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1 Quadratic variation of Brownian motion

Consider the definition of quadratic variation of one-dimensional Brownian mo-
tion over the interval [0,t]:

n—oQ

[B. B = lim Y |B(t}) - B(ti_,)[.
k=1

Apparently, the interesting quantities are the squared increments |B(t3)—B(t}_,)|?
of Brownian motion. What can we say about them? Well, we know a bit about
the increments of Brownian motion, since the definition of Brownian motion
concerns properties of its increments. For example, we know that they are
normally distributed with mean zero and variance t —t}_,, i.e.,

E{[B(ty) — Bty 1)} =t —ti 4.

Thus we expect the quadratic variation [B, B]; to be something like

n

BBl Jim 36—t ) =t 1)

The fact that we actually have equality in (1) is one of the most fundamental
reasults in stochastic calculus with respect to Brownian motion.

Theorem 1. Let {[B, B];}:>0 denote the quadratic variation process of one-
dimensional Brownian motion, B. Then

P{Vt € [0,00), [B, Bl =t} = 1.

The proof which is presented below is very detailed so as to allow the reader
to understand every step of the way. The stochastic calculus presented in this
summer course can be said to rest on three pillars:

1. The quadratic variation of Brownian motion;
2. The construction of the stochastic integral;
3. The It6 Formula.

All three of these will receive a thorough treatment during the summer. We
now present the first of these treatments: The proof of the quadratic variation.



Proof. To begin, we will show that
for every t € [0,00),P{[B, B]; =t} = 1.

For an arbitrary ¢ € [0, c0), consider a sequence 7 (t) = {7, (t)}2; of parti-
tions of the interval [0, ¢]

() 10 =1ty <t7 <--- <th =t,
such that maxi¢r<n (tf —t5_;) = 0, as n — oo. With each partition, m,(t), we
associate a random variable, S,,, defined by

n

Sa =S IB(}) - B#tp_)P.

k=1

These random variables are such that lim,,_,, S,, = [B, B];. We want to show
that [B, B]; = t, which obviously amounts to showing that ¢ = lim,_,~ Sp.
Thus it becomes imperative to investigate the events

{weN:[S,(w)—t >¢e},

for any € > 0. In order for S, to converge to ¢, these events need to be associated
with low probabilities, i.e. P{|Sy(w) — | > €} ~ 0.
By the Chebychev inequality, ! these probabilities can be estimated by

1 1
P{|S, —t| >} < E—Q]E{|Sn —t?} = E—QVar{Sn},

since t = E{S, }, as the following calculation shows.

E(S,} = E{ S B - B( HP} = S R(B@) - Bt}
k=1 k=1

=S ) ==t
k=1

As our next order of business we need to investigate the variance Var{S,}.
Due to the independent increments of Brownian motion, the terms, |B(t}) —
B(t} )], of S,, are independent random variables.

IThe Chebychev inequality: T.et X be any random variable such that F{|X |2} < co. Then
for any a € R and any ¢ > 0,

1 .
PUX —al > ¢} < 5IX —al)
Proof.

E{|X —al?} = B{|X — a]*1{jx ape}} + E{IX —a’1{x qj<cy}
> E{X — al’1{x ape}} 2 " B{l{x a3y} = € P{|X —a| > ¢}



Hence, 2

Var{S,} = ZVar{\B(t,?) - B(tp 1)’}
k=1

= D E{IB(t) - Bti_)|'} — (B{B(t}) — B(tp_y)I*})’
k=1

n

n
= D03 ) (6 ) = 230 )" < 2 (),

We have thus obtained the following estimate of the probability P{|S, —t| > €}:

P{|S,, — t| > e} < 2te2 ). 2
{1Sn— 1] > e} <27 max (1 — ) (2)

~ ‘\n
Since the partitions m, (t) associated with the random variables S,, are such that
max ¢pgn(th —th_;) = 0, as n — 00, we see that the probabilities

P{|S, —t| 2 e} =0, as n — oo.

This result, however, is not sufficient for our purposes since it does not preclude
the existence of sequences {S,,}22 ; jumping in and out of the interval (t—¢, t+¢):

1S — t] = €, [Snit —t| <& |Supz —t] > e,

whereas we want the sequences to stay inside the interval (¢ — e,¢ + ¢) for all
sufficiently large values of n. We just need to work a little bit harder to obtain
our desired result.

For this reason we turn to one of the Borel-Cantelli lemmata:
Let {A,}52, be any sequence of events such that Y .~ P{A,} < co. Then

P{All but finitely many of the events A, occur.} = 1.

If we define the events

Ap={weN:|Sy(w)—t| =€}

3

then by the Borel-Cantelli lemma all we need is to have

iIP’{An} = i]?ﬂsn —t| > e} <oo.
n=1 n=1

But we already have at our disposal an estimate (2) of P{|S, — #| > €} that
might just be sufficient for the sum to be finite:

oo

oo
Zl P{A,} < 2te? Zl 1?;?5‘”“2 —t7 ).
n= n=

2We use the fact that if X is a normally distributed random variable with zero mean and
variance t — s, then B{X%} = 3(t — 5)2 and E{X?} =t — s.



If we choose our sequence of partitions, {m,(t)}32,, in such a way so as to make
the sum Y ° | maxi<r<n (tf — t}_,) finite, then we are done. * Thus we have
obtained that for every € > 0,

P{For all but finitely many n, the events {|S,, — t| < €} occur.} = 1.
This is still not the result that we want, since we want to show that
P{For every € > 0 and for all but finitely many n,{|S, —#| <e}.} = 1.

In order to obtain this, we take a sequence of rational numbers g,, | 0 and for
every such rational number, €,,, we define the set

By, = {For all but finitely many n, the events {|S, — t| < e} occur.}
We know that P{B,,} = 1 for every m > 1 and that
B,, | B = {The sequence S,, converges to t as n — o0},

because €, } 0. Since P{B,,} — P{B} if B,, | B, we have obtained the result
that P{B} =1, i.e.,
P{[B,B]; =t} =1.

Recall that we considered an arbitrary choice of ¢ € [0,0c). Hence, we have

shown that
For any t € [0,00),P{[B,B]; =t} = 1.

All that remains for us to complete the proof of the quadratic variation of
Brownian motion, is to show that

P{For every t € [0,0), [B,B]; =t} = 1.

Suppose that the opposite is true, i.e.
P{For every t € [0, 00),[B,B]; =t} < 1.
Define the event
M = {w € Q: There exists a t € [0, 00) such that [B, B;(w) # t.}.
Then P{M} > 0, because

P{M“} = P{For every t € [0,00),[B, B]; = t} < 1.

3

Choose an wyg € M and consider what this implies. For this wg we have
[B, Bli(wo) # t for some t € [0,00). * There exists a sequence {t,}°, of
rational numbers in [0, c0) such that ¢, — ¢. For each of these rational num-
bers we know that [B, B];, (wo) = t, and since the quadratic variation process
[B, B]s is continuous as a function of s, ® we have

[B, B:, (wo) — [B, Bl:(wo).

3 An example of such a sequence 7(t) is where maxygpgn (B —tF_y) <277

4Recall that any real number can be approximated arbitrarily well by a rational number,
in the sense that if z € R then there exists a sequence of rational numbers {z,}72; € Q such
that z, — x.

5Because the Brownian motion, By, is continuous then so is the quadratic variation [B, B]s.



But then we have obtained the result that
[B, B];, (wo) =tn — ¢

and
(B, Bls, (wo) = [B, Blu(wo) # 1.

which obviously is a contradiction. Thus we are forced to conclude that P{M} =
0i.e.,
P{For every t € [0,00),[B, B]; =t} = 1.

O

A consequence of this theorem is that the paths of Brownian motion are of in-
finite variation on any interval [0, #]. The fact that the integral fof B(s,w) dB(s,w)
does not exists as a Stieltjes integral for every w € 2, is due to the fact that
sample paths of Brownian motion have infinite variation on [0, ¢]; a fact which
we have seen stems from our theorem on the quadratic variation of Brownian
motion. The desire to build an integration theory for stochastic processes that
accommodates for example Brownian motion, has resulted in the subject of
stochastic calculus.



