) < t} € F.

. . . . 19
It is of central importance that every stochastic process in L;,

localising sequence.

possesses a

Theorem 1. Let f € L%OC be an arbitrary stochastic process. Then the sequence
{1 }52, of random variables defined by

Tn(w) = inf {s €10,00) : / fAw,r)dr >n, ors> T},
Jo

is a localising sequence for f.

Proof. Consider the event

T

A= {w €N / fAw,r)dr < oo},

Jo
and observe that
T
w€eEAeIneN: / fAw,r)dr <n.
Jo
Next, consider the event
Cph={weQ:m(w) =T}

The statement "7, (w) = T” says that ”the time T is the first time that the

trajectory of the function s — fos f%(w, ) dr gets above the level n”. Since the
function s +— fog f?(w,r) dr is increasing, this amounts to saying that

T
/ fA(w,r)dr <n.
0



Thus we have show the equivalence
T
wedl, (:)/ fA(w,r)dr <n,
0

and consequently that

oo T
wE U{wEQ:Tn(w):T}(:EmEN:/ fPw,r)dr < n.
0

n=1

Thus the sets A and |J,—, C,, are equal. Because f € L _ we know that
P{A} =1, thus

H(Doennw-n)-o{ Do) -1

n=1

and one of the two defining properties for {7,,}5°, to be a localising sequence
for f is satisfied.

The random variable 7, is the first time in the interval [0,7] when the
process {fag 2,7 dr}seo, ) gets above the level n. Therefore, if we know that
t < 7, then the process has not yet gotten above the level n at time ¢, i.e.,

for all s € [O,t]7/ f2(-,r)dr < n.
0

Tn(“))
anHLQ(dedt) = / / f2(w,r) drdP(w) < n / Tn(W)dP(w) = nB{r,} < nT.
JaJo Jo

This computation shows that for every n € N, the process f, is an element of
H?. (The measurability questions in the definition of the space H? are settled
by the facts that f satisfy them and that 7,, is a stopping time relative to the
filtration {F}sep0,77-) This settles the other defining property of a localising
sequence for f.

Thus, we have shown that {7,,}5%; is indeed a localising sequence for f. O

Remark 1. It is important to have an intuitive grasp on the meaning of the
localising sequence {T,}°2, in the preceding theorem: T, is the first time in the
interval [0,7] when the process {[; f2(-,r) dr}sco,7 gets above the level n.

Remark 2. The whole point of the concept of localisation is to reduce a compli-
cated situation to familiar ground. In our case, the familiar ground is the space

H? and the complicated situation is the space L7 .

Theorem 2 (Riemann representation). Let f : R — R be any continuous
function and T € [0,00) be any positive real number. Consider a sequence of
uniform partitions {mp}, of the interval [0,T],

T
T 0=ty <t} <---<tp =T, wherety —tr_1 = —.
n
Then

Z f(B(tg-1)){B(ty) — B(ty—1)} N /0 f(Bs)dBs, as n — oc.

te lk—1€ET,



Remark 3. In the representation theorem the notation "X, Py X7 is used to
denote that the sequence {X,}52, of random variables converges in probability
to the random variable X, i.e., for everye >0

P{| X, —X|>€e} =0, asn — occ.

Note that we began our exposition of stochastic integration by noting the im-
possibility of defining the stochastic integral fOT f(Bs) dBs as a limit of Riemann
sums Yy o ep f(B(te—1)){B(tx) — B(tk—1)}. Does not then this theorem
demonstrate a contradiction? No, it does not!

The reason is that we wanted to define the stochastic integral as a limit of
Riemann-sums for every w € ). The theorem states that our initial idea was
not so bad after all, as long as we are willing to weaken our requirement that
the construction should hold for every w € Q.

We now present the proof of the Riemann representation theorem.

Proof of the Riemann representation theorem. Let f : R — R be any continu-
ous function and B = {B}sc[o,r] be Brownian motion on the interval [0, 7],
for some fixed T' € [0, 00). Define a sequence of random variables {7a7}%5_; by
setting

v = inf{t € [0,00) : [By| > M, ort > T}.

The stochastic process {f(Bt)}icjo, 7] is an element of L2 , as we have already

discussed on p. 2. Let {F;};ep0,r] be the natural filtration of Brownian motion
on [0,7]. Then each of the random variables ) are such that, for every ¢t € [0, T

{we:ry >t} ={weN:Vse[0,t],Bs < M} € F;.

From their definition it also follows that if M < N then mpy < 7n, i.e., {Tar}37 21
is an increasing sequence of stopping times relative to the filtration {F;};cj0,7)-
Associated with every stopping time 73, we define the stochastic process fys(B)
by

m(B)(w. t) = f(B)(w, ) 10,7y (w)) (1) (1)
For those w € Q such that mpr(w) > ¢, fm(B)(w,t) = f(B)(w,t). Denote by A
be the collection of all such w € €. For all other w € Q, fy(B)(w,t) = 0. In
either case we have that

/0 E{|fr (B))} df < oo,

because
E{|far (B} = /A (BN dB(w) < a®P{A} < oo,

where f(B;) € [—a,a] because any continuous function, f, maps closed and
bounded sets into closed and bounded sets, i.e., f maps [-M, M] into [—a, a],
for some finite a > 0.

Thus we have shown that for every M, far(B) € H2 The event {w € Q :
T = T} is equivalent to the event {w € Q : Vt € [0,T],|B| < M}. Since
Brownian motion has to assume some value in R, we have

]P{ G{weQ:TM—T}}—l.

M=1



This tells us that the sequence {Tas}37_; is localising for f(B).

The whole point of demonstrating that the sequence {7ar}37_; is localising
for f(B) is that we can discuss stochastic integrals of processes in the space
H2. Consequently we can calculate the Ito integral of fis(B;) by using an
approximating sequence to fys(B;) from the space H32.

Consider a sequence of uniform partitions {m, }2° ; of the interval [0, T],

T
0=t <ty <---<tp =T, Wheretk—tkq:;.

Associated with this sequence of partitions, define the sequence {¢,}52, of
stochastic processes @, : Q x [0,T] — R in H2 by

pn(w,s) = Z fM(Bt;,l)l(f; . f;](s)- (2)

tr AP Em,

Our first task is to verify that this sequence is an approximating sequence
for the stochastic process far(B) = {far(Bt) }teo,7, i-€., we want to verify that

on — far(B)||L2(apxar) = 0, as n — oo.

If we use the representation for every s € [0, T,

fuBws) = > fu(Bw.s)lup ()

e trEm,

and apply the Fubini theorem on the integral with respect to the product mea-
sure dP(w) x ds, we get

on = fra (B)||L2(ap xar) = / lon(w,s) — fru{B(w,s)}? dP(w) x ds
Qx[0,T]
/{/ Z IfM{B(w )} — B, )} T ap1(5) ds}d]P’(w),

We suppress some of the notation in the double integral:

o — Fat (B2 xas) = {/ Z|fM<Bk,1>ffM et o) s

By the Fubini theorem we may move the expectation inside the integral over
the interval [0, T] and the sum over k € {1,...,n} to get

on — far(B)||L2(ap xas) Z/ |fM (Brp-1) — fu(B )|2}ds.

For every k € {0,.. n} and for every s € (t7_,,t;] we can bound the difference

|fM(Bk,1) — fm(B g)| by its maximal value over the interval (¢}_,,t}], thus

n

|len *fM(B)HLQ(ddes) < Z(ff *tﬁfl)E{ sup ; ‘fM(kal) *fM(Bs)‘Q}-

k=1 sE(ty_1sty]



We focus our attention on the expected value

Consider the function g : (0,00) — [0, 00) defined by

g(8) = sup |[fm(z) = fm(y)l-

lz—y|<d

Since the function fjs is continuous with closed and bounded support!, the
function g is continuous and bounded, i.e., g(§) — 0, as 6 — 0 and there exits
a constant ¢ > 0 such that for every 6 € (0, ), ¢g(d) < c.

If |Bk,] — Bs| g 0 then ‘fM(kal) — f}\/[(BS)|2 < 92(6) If we take2

d0p = sup |Bg_1 — B4,
sE(tp_iHty]

then |By_1 — B,| < 67 and therefore | far(Bg—1) — far(Bs)|* < g*(67). Because
the upper bound, ¢2(67), is the same for every s € (t!_,,t7] we have

sup | fur(Br1) — fu(Bs)? < g (0F).
se(t_ ]
Thus
2 n
B{ _swp |fu(Bi) = fu(B|"} <BLGGR)),
se(ty

/k—l’tz]

and we have the inequality

on — fm(B)||L2(apxas) < Tlgllsléan{gQ((sZ)},
since t7 —t}_, = % and

Vhe{l,...,n}, B{g?(50)} < max B{g*(5)}.

[e.e]

In order to show that {¢,}2%, € H2 as defined by (2) is an approximating
sequence to fys(B) we have to show that

2/¢n
]glkagxn]E{q (0x)} — 0, as n — oc.
But
E{g” (03)} < E{ max ¢*(6;)}

1< kL<n

and consequently

2 n < 2/5n
]gl,ggnﬁ{g (0¢)} < B{ max ¢°(6;)},

I RN

' The support of a function f : M — R is the subset N C M such that f(z) = 0 whenever
x ¢ N. This subset N can be written N = M\ f~1({0}), where f~1({0}) = {zr € M : f(z) €
{o3}.

2Note that d;, is a random variable in this case.



whence it is enough for us to show that

E 2(6M} =0, asn —
{13152‘;”9(14)} , s n — 00

in order to establish that |[pn, — far(B)||L2(4pxas) — 0, as n — oo.
Recall that ¢} was defined as

d0p = sup |Br_1 — B4l

sE(ty_y ]

The paths of Brownian motion are continuous functions, with probability one.
Any continuous function (¢t — B(w,t)) defined on a closed interval ([0, T]) is
uniformly continuous on that interval. Hence, as n — oo, d;) — 0. Any continu-
ous function (¢t — B(w,t)) on a closed and bounded interval ([0, T]) assumes its
smallest (mpg) and largest (Mpg) values. This implies that g?(6}) is defined on
the closed and bounded interval [0, Mg]. Thus, on this interval g2 is uniformly
continuous, hence
1én]?é<ng2(5,?) — 0, as n — oc.

We know that the function g2(x) is bounded by ¢? for every z € (0, 0c), hence
by the Dominated convergence theorem we have

]E{lénlfxgxnf(&,?)} — 0, as n — oc.

We have at long last established that {¢,}52, € H2 is indeed an approx-
imating sequence to fu(B), where fur is a function of closed and bounded
support.

Because fj is such a function, the stochastic process fys(B) is an element
of the space H2. By the Ito isometry for processes in #? we have

I{fp(B)} — L)l 2(ap) = [|F2(B) — @nllr2(apxar) = 0, as n — oo.

Thus, I(pn) — I(fm(B)) in L*(dP). Because ¢, € HZ, we have an explicit
representation of the stochastic integral I(p,,):

Hpa)w s)= Y fu(By HBw. ) - Blw,ti 1)}

tp A Emn

If we denote the stochastic integral I(fu(B)) by fOT fum(Bs) dBs we have ob-
tained the Riemann representation in L2(dP): For every w € A, where A C Q
is a set of probability one,

{ OT fu(By) st}(w)

= nll)ngo . zt;e fM (B(watk;l)){B(w7tk) - B(watk;l)}'
k-1l &Tn

(3)

As our final step in the proof of the Riemann representation theorem, we
need to prove the theorem for arbitrary continuous functions, f, not just for
continuous functions with closed and bounded support, fa;. For this we need



a connection between the functions f and fp;. Recall the definitions of the
stopping times 7/,

v = inf{t € [0,00) : |By| > M, ort > T},
and the stochastic processes far,
fu(B)(w,t) = f(B)(w, )10, 7y (w) (1)-
From these definitions we note that
{weQ:myw)2T={weQ:Tyw)=T}=Am

and if w € Ay}, then f(B(w,t)) = fu(B(w,t)) for every ¢t € [0,T]. By the
Persistence of Identity this implies that

{ ./OT f(Bs)dBS}(W) = { /OT fu(B,) st}(w),

for all w € Aps. Thus, for all w € Ay we have the Riemann representation

{/OTf(Bs)st}(w)

= nll)néo Z f(B(wJZf])){B(watlrcl) - B(“:ﬂclf])}a

tn P Em,

where the limit is in L?(dP|4,,), i.e.? ,

— 0.
L2(dP|a,,)

IRCIE B

th_ AREm,

We are now going to demonstrate that the random variable

Sa= Y. f(By By - By}

tr_ AR Em,

converges in probability to the random variable

T
S = /0 f(Bs) dBs,

ie.,
for every € > 0, P{|S, — S| > ¢} = 0, as n = 0.

Take any € > 0 and estimate the required probability

P{|S, — S| > e} < P{AG,} + P{{|S, — S| >} N Ay}
= P{AS,} + Pla,, {|Sn — S| > e}

The probability P|4,,{|S» — S| > €} is estimated by the Chebychev inequality,

1
Play{lSn— S| >e} < 5_2HSn — SHLQ(dP\AM) — 0, as n — oo.

3The notation "P|a,,” refers to the probability measure P, restricted to the set Ay, i.e.,

whenever ' C Ay, Pla,,{T} =P{T}.



Thus we have established that for every € > 0 and for every M € N,
lim P{|S,, — S| > e} < P{4%,/}.
n— o0

But since
P{AY}=P{rmu < T} -0, as M =

we have obtained our desired result that
for every € > 0, lim P{|S,, — S| > ¢} =0.
n—o00

O

The Riemann representation Theorem is our key to the Itd6 Formula, which
is the source of Stochastic Calculus.

2 The 1to6 Formula

Theorem 3 (The Ité6 Formula). Let f : R — R be a function with continuous
second derivative and let B = {By},ci0,7] be one dimensional Brownian motion.
Then

plvcion) 1) =10+ [ reaas g [ rma) =1

In a nutshell the It6 Formula hinges on two things:
e The Riemann representation of stochastic integrals;
e The Taylor formula from Ordinary Calculus.

Proof. We shall use the Taylor Formula from Ordinary calculus: Let f : R — R
be a function with continuous second derivative, and let x,y € R be any real
numbers. Then

F) = £@) + £ @)~ )+ 3" @~ 0 +rle,y).

In this formula the remainder term, r(z,y), is given by

y
o) = [ =0 @) - @) do,
and has the following property: There exists a uniformly continuous, bounded
function h: R x R — [0, 00) such that
o For everyy,z € R, |r(z,y)| < (y — 2)*h(z,y);
e For every x € R, h(z,z) = 0.

For any t € [0,T], consider a sequence {m,(t)}>2, of uniform partitions of
the interval [0, ¢]

() 0=ty <t} <---<th=t, ¢ty —1ty_1=2t/n.



We can represent the difference f(B;) — f(0) in terms of increments along the
partition 7, (t),

f(Bt) - f(o) = Z {f(Bt;;) - f(Bt;;f])}- (4)

tR_ R e, (1)

To each of these increments we apply the Taylor formula, which yields

f(Bip) = f(Bep ) = f'(Bip_ )(Bip — Bn ) + %f”(Btgfl)(Btg — By )?
+ (B, Bin).
Inserting this into the telescoping sum (4) we get
F(Br) = f(0) = S, + S, + Sp,
where the three sums S}, S% and S? are defined by
Sy = Z f'(Bir )(Bir — B ),
th_1te €mn(t)

1
S? = 3 Z f"(Bip ) (B — By ),

tR_ e (1)

SS = Z T(BtZ,NBtz)'

11l Ema (1)

By the Riemann representation theorem we know that S. converges in prob-
ability to the stochastic integral fot f'(Bs)dBs as n — 0.
Next we rewrite the terms in the second sum S2, as

S2 =S@E 4 522,

where
. 1
S =5 3o By ) 1),
7 nema(t)
1 n n
S22 = 2 Z f"(Bin {(Bip — Bin_)* = (tp — 17 1)}

th_tr€ma(t)

The first of these sums, 57(,,2’1)(w)7 converges, for every w € 1, to the ordinary
Riemann-Stieltjes integral ]Efot f"(B(w,s))ds as n — oo.

To study the second term 5’7(12’2) we choose an arbitrary € > 0 and consider
estimating the probability IP{\S;,,2’2)| > ¢}, by using the Chebychev inequality:
1
PSP > e} < RSP P

In order to prove that 57(12’2) converges in probability to zero, we proceed to
show that the expectation IE{|57(12’2) |?} converges to zero as n — oc.

10



From this point onward we assume that the function f : R — R has closed
and bounded support. Then the continuous second derivative f" is bounded on
R and consequently

1F"]13% = sup | /" (2)]* < oo.
z€ER

If we make use of this fact, then

2.9 14 5 1 ; n an 2
B{SED P <% D BBy =By )° =t -t 1)}
£ AR Ema(t)

1
< Y E(By By )Y
tr AR Emn (1)
3 3t2
_ 112 n n 2 "2
=|If HOOZ > -t =lf HOOR-

ity trEma(t)

From this string of inequalities we see that indeed 57(12’2) converges in probability
to zero as n — oo.
To show that the third term S2, involving the remainder, r(x,y), from the

Taylor formula, converges in probability to zero we make use of the Cauchy-
Schwartz inequality® . Recall the definition of the third sum S3:

S,Z = Z ’I“(Bt271 =Bt7$)=

tR_ e (1)

where the function (z,y) — r(z,y) is such that there exists a uniformly contin-
uous, bounded function h: R x R — [0, 00) such that

« For every y,z € R, |r(z,y)] < (y - 2)°h(, 1)
e For every z € R, h(z,z) =0.

If we apply the first of these properties to S? we get, by the triangle inequality
for the absolute value, z — |z|,

1S3 < Y. By Byp)l< Y. By — By [PIh(By_,, Bl

tR_ e (1) tR_ e (1)

Taking expectations of both sides of this inequality and using the Cauchy-
Schwartz inequality leaves us with

E(Sit< S (B{By — By 'Y (EhBy_,, By)PH "

k—1
by iR ETn (1)

_ V3 S BBy, Byl

tn |t Emn(t)

4The Cauchy-Schwartz inequality: Let X,Y be random variables such that E{|X|?} < oo
and E{|Y'|?} < co. Then

E{IXY [} < {E{IX° 1Y/ 2{E(lY P12,

11



By the definition of uniform continuity of a function h : R x R — [0, 00), for
every € > 0 and for every (x,y) € R x R there exists® a §(¢) > 0 such that

|h(z,y)| < e, whenever |z —y| < §(e).

We can use this knowledge when we split up the expectation E{|h(Bs»_, Bir) 12}
as follows. Let € > 0 be an arbitrary real number.

:Bt;)m:]E{\h(Bt}:,l=Bt}:)‘21{\’3t;*’3t" <a()}}
+E{h(Biy_,» By "L b,y 5y 128603}

E{|h(By

—1

By the uniform continuity of the function A we know that
2 2 2
E{|h(Bt271 ) Bt:)| 1{\Bt£ 731271 ‘<5(5)}} S € E{l{‘Btf 7Bt£71 ‘}} S €
We also know that the function h is bounded, which implies that

hl|2, = sup |h(z,y)]? < oc.
T,Ye

Then we can estimate the second term in (5) by
]E{|h(Btg71 ,Bt;)\Ql{\BtzfntLl\;6(5)}} < HhHgoE{l{\Bm —Bin 1\25(6)}}
= [[P|[ZP{|Biy — Biy_,| > (¢)}

The probability P{|Bi» — Bin | > d(e)} is estimated by using the Chebychev
inequality

P{|Byy — Biy .| >6(e)} < —E{|Byy — By [’} =

( )?

Gathering all of our estimates together we have obtained an estimate of the
expectation of the third sum S2,

CEAITE - SR E RN,

R R Ema(t) o(e)

‘ t 1/2
_ 2 2
- \/§t{e + Hh”""—é(s)%} .

d(e)?n’

From this we see ‘rha‘r for any given € > 0, if we choose the integer n to be so
big so that ||h||2, 55 < €%, 1e., n > [[h|[% 22,‘rhen E{|S2|} < V6te. This

allows us to conclude that the third term Sfl converges in probability to zero,
because since € > () is arbitrary,

1
P{IS31 > e} < ZE{IS3 1),

and we can make E{|S3 |} < 2 if we just choose the integer n sufficiently large.

5The fact that the number §(¢) is the same for every pair (z,y) € R x R is crucial and is
the reason for the term ”uniform” continuity.

Had the number ¢ depended on both € and the point (z,y) € RxR, the function h : RxR —
[0, 00) would have been continuous.

12



If we gather all of our findings we see that, if the function f has a continuous
second derivative and has a closed and bounded support, then for every fixed
t€[0,T],

t t
£(B) - 10 =S, + Si4 53D [ pBaB.+ g [ 1
0 0

i.e., for every fixed t € [0,7] and for every function f with continuous second
derivative and closed and bounded support we have

P{f(Bt) — £(0) + /Ot f'(B,)dB, + é '/Ot f"(Bs)ds} -

To complete the proof of the It6 Formula two things remain to be done: First,
to remove the requirement that the function f should have closed and bounded
support and second to "move time inside the probability”, i.e., to assert that

{We[OT] f(B; /f s)dBg + = /f” }:1.

If f is a function with continuous second derivative, we can reduce considera-
tion of the It6 Formula with respect to f to the case we have already discussed,
by introducing a localising sequence {7,}22, for f. This localising sequence
generates a sequence of functions {fn}n:1 each of which has continuous sec-
ond derivatives and closed and bounded support. By letting n tend to infinity,
we may the establish the result that, if the function f has continuous second
derivative, then for every t € [0, 7],

]P{f(Bt) — (0) + /Ot f'(By) dB, + % /Ot f”(Bs)dS} =

As a consequence of this result, since there are countably many rational
numbers in the interval [0, T,

{er[o:r]m@ f(By) = /f ) dB, + = /f” }:1

and that the objects on the right- and left hand sides are continuous, we can
establish the Ito Formula

{Vte[o T], f(B, /f )dB, + = /f” }

One observation we can make from the It6 Formula is that since we know that
whenever the function f is such that the stochastic process f'(B) is an element

O

of the space H2, then the stochastic integral process {fot f'(Bs) dBs}iepo,1 is a
continuous martingale, the stochastic process

s [rwa

13



is a continuous martingale. As an application, consider the function f(z) =
2?/2. Then we obtain the result that

1 . t
—(B>-t) = / B, dB,
gt o

is a continuous martingale, something we previously had to work hard for. Here
it is a mere by-product of the Ito Formula!

14



