
The Itô FormulaAnders MusztaJuly 5, 20051 The natural habitat of the stohasti integralWe now ome to the point when we start making demands on our stohastiintegral. Any integral worthy of the name, should have no problem with in-tegrating ontinuous funtions. Unfortunately, the stohasti integral we haveonstruted so far does not meet this requirement. In order for the stohastiintegral I(f) to exist, we need to impose the ondition that f 2 H2. The mostrestritive of the onditions de�ning the spae H2 isE� Z T0 f(!; s)2 ds� <1:If we onsider the proess f(!; t) = efB4(!;t)g, where B is Brownian motion,then f =2 H2. (The reason is that the proess f grows too fast for too many! 2 
 for the integral R T0 f(!; s)2 ds to have �nite expetation. )De�nition 1 (The spae L2lo). The spae L2lo is the olletion of all stohas-ti proesses f : 
� [0; T ℄! R having the following properties:� The proess f is FT �B[0;T ℄-measurable;� For every t 2 [0; T ℄, the map ! 7! f(!; t) is Ft-measurable;� P�Z T0 f2(!; t) dt <1� = 1:For any random variable, X , if EfjX j2g <1 then PfjX j2 <1g = 1, whihshows that the spae H2 is a subspae of L2lo.Let g : R ! R be any ontinuous funtion and de�ne the stohasti proessf(!; t) � g(B(!; t)):For every �xed ! 2 
, on the losed interval [0; T ℄ the map t 7! g(B(!; t))de�nes a bounded funtion, beause the map t 7! B(!; t) is ontinuous and aontinuous funtion over a losed interval attains its maximum and minimumvalues. Consequently,for any ontinuous funtion, g; the proess g(B) is an element of L2lo:Sine we have been so suessful in onstruting a stohasti integral in thespae H2, it would be a shame if ould not use our knowledge to onstrut them1



in the larger spae L2lo. For us to be able to do this we need a link between thespaes H2 and L2lo, just as we needed a link between the spaes H20 and H2.That link is established by loalising sequenes.De�nition 2 (Loalising sequene for H2). An inreasing sequene, f�ng1n=1,of fFtgt2[0;T ℄-stopping times is alled a loalising sequene for f if the followingonditions are satis�ed:� Every stopping time �n is assoiated with a stohasti proess fn 2 H2,de�ned by fn(!; t) � f(!; t)1[0;�n(!)℄(t);� P� 1[n=1f! 2 
 : �n(!) = Tg� = 1:De�nition 3 (Stopping time). Let � : 
 ! R [ f1g be a random variableand fFtgt2[0;1) a �ltration on 
. The random variable � is a stopping timewith respet to the �ltration fFtgt2[0;1) iffor every t 2 [0;1) the events f! 2 
 : �(!) 6 tg 2 Ft:It is of entral importane that every stohasti proess in L2lo possesses aloalising sequene.Theorem 1. Let f 2 L2lo be an arbitrary stohasti proess. Then the sequenef�ng1n=1 of random variables de�ned by�n(!) � inf �s 2 [0;1) : Z s0 f2(!; r) dr > n; or s > T�;is a loalising sequene for f .Proof. Consider the eventA � �! 2 
 : Z T0 f2(!; r) dr <1�;and observe that ! 2 A, 9n 2 N : Z T0 f2(!; r) dr < n:Next, onsider the event Cn � f! 2 
 : �n(!) = Tg:The statement "�n(!) = T" says that "the time T is the �rst time that thetrajetory of the funtion s 7! R s0 f2(!; r) dr gets above the level n". Sine thefuntion s 7! R s0 f2(!; r) dr is inreasing, this amounts to saying thatZ T0 f2(!; r) dr < n:2



Thus we have show the equivalene! 2 Cn , Z T0 f2(!; r) dr < n;and onsequently that! 2 1[n=1f! 2 
 : �n(!) = Tg , 9n 2 N : Z T0 f2(!; r) dr < n:Thus the sets A and S1n=1 Cn are equal. Beause f 2 L2lo we know thatPfAg = 1, thusP� 1[n=1f! 2 
 : �n(!) = Tg� = P� 1[n=1Cn� = 1;and one of the two de�ning properties for f�ng1n=1 to be a loalising sequenefor f is satis�ed.The random variable �n is the �rst time in the interval [0; T ℄ when theproess fR s0 f2(�; r) drgs2[0;T ℄ gets above the level n. Therefore, if we know thatt 6 �n then the proess has not yet gotten above the level n at time t, i.e.,for all s 2 [0; t℄; Z s0 f2(�; r) dr 6 n:jjfnjjL2(dP�dt) = Z
 Z �n(!)0 f2(!; r) drdP(!) 6 n Z
 �n(!)dP(!) = nEf�ng 6 nT:This omputation shows that for every n 2 N, the proess fn is an element ofH2. (The measurability questions in the de�nition of the spae H2 are settledby the fats that f satisfy them and that �n is a stopping time relative to the�ltration fFtgt2[0;T ℄.) This settles the other de�ning property of a loalisingsequene for f .Thus, we have shown that f�ng1n=1 is indeed a loalising sequene for f .Remark 1. It is important to have an intuitive grasp on the meaning of theloalising sequene f�ng1n=1 in the preeding theorem: �n is the �rst time in theinterval [0; T ℄ when the proess fR s0 f2(�; r) drgs2[0;T ℄ gets above the level n.Remark 2. The whole point of the onept of loalisation is to redue a ompli-ated situation to familiar ground. In our ase, the familiar ground is the spaeH2 and the ompliated situation is the spae L2lo.Theorem 2 (Riemann representation). Let f : R ! R be any ontinuousfuntion and T 2 [0;1) be any positive real number. Consider a sequene ofuniform partitions f�ng1n=1 of the interval [0; T ℄,�n : 0 = tn0 < tn1 < � � � < tnn = T; where tk � tk�1 = Tn :Then Xtk;tk�12�n f(B(tk�1))fB(tk)�B(tk�1)g P�! Z T0 f(Bs) dBs; as n!1:3



Remark 3. In the representation theorem the notation "Xn P�! X" is used todenote that the sequene fXng1n=1 of random variables onverges in probabilityto the random variable X, i.e., for every " > 0PfjXn �X j > "g ! 0; as n!1:Note that we began our exposition of stohasti integration by noting the im-possibility of de�ning the stohasti integral R T0 f(Bs) dBs as a limit of Riemannsums Ptk;tk�12�n f(B(tk�1))fB(tk) � B(tk�1)g. Does not then this theoremdemonstrate a ontradition? No, it does not!The reason is that we wanted to de�ne the stohasti integral as a limit ofRiemann-sums for every ! 2 
. The theorem states that our initial idea wasnot so bad after all, as long as we are willing to weaken our requirement thatthe onstrution should hold for every ! 2 
.We now present the proof of the Riemann representation theorem.Proof of the Riemann representation theorem. Let f : R ! R be any ontinu-ous funtion and B = fBtgt2[0;T ℄ be Brownian motion on the interval [0; T ℄,for some �xed T 2 [0;1). De�ne a sequene of random variables f�Mg1M=1 bysetting �M � infft 2 [0;1) : jBtj >M; or t > Tg:The stohasti proess ff(Bt)gt2[0;T ℄ is an element of L2lo, as we have alreadydisussed on p. 2. Let fFtgt2[0;T ℄ be the natural �ltration of Brownian motionon [0; T ℄. Then eah of the random variables �M are suh that, for every t 2 [0; T ℄f! 2 
 : �M > tg = f! 2 
 : 8 s 2 [0; t℄; Bs < Mg 2 Ft:From their de�nition it also follows that ifM < N then �M < �N , i.e., f�Mg1M=1is an inreasing sequene of stopping times relative to the �ltration fFtgt2[0;T ℄.Assoiated with every stopping time �M we de�ne the stohasti proess fM (B)by fM (B)(!; t) � f(B)(!; t)1[0;�M (!)℄(t): (1)For those ! 2 
 suh that �M (!) > t, fM (B)(!; t) = f(B)(!; t). Denote by Abe the olletion of all suh ! 2 
. For all other ! 2 
, fM (B)(!; t) = 0. Ineither ase we have that Z T0 EfjfM (Bt)j2g dt <1;beause EfjfM (Bt)j2g = ZA jf(Bt)j2 dP(!) 6 a2PfAg <1;where f(Bt) 2 [�a; a℄ beause any ontinuous funtion, f , maps losed andbounded sets into losed and bounded sets, i.e., f maps [�M;M ℄ into [�a; a℄,for some �nite a > 0.Thus we have shown that for every M , fM (B) 2 H2. The event f! 2 
 :�M = Tg is equivalent to the event f! 2 
 : 8t 2 [0; T ℄; jBtj < Mg. SineBrownian motion has to assume some value in R, we haveP� 1[M=1f! 2 
 : �M = Tg� = 1:4



This tells us that the sequene f�Mg1M=1 is loalising for f(B).The whole point of demonstrating that the sequene f�Mg1M=1 is loalisingfor f(B) is that we an disuss stohasti integrals of proesses in the spaeH2. Consequently we an alulate the Itô integral of fM (Bt) by using anapproximating sequene to fM (Bt) from the spae H20.Consider a sequene of uniform partitions f�ng1n=1 of the interval [0; T ℄,�n : 0 = tn0 < tn1 < � � � < tnn = T; where tk � tk�1 = Tn :Assoiated with this sequene of partitions, de�ne the sequene f'ng1n=1 ofstohasti proesses 'n : 
� [0; T ℄! R in H20 by'n(!; s) � Xtnk�1;tnk2�n fM (Btnk�1)1(tnk�1;tnk ℄(s): (2)Our �rst task is to verify that this sequene is an approximating sequenefor the stohasti proess fM (B) = ffM (Bt)gt2[0;T ℄, i.e., we want to verify thatjj'n � fM (B)jjL2(dP�dt)! 0; as n!1:If we use the representation for every s 2 [0; T ℄,fM (B(!; s)) = Xtnk�1;tnk2�n fM (B(!; s))1(tnk�1;tnk ℄(s)and apply the Fubini theorem on the integral with respet to the produt mea-sure dP(!)� ds, we getjj'n � fM (B)jjL2(dP�dt) = Z
�[0;T ℄ j'n(!; s)� fMfB(!; s)gj2 dP(!)� ds= Z
�Z T0 Xtnk�1;tnk2�n ��fMfB(!; tnk�1)g � fMfB(!; s)g��21(tnk�1;tnk ℄(s) ds� dP(!):We suppress some of the notation in the double integral:jj'n � fM (B)jjL2(dP�ds) = E� Z T0 nXk=1 ��fM (Bk�1)� fM (Bs)��21(tnk�1;tnk ℄(s) ds�:By the Fubini theorem we may move the expetation inside the integral overthe interval [0; T ℄ and the sum over k 2 f1; : : : ; ng to getjj'n � fM (B)jjL2(dP�ds) = nXk=1 Z tnktnk�1 En��fM (Bk�1)� fM (Bs)��2o ds:For every k 2 f0; : : : ; ng and for every s 2 (tnk�1; tnk ℄ we an bound the di�erene��fM (Bk�1)� fM (Bs)��2 by its maximal value over the interval (tnk�1; tnk ℄, thusjj'n � fM (B)jjL2(dP�ds) 6 nXk=1(tnk � tnk�1)En sups2(tnk�1;tnk ℄ ��fM (Bk�1)� fM (Bs)��2o:5



We fous our attention on the expeted valueEn sups2(tnk�1;tnk ℄ ��fM (Bk�1)� fM (Bs)��2o:Consider the funtion g : (0;1)! [0;1) de�ned byg(Æ) � supjx�yj6Æ jfM (x)� fM (y)j:Sine the funtion fM is ontinuous with losed and bounded support1, thefuntion g is ontinuous and bounded, i.e., g(Æ) ! 0; as Æ ! 0 and there exitsa onstant  > 0 suh that for every Æ 2 (0;1), g(Æ) 6 .If jBk�1 �Bsj 6 Æ then jfM (Bk�1)� fM (Bs)j2 6 g2(Æ). If we take2Ænk � sups2(tnk�1;tnk ℄ jBk�1 �Bsj;then jBk�1 �Bsj 6 Ænk and therefore jfM (Bk�1)� fM (Bs)j2 6 g2(Ænk ). Beausethe upper bound, g2(Ænk ), is the same for every s 2 (tnk�1; tnk ℄ we havesups2(tnk�1;tnk ℄ jfM (Bk�1)� fM (Bs)j2 6 g2(Ænk ):Thus En sups2(tnk�1;tnk ℄ ��fM (Bk�1)� fM (Bs)��2o 6 Efg2(Ænk )g;and we have the inequalityjj'n � fM (B)jjL2(dP�ds) 6 T max16 k6n Efg2 (Ænk )g;sine tnk � tnk�1 = Tn and8 k 2 f1; : : : ; ng; Efg2(Ænk )g 6 max16 k6n Efg2 (Ænk )g:In order to show that f'ng1n=1 2 H20 as de�ned by (2) is an approximatingsequene to fM (B) we have to show thatmax16 k6n Efg2(Ænk )g ! 0; as n!1:But Efg2 (Ænk )g 6 Ef max16 k6n g2(Ænk )gand onsequently max16 k6n Efg2 (Ænk )g 6 Ef max16 k6n g2(Ænk )g;1The support of a funtion f : M ! R is the subset N �M suh that f(x) = 0 wheneverx =2 N . This subset N an be written N = M n f�1(f0g), where f�1(f0g) = fx 2M : f(x) 2f0gg.2Note that Æk is a random variable in this ase.6



whene it is enough for us to show thatEf max16 k6n g2(Ænk )g ! 0; as n!1in order to establish that jj'n � fM (B)jjL2(dP�ds)! 0; as n!1:Reall that Ænk was de�ned asÆnk � sups2(tnk�1;tnk ℄ jBk�1 �Bsj:The paths of Brownian motion are ontinuous funtions, with probability one.Any ontinuous funtion (t 7! B(!; t)) de�ned on a losed interval ([0; T ℄) isuniformly ontinuous on that interval. Hene, as n!1, Ænk ! 0. Any ontinu-ous funtion (t 7! B(!; t)) on a losed and bounded interval ([0; T ℄) assumes itssmallest (mB) and largest (MB) values. This implies that g2(Ænk ) is de�ned onthe losed and bounded interval [0;MB℄. Thus, on this interval g2 is uniformlyontinuous, hene max16 k6n g2(Ænk )! 0; as n!1:We know that the funtion g2(x) is bounded by 2 for every x 2 (0;1), heneby the Dominated onvergene theorem we haveEf max16 k6n g2(Ænk )g ! 0; as n!1:We have at long last established that f'ng1n=1 2 H20 is indeed an approx-imating sequene to fM (B), where fM is a funtion of losed and boundedsupport.Beause fM is suh a funtion, the stohasti proess fM (B) is an elementof the spae H2. By the Itô isometry for proesses in H2 we havejjIffM (B)g � I('n)jjL2(dP) = jjfM (B)� 'njjL2(dP�dt)! 0; as n!1:Thus, I('n) ! I�fM (B)� in L2(dP). Beause 'n 2 H20, we have an expliitrepresentation of the stohasti integral I('n):I('n)(!; s) � Xtnk�1;tnk2�n fM (Btnk�1)fB(!; tnk )�B(!; tnk�1)g:If we denote the stohasti integral I�fM (B)� by R T0 fM (Bs) dBs we have ob-tained the Riemann representation in L2(dP): For every ! 2 A, where A � 
is a set of probability one,�Z T0 fM (Bs) dBs�(!)= limn!1 Xtnk�1;tnk2�n fM�B(!; tnk�1)�fB(!; tnk)�B(!; tnk�1)g: (3)As our �nal step in the proof of the Riemann representation theorem, weneed to prove the theorem for arbitrary ontinuous funtions, f , not just forontinuous funtions with losed and bounded support, fM . For this we need7



a onnetion between the funtions f and fM . Reall the de�nitions of thestopping times �M ,�M � infft 2 [0;1) : jBtj >M; or t > Tg;and the stohasti proesses fM ,fM (B)(!; t) � f(B)(!; t)1[0;�M (!)℄(t):From these de�nitions we note thatf! 2 
 : �M (!) > Tg = f! 2 
 : �M (!) = Tg � AMand if ! 2 AMg, then f(B(!; t)) = fM�B(!; t)� for every t 2 [0; T ℄. By thePersistene of Identity this implies that�Z T0 f(Bs) dBs�(!) = �Z T0 fM (Bs) dBs�(!);for all ! 2 AM . Thus, for all ! 2 AM we have the Riemann representation�Z T0 f(Bs) dBs�(!)= limn!1 Xtnk�1;tnk2�n f�B(!; tnk�1)�fB(!; tnk )�B(!; tnk�1)g;where the limit is in L2(dPjAM ), i.e.3 ,�������� Z T0 f(Bs) dBs � Xtnk�1;tnk2�n f�Btnk�1�fBtnk �Btnk�1g��������L2(dPjAM ) ! 0:We are now going to demonstrate that the random variableSn � Xtnk�1;tnk2�n f�Btnk�1�fBtnk �Btnk�1gonverges in probability to the random variableS � Z T0 f(Bs) dBs;i.e., for every " > 0; PfjSn � Sj > "g ! 0; as n!1:Take any " > 0 and estimate the required probabilityPfjSn � Sj > "g 6 PfAMg+ P�fjSn � Sj > "g \ AM	= PfAMg+ PjAMfjSn � Sj > "g:The probability PjAMfjSn � Sj > "g is estimated by the Chebyhev inequality,PjAMfjSn � Sj > "g 6 1"2 jjSn � SjjL2(dPjAM) ! 0; as n!1:3The notation "PjAM" refers to the probability measure P, restrited to the set AM , i.e.,whenever � � AM ;PjAMf�g = Pf�g. 8



Thus we have established that for every " > 0 and for every M 2 N,limn!1PfjSn � Sj > "g 6 PfAMg:But sine PfAMg = Pf�M < Tg ! 0; as M !1we have obtained our desired result thatfor every " > 0; limn!1PfjSn � Sj > "g = 0:The Riemann representation Theorem is our key to the Itô Formula, whihis the soure of Stohasti Calulus.2 The Itô FormulaTheorem 3 (The Itô Formula). Let f : R ! R be a funtion with ontinuousseond derivative and let B = fBtgt2[0;T ℄ be one dimensional Brownian motion.ThenP�8t 2 [0; T ℄; f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:In a nutshell the Itô Formula hinges on two things:� The Riemann representation of stohasti integrals;� The Taylor formula from Ordinary Calulus.Proof. We shall use the Taylor Formula from Ordinary alulus: Let f : R ! Rbe a funtion with ontinuous seond derivative, and let x; y 2 R be any realnumbers. Thenf(y) = f(x) + f 0(x)(y � x) + 12f 00(x)(y � x)2 + r(x; y):In this formula the remainder term, r(x; y), is given byr(x; y) = Z yx (y � v)ff 00(v)� f 00(x)g dv;and has the following property: There exists a uniformly ontinuous, boundedfuntion h : R � R ! [0;1) suh that� For every y; x 2 R; jr(x; y)j 6 (y � x)2h(x; y);� For every x 2 R; h(x; x) = 0.For any t 2 [0; T ℄, onsider a sequene f�n(t)g1n=1 of uniform partitions ofthe interval [0; t℄,�n(t) : 0 = tn0 < tn1 < � � � < tnn = t; tnk � tnk�1 = t=n:9



We an represent the di�erene f(Bt) � f(0) in terms of inrements along thepartition �n(t),f(Bt)� f(0) = Xtnk�1;tnk2�n(t)ff(Btnk )� f(Btnk�1)g: (4)To eah of these inrements we apply the Taylor formula, whih yieldsf(Btnk )� f(Btnk�1) = f 0(Btnk�1)(Btnk �Btnk�1) + 12f 00(Btnk�1)(Btnk �Btnk�1)2+ r(Btnk�1 ; Btnk ):Inserting this into the telesoping sum (4) we getf(Bt)� f(0) = S1n + S2n + S3n;where the three sums S1n, S2n and S3n are de�ned byS1n � Xtnk�1;tnk2�n(t) f 0(Btnk�1)(Btnk �Btnk�1);S2n � 12 Xtnk�1;tnk2�n(t) f 00(Btnk�1)(Btnk �Btnk�1)2;S3n � Xtnk�1;tnk2�n(t) r(Btnk�1 ; Btnk ):By the Riemann representation theorem we know that S1n onverges in prob-ability to the stohasti integral R t0 f 0(Bs) dBs as n!1.Next we rewrite the terms in the seond sum S2n, asS2n = S(2;1)n + S(2;2)n ;where S(2;1)n = 12 Xtnk�1;tnk2�n(t) f 00(Btnk�1)(tnk � tnk�1);S(2;2)n = 12 Xtnk�1;tnk2�n(t) f 00(Btnk�1)�(Btnk �Btnk�1)2 � (tnk � tnk�1)	:The �rst of these sums, S(2;1)n (!), onverges, for every ! 2 
, to the ordinaryRiemann-Stieltjes integral 12 R t0 f 00(B(!; s)) ds as n!1.To study the seond term S(2;2)n we hoose an arbitrary " > 0 and onsiderestimating the probability PfjS(2;2)n j > "g, by using the Chebyhev inequality :PfjS(2;2)n j > "g 6 1"2 EfjS(2;2)n j2g:In order to prove that S(2;2)n onverges in probability to zero, we proeed toshow that the expetation EfjS(2;2)n j2g onverges to zero as n!1.10



From this point onward we assume that the funtion f : R ! R has losedand bounded support. Then the ontinuous seond derivative f 00 is bounded onR and onsequently jjf 00jj21 � supx2R jf 00(x)j2 <1:If we make use of this fat, thenEfjS(2;2)n j2g 6 jjf 00jj21 14 Xtnk�1;tnk2�n(t) E���(Btnk �Btnk�1)2 � (tnk � tnk�1)��2	6 jjf 00jj21 14 Xtnk�1;tnk2�n(t) E�(Btnk �Btnk�1)4	= jjf 00jj21 34 Xtnk�1;tnk2�n(t)(tnk � tnk�1)2 = jjf 00jj21 3t24n :From this string of inequalities we see that indeed S(2;2)n onverges in probabilityto zero as n!1.To show that the third term S3n, involving the remainder, r(x; y), from theTaylor formula, onverges in probability to zero we make use of the Cauhy-Shwartz inequality4 . Reall the de�nition of the third sum S3n:S3n � Xtnk�1;tnk2�n(t) r(Btnk�1 ; Btnk );where the funtion (x; y) 7! r(x; y) is suh that there exists a uniformly ontin-uous, bounded funtion h : R � R ! [0;1) suh that� For every y; x 2 R; jr(x; y)j 6 (y � x)2h(x; y);� For every x 2 R; h(x; x) = 0.If we apply the �rst of these properties to S3n we get, by the triangle inequalityfor the absolute value, x 7! jxj,jS3nj 6 Xtnk�1;tnk2�n(t) jr(Btnk�1 ; Btnk )j 6 Xtnk�1;tnk2�n(t) jBtnk �Btnk�1 j2jh(Btnk�1 ; Btnk )j:Taking expetations of both sides of this inequality and using the Cauhy-Shwartz inequality leaves us withEfjS3n jg 6 Xtnk�1;tnk2�n(t) �EfjBtnk �Btnk�1 j4g�1=2�Efjh(Btnk�1 ; Btnk )j2g�1=2= p3tn Xtnk�1;tnk2�n(t) �Efjh(Btnk�1 ; Btnk )j2g�1=24The Cauhy-Shwartz inequality: Let X;Y be random variables suh that EfjXj2g <1and EfjY j2g <1. Then EfjXY jg 6 fEfjXj2gg1=2fEfjY j2gg1=2 :11



By the de�nition of uniform ontinuity of a funtion h : R �R ! [0;1), forevery " > 0 and for every (x; y) 2 R � R there exists5 a Æ(") > 0 suh thatjh(x; y)j < "; whenever jx� yj < Æ("):We an use this knowledge when we split up the expetation Efjh(Btnk�1 ; Btnk )j2gas follows. Let " > 0 be an arbitrary real number.Efjh(Btnk�1 ; Btnk )j2g = Efjh(Btnk�1 ; Btnk )j21fjBtnk�Btnk�1 j<Æ(")gg+ Efjh(Btnk�1 ; Btnk )j21fjBtnk�Btnk�1 j>Æ(")gg: (5)By the uniform ontinuity of the funtion h we know thatEfjh(Btnk�1 ; Btnk )j21fjBtnk�Btnk�1 j<Æ(")gg 6 "2Ef1fjBtnk �Btnk�1 jgg 6 "2:We also know that the funtion h is bounded, whih implies thatjjhjj21 � supx;y2R jh(x; y)j2 <1:Then we an estimate the seond term in (5) byEfjh(Btnk�1 ; Btnk )j21fjBtnk�Btnk�1 j>Æ(")gg 6 jjhjj21Ef1fjBtnk �Btnk�1 j>Æ(")gg= jjhjj21PfjBtnk �Btnk�1 j > Æ(")g:The probability PfjBtnk � Btnk�1 j > Æ(")g is estimated by using the ChebyhevinequalityPfjBtnk �Btnk�1 j > Æ(")g 6 1Æ(")2 EfjBtnk �Btnk�1 j2g = tÆ(")2n:Gathering all of our estimates together we have obtained an estimate of theexpetation of the third sum S3n,EfjS3n jg 6 p3tn Xtnk�1;tnk2�n(t)n"2 + jjhjj21 tÆ(")2no1=2= p3tn"2 + jjhjj21 tÆ(")2no1=2:From this we see that for any given " > 0, if we hoose the integer n to be sobig so that jjhjj21 tÆ(")2n < "2, i.e., n > jjhjj21 tÆ(")2"2 , then EfjS3n jg < p6t". Thisallows us to onlude that the third term S3n onverges in probability to zero,beause sine " > 0 is arbitrary,PfjS3nj > "g 6 1"EfjS3n jg;and we an make EfjS3n jg < "2 if we just hoose the integer n suÆiently large.5The fat that the number Æ(") is the same for every pair (x; y) 2 R� R is ruial and isthe reason for the term "uniform" ontinuity.Had the number Æ depended on both " and the point (x; y) 2 R�R, the funtion h : R�R![0;1) would have been ontinuous. 12



If we gather all of our �ndings we see that, if the funtion f has a ontinuousseond derivative and has a losed and bounded support, then for every �xedt 2 [0; T ℄,f(Bt)� f(0) = S1n + S2n + S3n P�! Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds;i.e., for every �xed t 2 [0; T ℄ and for every funtion f with ontinuous seondderivative and losed and bounded support we haveP�f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:To omplete the proof of the Itô Formula two things remain to be done: First,to remove the requirement that the funtion f should have losed and boundedsupport and seond to "move time inside the probability", i.e., to assert thatP�8 t 2 [0; T ℄; f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:If f is a funtion with ontinuous seond derivative, we an redue onsidera-tion of the Itô Formula with respet to f to the ase we have already disussed,by introduing a loalising sequene f�ng1n=1 for f . This loalising sequenegenerates a sequene of funtions ffng1n=1 eah of whih has ontinuous se-ond derivatives and losed and bounded support. By letting n tend to in�nity,we may the establish the result that, if the funtion f has ontinuous seondderivative, then for every t 2 [0; T ℄,P�f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:As a onsequene of this result, sine there are ountably many rationalnumbers in the interval [0; T ℄,P�8 t 2 [0; T ℄ \ Q; f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1and that the objets on the right- and left hand sides are ontinuous, we anestablish the Itô FormulaP�8 t 2 [0; T ℄; f(Bt) = f(0) + Z t0 f 0(Bs) dBs + 12 Z t0 f 00(Bs) ds� = 1:One observation we an make from the Itô Formula is that sine we know thatwhenever the funtion f is suh that the stohasti proess f 0(B) is an elementof the spae H2, then the stohasti integral proess fR t0 f 0(Bs) dBsgt2[0;T ℄ is aontinuous martingale, the stohasti proess�f(Bt)� f(0)� 12 Z t0 f 00(Bs) ds�t2[0;T ℄13



is a ontinuous martingale. As an appliation, onsider the funtion f(x) =x2=2. Then we obtain the result that12(B2t � t) = Z t0 Bs dBsis a ontinuous martingale, something we previously had to work hard for. Hereit is a mere by-produt of the Ito Formula!
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