
The Itô FormulaAnders MusztaJuly 5, 20051 The natural habitat of the sto
hasti
 integralWe now 
ome to the point when we start making demands on our sto
hasti
integral. Any integral worthy of the name, should have no problem with in-tegrating 
ontinuous fun
tions. Unfortunately, the sto
hasti
 integral we have
onstru
ted so far does not meet this requirement. In order for the sto
hasti
integral I(f) to exist, we need to impose the 
ondition that f 2 H2. The mostrestri
tive of the 
onditions de�ning the spa
e H2 isE� Z T0 f(!; s)2 ds� <1:If we 
onsider the pro
ess f(!; t) = efB4(!;t)g, where B is Brownian motion,then f =2 H2. (The reason is that the pro
ess f grows too fast for too many! 2 
 for the integral R T0 f(!; s)2 ds to have �nite expe
tation. )De�nition 1 (The spa
e L2lo
). The spa
e L2lo
 is the 
olle
tion of all sto
has-ti
 pro
esses f : 
� [0; T ℄! R having the following properties:� The pro
ess f is FT �B[0;T ℄-measurable;� For every t 2 [0; T ℄, the map ! 7! f(!; t) is Ft-measurable;� P�Z T0 f2(!; t) dt <1� = 1:For any random variable, X , if EfjX j2g <1 then PfjX j2 <1g = 1, whi
hshows that the spa
e H2 is a subspa
e of L2lo
.Let g : R ! R be any 
ontinuous fun
tion and de�ne the sto
hasti
 pro
essf(!; t) � g(B(!; t)):For every �xed ! 2 
, on the 
losed interval [0; T ℄ the map t 7! g(B(!; t))de�nes a bounded fun
tion, be
ause the map t 7! B(!; t) is 
ontinuous and a
ontinuous fun
tion over a 
losed interval attains its maximum and minimumvalues. Consequently,for any 
ontinuous fun
tion, g; the pro
ess g(B) is an element of L2lo
:Sin
e we have been so su

essful in 
onstru
ting a sto
hasti
 integral in thespa
e H2, it would be a shame if 
ould not use our knowledge to 
onstru
t them1



in the larger spa
e L2lo
. For us to be able to do this we need a link between thespa
es H2 and L2lo
, just as we needed a link between the spa
es H20 and H2.That link is established by lo
alising sequen
es.De�nition 2 (Lo
alising sequen
e for H2). An in
reasing sequen
e, f�ng1n=1,of fFtgt2[0;T ℄-stopping times is 
alled a lo
alising sequen
e for f if the following
onditions are satis�ed:� Every stopping time �n is asso
iated with a sto
hasti
 pro
ess fn 2 H2,de�ned by fn(!; t) � f(!; t)1[0;�n(!)℄(t);� P� 1[n=1f! 2 
 : �n(!) = Tg� = 1:De�nition 3 (Stopping time). Let � : 
 ! R [ f1g be a random variableand fFtgt2[0;1) a �ltration on 
. The random variable � is a stopping timewith respe
t to the �ltration fFtgt2[0;1) iffor every t 2 [0;1) the events f! 2 
 : �(!) 6 tg 2 Ft:It is of 
entral importan
e that every sto
hasti
 pro
ess in L2lo
 possesses alo
alising sequen
e.Theorem 1. Let f 2 L2lo
 be an arbitrary sto
hasti
 pro
ess. Then the sequen
ef�ng1n=1 of random variables de�ned by�n(!) � inf �s 2 [0;1) : Z s0 f2(!; r) dr > n; or s > T�;is a lo
alising sequen
e for f .Proof. Consider the eventA � �! 2 
 : Z T0 f2(!; r) dr <1�;and observe that ! 2 A, 9n 2 N : Z T0 f2(!; r) dr < n:Next, 
onsider the event Cn � f! 2 
 : �n(!) = Tg:The statement "�n(!) = T" says that "the time T is the �rst time that thetraje
tory of the fun
tion s 7! R s0 f2(!; r) dr gets above the level n". Sin
e thefun
tion s 7! R s0 f2(!; r) dr is in
reasing, this amounts to saying thatZ T0 f2(!; r) dr < n:2



Thus we have show the equivalen
e! 2 Cn , Z T0 f2(!; r) dr < n;and 
onsequently that! 2 1[n=1f! 2 
 : �n(!) = Tg , 9n 2 N : Z T0 f2(!; r) dr < n:Thus the sets A and S1n=1 Cn are equal. Be
ause f 2 L2lo
 we know thatPfAg = 1, thusP� 1[n=1f! 2 
 : �n(!) = Tg� = P� 1[n=1Cn� = 1;and one of the two de�ning properties for f�ng1n=1 to be a lo
alising sequen
efor f is satis�ed.The random variable �n is the �rst time in the interval [0; T ℄ when thepro
ess fR s0 f2(�; r) drgs2[0;T ℄ gets above the level n. Therefore, if we know thatt 6 �n then the pro
ess has not yet gotten above the level n at time t, i.e.,for all s 2 [0; t℄; Z s0 f2(�; r) dr 6 n:jjfnjjL2(dP�dt) = Z
 Z �n(!)0 f2(!; r) drdP(!) 6 n Z
 �n(!)dP(!) = nEf�ng 6 nT:This 
omputation shows that for every n 2 N, the pro
ess fn is an element ofH2. (The measurability questions in the de�nition of the spa
e H2 are settledby the fa
ts that f satisfy them and that �n is a stopping time relative to the�ltration fFtgt2[0;T ℄.) This settles the other de�ning property of a lo
alisingsequen
e for f .Thus, we have shown that f�ng1n=1 is indeed a lo
alising sequen
e for f .Remark 1. It is important to have an intuitive grasp on the meaning of thelo
alising sequen
e f�ng1n=1 in the pre
eding theorem: �n is the �rst time in theinterval [0; T ℄ when the pro
ess fR s0 f2(�; r) drgs2[0;T ℄ gets above the level n.Remark 2. The whole point of the 
on
ept of lo
alisation is to redu
e a 
ompli-
ated situation to familiar ground. In our 
ase, the familiar ground is the spa
eH2 and the 
ompli
ated situation is the spa
e L2lo
.Theorem 2 (Riemann representation). Let f : R ! R be any 
ontinuousfun
tion and T 2 [0;1) be any positive real number. Consider a sequen
e ofuniform partitions f�ng1n=1 of the interval [0; T ℄,�n : 0 = tn0 < tn1 < � � � < tnn = T; where tk � tk�1 = Tn :Then Xtk;tk�12�n f(B(tk�1))fB(tk)�B(tk�1)g P�! Z T0 f(Bs) dBs; as n!1:3



Remark 3. In the representation theorem the notation "Xn P�! X" is used todenote that the sequen
e fXng1n=1 of random variables 
onverges in probabilityto the random variable X, i.e., for every " > 0PfjXn �X j > "g ! 0; as n!1:Note that we began our exposition of sto
hasti
 integration by noting the im-possibility of de�ning the sto
hasti
 integral R T0 f(Bs) dBs as a limit of Riemannsums Ptk;tk�12�n f(B(tk�1))fB(tk) � B(tk�1)g. Does not then this theoremdemonstrate a 
ontradi
tion? No, it does not!The reason is that we wanted to de�ne the sto
hasti
 integral as a limit ofRiemann-sums for every ! 2 
. The theorem states that our initial idea wasnot so bad after all, as long as we are willing to weaken our requirement thatthe 
onstru
tion should hold for every ! 2 
.We now present the proof of the Riemann representation theorem.Proof of the Riemann representation theorem. Let f : R ! R be any 
ontinu-ous fun
tion and B = fBtgt2[0;T ℄ be Brownian motion on the interval [0; T ℄,for some �xed T 2 [0;1). De�ne a sequen
e of random variables f�Mg1M=1 bysetting �M � infft 2 [0;1) : jBtj >M; or t > Tg:The sto
hasti
 pro
ess ff(Bt)gt2[0;T ℄ is an element of L2lo
, as we have alreadydis
ussed on p. 2. Let fFtgt2[0;T ℄ be the natural �ltration of Brownian motionon [0; T ℄. Then ea
h of the random variables �M are su
h that, for every t 2 [0; T ℄f! 2 
 : �M > tg = f! 2 
 : 8 s 2 [0; t℄; Bs < Mg 2 Ft:From their de�nition it also follows that ifM < N then �M < �N , i.e., f�Mg1M=1is an in
reasing sequen
e of stopping times relative to the �ltration fFtgt2[0;T ℄.Asso
iated with every stopping time �M we de�ne the sto
hasti
 pro
ess fM (B)by fM (B)(!; t) � f(B)(!; t)1[0;�M (!)℄(t): (1)For those ! 2 
 su
h that �M (!) > t, fM (B)(!; t) = f(B)(!; t). Denote by Abe the 
olle
tion of all su
h ! 2 
. For all other ! 2 
, fM (B)(!; t) = 0. Ineither 
ase we have that Z T0 EfjfM (Bt)j2g dt <1;be
ause EfjfM (Bt)j2g = ZA jf(Bt)j2 dP(!) 6 a2PfAg <1;where f(Bt) 2 [�a; a℄ be
ause any 
ontinuous fun
tion, f , maps 
losed andbounded sets into 
losed and bounded sets, i.e., f maps [�M;M ℄ into [�a; a℄,for some �nite a > 0.Thus we have shown that for every M , fM (B) 2 H2. The event f! 2 
 :�M = Tg is equivalent to the event f! 2 
 : 8t 2 [0; T ℄; jBtj < Mg. Sin
eBrownian motion has to assume some value in R, we haveP� 1[M=1f! 2 
 : �M = Tg� = 1:4



This tells us that the sequen
e f�Mg1M=1 is lo
alising for f(B).The whole point of demonstrating that the sequen
e f�Mg1M=1 is lo
alisingfor f(B) is that we 
an dis
uss sto
hasti
 integrals of pro
esses in the spa
eH2. Consequently we 
an 
al
ulate the Itô integral of fM (Bt) by using anapproximating sequen
e to fM (Bt) from the spa
e H20.Consider a sequen
e of uniform partitions f�ng1n=1 of the interval [0; T ℄,�n : 0 = tn0 < tn1 < � � � < tnn = T; where tk � tk�1 = Tn :Asso
iated with this sequen
e of partitions, de�ne the sequen
e f'ng1n=1 ofsto
hasti
 pro
esses 'n : 
� [0; T ℄! R in H20 by'n(!; s) � Xtnk�1;tnk2�n fM (Btnk�1)1(tnk�1;tnk ℄(s): (2)Our �rst task is to verify that this sequen
e is an approximating sequen
efor the sto
hasti
 pro
ess fM (B) = ffM (Bt)gt2[0;T ℄, i.e., we want to verify thatjj'n � fM (B)jjL2(dP�dt)! 0; as n!1:If we use the representation for every s 2 [0; T ℄,fM (B(!; s)) = Xtnk�1;tnk2�n fM (B(!; s))1(tnk�1;tnk ℄(s)and apply the Fubini theorem on the integral with respe
t to the produ
t mea-sure dP(!)� ds, we getjj'n � fM (B)jjL2(dP�dt) = Z
�[0;T ℄ j'n(!; s)� fMfB(!; s)gj2 dP(!)� ds= Z
�Z T0 Xtnk�1;tnk2�n ��fMfB(!; tnk�1)g � fMfB(!; s)g��21(tnk�1;tnk ℄(s) ds� dP(!):We suppress some of the notation in the double integral:jj'n � fM (B)jjL2(dP�ds) = E� Z T0 nXk=1 ��fM (Bk�1)� fM (Bs)��21(tnk�1;tnk ℄(s) ds�:By the Fubini theorem we may move the expe
tation inside the integral overthe interval [0; T ℄ and the sum over k 2 f1; : : : ; ng to getjj'n � fM (B)jjL2(dP�ds) = nXk=1 Z tnktnk�1 En��fM (Bk�1)� fM (Bs)��2o ds:For every k 2 f0; : : : ; ng and for every s 2 (tnk�1; tnk ℄ we 
an bound the di�eren
e��fM (Bk�1)� fM (Bs)��2 by its maximal value over the interval (tnk�1; tnk ℄, thusjj'n � fM (B)jjL2(dP�ds) 6 nXk=1(tnk � tnk�1)En sups2(tnk�1;tnk ℄ ��fM (Bk�1)� fM (Bs)��2o:5



We fo
us our attention on the expe
ted valueEn sups2(tnk�1;tnk ℄ ��fM (Bk�1)� fM (Bs)��2o:Consider the fun
tion g : (0;1)! [0;1) de�ned byg(Æ) � supjx�yj6Æ jfM (x)� fM (y)j:Sin
e the fun
tion fM is 
ontinuous with 
losed and bounded support1, thefun
tion g is 
ontinuous and bounded, i.e., g(Æ) ! 0; as Æ ! 0 and there exitsa 
onstant 
 > 0 su
h that for every Æ 2 (0;1), g(Æ) 6 
.If jBk�1 �Bsj 6 Æ then jfM (Bk�1)� fM (Bs)j2 6 g2(Æ). If we take2Ænk � sups2(tnk�1;tnk ℄ jBk�1 �Bsj;then jBk�1 �Bsj 6 Ænk and therefore jfM (Bk�1)� fM (Bs)j2 6 g2(Ænk ). Be
ausethe upper bound, g2(Ænk ), is the same for every s 2 (tnk�1; tnk ℄ we havesups2(tnk�1;tnk ℄ jfM (Bk�1)� fM (Bs)j2 6 g2(Ænk ):Thus En sups2(tnk�1;tnk ℄ ��fM (Bk�1)� fM (Bs)��2o 6 Efg2(Ænk )g;and we have the inequalityjj'n � fM (B)jjL2(dP�ds) 6 T max16 k6n Efg2 (Ænk )g;sin
e tnk � tnk�1 = Tn and8 k 2 f1; : : : ; ng; Efg2(Ænk )g 6 max16 k6n Efg2 (Ænk )g:In order to show that f'ng1n=1 2 H20 as de�ned by (2) is an approximatingsequen
e to fM (B) we have to show thatmax16 k6n Efg2(Ænk )g ! 0; as n!1:But Efg2 (Ænk )g 6 Ef max16 k6n g2(Ænk )gand 
onsequently max16 k6n Efg2 (Ænk )g 6 Ef max16 k6n g2(Ænk )g;1The support of a fun
tion f : M ! R is the subset N �M su
h that f(x) = 0 wheneverx =2 N . This subset N 
an be written N = M n f�1(f0g), where f�1(f0g) = fx 2M : f(x) 2f0gg.2Note that Æk is a random variable in this 
ase.6



when
e it is enough for us to show thatEf max16 k6n g2(Ænk )g ! 0; as n!1in order to establish that jj'n � fM (B)jjL2(dP�ds)! 0; as n!1:Re
all that Ænk was de�ned asÆnk � sups2(tnk�1;tnk ℄ jBk�1 �Bsj:The paths of Brownian motion are 
ontinuous fun
tions, with probability one.Any 
ontinuous fun
tion (t 7! B(!; t)) de�ned on a 
losed interval ([0; T ℄) isuniformly 
ontinuous on that interval. Hen
e, as n!1, Ænk ! 0. Any 
ontinu-ous fun
tion (t 7! B(!; t)) on a 
losed and bounded interval ([0; T ℄) assumes itssmallest (mB) and largest (MB) values. This implies that g2(Ænk ) is de�ned onthe 
losed and bounded interval [0;MB℄. Thus, on this interval g2 is uniformly
ontinuous, hen
e max16 k6n g2(Ænk )! 0; as n!1:We know that the fun
tion g2(x) is bounded by 
2 for every x 2 (0;1), hen
eby the Dominated 
onvergen
e theorem we haveEf max16 k6n g2(Ænk )g ! 0; as n!1:We have at long last established that f'ng1n=1 2 H20 is indeed an approx-imating sequen
e to fM (B), where fM is a fun
tion of 
losed and boundedsupport.Be
ause fM is su
h a fun
tion, the sto
hasti
 pro
ess fM (B) is an elementof the spa
e H2. By the Itô isometry for pro
esses in H2 we havejjIffM (B)g � I('n)jjL2(dP) = jjfM (B)� 'njjL2(dP�dt)! 0; as n!1:Thus, I('n) ! I�fM (B)� in L2(dP). Be
ause 'n 2 H20, we have an expli
itrepresentation of the sto
hasti
 integral I('n):I('n)(!; s) � Xtnk�1;tnk2�n fM (Btnk�1)fB(!; tnk )�B(!; tnk�1)g:If we denote the sto
hasti
 integral I�fM (B)� by R T0 fM (Bs) dBs we have ob-tained the Riemann representation in L2(dP): For every ! 2 A, where A � 
is a set of probability one,�Z T0 fM (Bs) dBs�(!)= limn!1 Xtnk�1;tnk2�n fM�B(!; tnk�1)�fB(!; tnk)�B(!; tnk�1)g: (3)As our �nal step in the proof of the Riemann representation theorem, weneed to prove the theorem for arbitrary 
ontinuous fun
tions, f , not just for
ontinuous fun
tions with 
losed and bounded support, fM . For this we need7



a 
onne
tion between the fun
tions f and fM . Re
all the de�nitions of thestopping times �M ,�M � infft 2 [0;1) : jBtj >M; or t > Tg;and the sto
hasti
 pro
esses fM ,fM (B)(!; t) � f(B)(!; t)1[0;�M (!)℄(t):From these de�nitions we note thatf! 2 
 : �M (!) > Tg = f! 2 
 : �M (!) = Tg � AMand if ! 2 AMg, then f(B(!; t)) = fM�B(!; t)� for every t 2 [0; T ℄. By thePersisten
e of Identity this implies that�Z T0 f(Bs) dBs�(!) = �Z T0 fM (Bs) dBs�(!);for all ! 2 AM . Thus, for all ! 2 AM we have the Riemann representation�Z T0 f(Bs) dBs�(!)= limn!1 Xtnk�1;tnk2�n f�B(!; tnk�1)�fB(!; tnk )�B(!; tnk�1)g;where the limit is in L2(dPjAM ), i.e.3 ,�������� Z T0 f(Bs) dBs � Xtnk�1;tnk2�n f�Btnk�1�fBtnk �Btnk�1g��������L2(dPjAM ) ! 0:We are now going to demonstrate that the random variableSn � Xtnk�1;tnk2�n f�Btnk�1�fBtnk �Btnk�1g
onverges in probability to the random variableS � Z T0 f(Bs) dBs;i.e., for every " > 0; PfjSn � Sj > "g ! 0; as n!1:Take any " > 0 and estimate the required probabilityPfjSn � Sj > "g 6 PfA
Mg+ P�fjSn � Sj > "g \ AM	= PfA
Mg+ PjAMfjSn � Sj > "g:The probability PjAMfjSn � Sj > "g is estimated by the Cheby
hev inequality,PjAMfjSn � Sj > "g 6 1"2 jjSn � SjjL2(dPjAM) ! 0; as n!1:3The notation "PjAM" refers to the probability measure P, restri
ted to the set AM , i.e.,whenever � � AM ;PjAMf�g = Pf�g. 8



Thus we have established that for every " > 0 and for every M 2 N,limn!1PfjSn � Sj > "g 6 PfA
Mg:But sin
e PfA
Mg = Pf�M < Tg ! 0; as M !1we have obtained our desired result thatfor every " > 0; limn!1PfjSn � Sj > "g = 0:The Riemann representation Theorem is our key to the Itô Formula, whi
his the sour
e of Sto
hasti
 Cal
ulus.2 The Itô FormulaTheorem 3 (The Itô Formula). Let f : R ! R be a fun
tion with 
ontinuousse
ond derivative and let B = fBtgt2[0;T ℄ be one dimensional Brownian motion.ThenP�8t 2 [0; T ℄; f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:In a nutshell the Itô Formula hinges on two things:� The Riemann representation of sto
hasti
 integrals;� The Taylor formula from Ordinary Cal
ulus.Proof. We shall use the Taylor Formula from Ordinary 
al
ulus: Let f : R ! Rbe a fun
tion with 
ontinuous se
ond derivative, and let x; y 2 R be any realnumbers. Thenf(y) = f(x) + f 0(x)(y � x) + 12f 00(x)(y � x)2 + r(x; y):In this formula the remainder term, r(x; y), is given byr(x; y) = Z yx (y � v)ff 00(v)� f 00(x)g dv;and has the following property: There exists a uniformly 
ontinuous, boundedfun
tion h : R � R ! [0;1) su
h that� For every y; x 2 R; jr(x; y)j 6 (y � x)2h(x; y);� For every x 2 R; h(x; x) = 0.For any t 2 [0; T ℄, 
onsider a sequen
e f�n(t)g1n=1 of uniform partitions ofthe interval [0; t℄,�n(t) : 0 = tn0 < tn1 < � � � < tnn = t; tnk � tnk�1 = t=n:9



We 
an represent the di�eren
e f(Bt) � f(0) in terms of in
rements along thepartition �n(t),f(Bt)� f(0) = Xtnk�1;tnk2�n(t)ff(Btnk )� f(Btnk�1)g: (4)To ea
h of these in
rements we apply the Taylor formula, whi
h yieldsf(Btnk )� f(Btnk�1) = f 0(Btnk�1)(Btnk �Btnk�1) + 12f 00(Btnk�1)(Btnk �Btnk�1)2+ r(Btnk�1 ; Btnk ):Inserting this into the teles
oping sum (4) we getf(Bt)� f(0) = S1n + S2n + S3n;where the three sums S1n, S2n and S3n are de�ned byS1n � Xtnk�1;tnk2�n(t) f 0(Btnk�1)(Btnk �Btnk�1);S2n � 12 Xtnk�1;tnk2�n(t) f 00(Btnk�1)(Btnk �Btnk�1)2;S3n � Xtnk�1;tnk2�n(t) r(Btnk�1 ; Btnk ):By the Riemann representation theorem we know that S1n 
onverges in prob-ability to the sto
hasti
 integral R t0 f 0(Bs) dBs as n!1.Next we rewrite the terms in the se
ond sum S2n, asS2n = S(2;1)n + S(2;2)n ;where S(2;1)n = 12 Xtnk�1;tnk2�n(t) f 00(Btnk�1)(tnk � tnk�1);S(2;2)n = 12 Xtnk�1;tnk2�n(t) f 00(Btnk�1)�(Btnk �Btnk�1)2 � (tnk � tnk�1)	:The �rst of these sums, S(2;1)n (!), 
onverges, for every ! 2 
, to the ordinaryRiemann-Stieltjes integral 12 R t0 f 00(B(!; s)) ds as n!1.To study the se
ond term S(2;2)n we 
hoose an arbitrary " > 0 and 
onsiderestimating the probability PfjS(2;2)n j > "g, by using the Cheby
hev inequality :PfjS(2;2)n j > "g 6 1"2 EfjS(2;2)n j2g:In order to prove that S(2;2)n 
onverges in probability to zero, we pro
eed toshow that the expe
tation EfjS(2;2)n j2g 
onverges to zero as n!1.10



From this point onward we assume that the fun
tion f : R ! R has 
losedand bounded support. Then the 
ontinuous se
ond derivative f 00 is bounded onR and 
onsequently jjf 00jj21 � supx2R jf 00(x)j2 <1:If we make use of this fa
t, thenEfjS(2;2)n j2g 6 jjf 00jj21 14 Xtnk�1;tnk2�n(t) E���(Btnk �Btnk�1)2 � (tnk � tnk�1)��2	6 jjf 00jj21 14 Xtnk�1;tnk2�n(t) E�(Btnk �Btnk�1)4	= jjf 00jj21 34 Xtnk�1;tnk2�n(t)(tnk � tnk�1)2 = jjf 00jj21 3t24n :From this string of inequalities we see that indeed S(2;2)n 
onverges in probabilityto zero as n!1.To show that the third term S3n, involving the remainder, r(x; y), from theTaylor formula, 
onverges in probability to zero we make use of the Cau
hy-S
hwartz inequality4 . Re
all the de�nition of the third sum S3n:S3n � Xtnk�1;tnk2�n(t) r(Btnk�1 ; Btnk );where the fun
tion (x; y) 7! r(x; y) is su
h that there exists a uniformly 
ontin-uous, bounded fun
tion h : R � R ! [0;1) su
h that� For every y; x 2 R; jr(x; y)j 6 (y � x)2h(x; y);� For every x 2 R; h(x; x) = 0.If we apply the �rst of these properties to S3n we get, by the triangle inequalityfor the absolute value, x 7! jxj,jS3nj 6 Xtnk�1;tnk2�n(t) jr(Btnk�1 ; Btnk )j 6 Xtnk�1;tnk2�n(t) jBtnk �Btnk�1 j2jh(Btnk�1 ; Btnk )j:Taking expe
tations of both sides of this inequality and using the Cau
hy-S
hwartz inequality leaves us withEfjS3n jg 6 Xtnk�1;tnk2�n(t) �EfjBtnk �Btnk�1 j4g�1=2�Efjh(Btnk�1 ; Btnk )j2g�1=2= p3tn Xtnk�1;tnk2�n(t) �Efjh(Btnk�1 ; Btnk )j2g�1=24The Cau
hy-S
hwartz inequality: Let X;Y be random variables su
h that EfjXj2g <1and EfjY j2g <1. Then EfjXY jg 6 fEfjXj2gg1=2fEfjY j2gg1=2 :11



By the de�nition of uniform 
ontinuity of a fun
tion h : R �R ! [0;1), forevery " > 0 and for every (x; y) 2 R � R there exists5 a Æ(") > 0 su
h thatjh(x; y)j < "; whenever jx� yj < Æ("):We 
an use this knowledge when we split up the expe
tation Efjh(Btnk�1 ; Btnk )j2gas follows. Let " > 0 be an arbitrary real number.Efjh(Btnk�1 ; Btnk )j2g = Efjh(Btnk�1 ; Btnk )j21fjBtnk�Btnk�1 j<Æ(")gg+ Efjh(Btnk�1 ; Btnk )j21fjBtnk�Btnk�1 j>Æ(")gg: (5)By the uniform 
ontinuity of the fun
tion h we know thatEfjh(Btnk�1 ; Btnk )j21fjBtnk�Btnk�1 j<Æ(")gg 6 "2Ef1fjBtnk �Btnk�1 jgg 6 "2:We also know that the fun
tion h is bounded, whi
h implies thatjjhjj21 � supx;y2R jh(x; y)j2 <1:Then we 
an estimate the se
ond term in (5) byEfjh(Btnk�1 ; Btnk )j21fjBtnk�Btnk�1 j>Æ(")gg 6 jjhjj21Ef1fjBtnk �Btnk�1 j>Æ(")gg= jjhjj21PfjBtnk �Btnk�1 j > Æ(")g:The probability PfjBtnk � Btnk�1 j > Æ(")g is estimated by using the Cheby
hevinequalityPfjBtnk �Btnk�1 j > Æ(")g 6 1Æ(")2 EfjBtnk �Btnk�1 j2g = tÆ(")2n:Gathering all of our estimates together we have obtained an estimate of theexpe
tation of the third sum S3n,EfjS3n jg 6 p3tn Xtnk�1;tnk2�n(t)n"2 + jjhjj21 tÆ(")2no1=2= p3tn"2 + jjhjj21 tÆ(")2no1=2:From this we see that for any given " > 0, if we 
hoose the integer n to be sobig so that jjhjj21 tÆ(")2n < "2, i.e., n > jjhjj21 tÆ(")2"2 , then EfjS3n jg < p6t". Thisallows us to 
on
lude that the third term S3n 
onverges in probability to zero,be
ause sin
e " > 0 is arbitrary,PfjS3nj > "g 6 1"EfjS3n jg;and we 
an make EfjS3n jg < "2 if we just 
hoose the integer n suÆ
iently large.5The fa
t that the number Æ(") is the same for every pair (x; y) 2 R� R is 
ru
ial and isthe reason for the term "uniform" 
ontinuity.Had the number Æ depended on both " and the point (x; y) 2 R�R, the fun
tion h : R�R![0;1) would have been 
ontinuous. 12



If we gather all of our �ndings we see that, if the fun
tion f has a 
ontinuousse
ond derivative and has a 
losed and bounded support, then for every �xedt 2 [0; T ℄,f(Bt)� f(0) = S1n + S2n + S3n P�! Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds;i.e., for every �xed t 2 [0; T ℄ and for every fun
tion f with 
ontinuous se
ondderivative and 
losed and bounded support we haveP�f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:To 
omplete the proof of the Itô Formula two things remain to be done: First,to remove the requirement that the fun
tion f should have 
losed and boundedsupport and se
ond to "move time inside the probability", i.e., to assert thatP�8 t 2 [0; T ℄; f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:If f is a fun
tion with 
ontinuous se
ond derivative, we 
an redu
e 
onsidera-tion of the Itô Formula with respe
t to f to the 
ase we have already dis
ussed,by introdu
ing a lo
alising sequen
e f�ng1n=1 for f . This lo
alising sequen
egenerates a sequen
e of fun
tions ffng1n=1 ea
h of whi
h has 
ontinuous se
-ond derivatives and 
losed and bounded support. By letting n tend to in�nity,we may the establish the result that, if the fun
tion f has 
ontinuous se
ondderivative, then for every t 2 [0; T ℄,P�f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:As a 
onsequen
e of this result, sin
e there are 
ountably many rationalnumbers in the interval [0; T ℄,P�8 t 2 [0; T ℄ \ Q; f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1and that the obje
ts on the right- and left hand sides are 
ontinuous, we 
anestablish the Itô FormulaP�8 t 2 [0; T ℄; f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:One observation we 
an make from the Itô Formula is that sin
e we know thatwhenever the fun
tion f is su
h that the sto
hasti
 pro
ess f 0(B) is an elementof the spa
e H2, then the sto
hasti
 integral pro
ess fR t0 f 0(Bs) dBsgt2[0;T ℄ is a
ontinuous martingale, the sto
hasti
 pro
ess�f(Bt)� f(0)� 12 Z t0 f 00(Bs) ds�t2[0;T ℄13



is a 
ontinuous martingale. As an appli
ation, 
onsider the fun
tion f(x) =x2=2. Then we obtain the result that12(B2t � t) = Z t0 Bs dBsis a 
ontinuous martingale, something we previously had to work hard for. Hereit is a mere by-produ
t of the Ito Formula!
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