
Stohasti integral proessAnders MusztaJune 28, 20051 The Ito integral proessWe have often emphasised the fat that the stohasti integral I(f) is a randomvariable. In this setion we shall try to onstrut a stohasti proess out of theindividual random variables.For this purpose we pik an f 2 H2 arbitrarily and we let T > 0 be a �xedpoint of [0;1). Then we know that there exists a unique random variableI(f) = Z T0 f(�; s) dBsin L2(dP) whih we all a stohasti integral.If we introdue a olletion fmtgt2[0;T ℄ of trunation funtions mt : 
 �[0; T ℄! R de�ned by mt(!; s) = (1; s 2 [0; t℄;0; s =2 [0; t℄;then the stohasti proess mtf 2 H2, as soon as f 2 H2. Thus there exists aunique random variableI(mtf) = Z T0 mt(�; s)f(�; s) dBs � Z t0 f(�; s) dBsin L2(dP). Thus, the problem of onstruting a stohasti integral proess seemsto be solved by simply de�ning the proess to be the olletion fI(mtf)gt2[0;T ℄orresponding to the olletion of trunation funtions fmtgt2[0;T ℄, right?WRONG!Why, what is wrong with this onstrution?The answer is that the stohasti integral I(f) is a very fuzzy objet due tothe problem of uniqueness with L2(dP)-de�ned objets as we disussed in Note??.The fat that I(mtf) exists as a unique random variable in L2(dP) impliesthat on subsets At � 
 suh that PfAtg = 0, I(mtf) is not de�ned in a uniqueway. Sine PfAtg exists, eah set, At,is FT -measurable, i.e., At 2 FT . Thus wehave an unountable olletion fAtgt2[0;T ℄ of elements in the sigma-algebra FT .If we onsider their union A = [t2[0;T ℄At;1



we annot tell if A 2 FT or not. It might atually be possible that A = 
, whihimplies that "For every ! 2 
, there exist at least one point t 2 [0; T ℄ suh thatI(mtf) is not a random variable. (A random variable has to be de�ned in aunique way, and I(mtf) is not de�ned in a unique way.)"Thus it might be possible that there is at least one t 2 [0; T ℄ that preventsthe olletion fI(mtf)gt2[0;T ℄ from being a stohasti proess. An easy way outwould of ourse have been to disregard suh points t 2 [0; T ℄, but the problemis that we don't know where they are. Neither do we know for a fat if indeedA = 
. All these unertainties make us try a di�erent approah in �nding TheStohasti Integral Proess,�Z t0 f(�; s) dBs�t2[0;T ℄:The following theorem gets us as lose as we need to get in order to have astohasti integral proess whih we an use in stohasti alulus. The pointis that we do not need a stohasti integral I(mtf)(!) to be de�ned for every! 2 
, only for suÆiently many ! 2 
, i.e., for ! 2M , where M � 
 is a setof probability one, PfMg = 1. Here then is the theorem.Theorem 1 (Stohasti integral proess). For any stohasti proess f 2H2; there exists a ontinuous martingale fXtgt2[0;T ℄ with respet to the �ltrationfFtgt2[0;T ℄, suh thatfor every t 2 [0; T ℄; PfXt = I(mtf) g = 1:The �ltration, fFtgt2[0;T ℄, is the natural �ltration generated by the Brownianmotion, i.e., Ft = �(fBs : s 6 tg).This is quite remarkable! Not only do we get our stohasti integral proess,but it is also a ontinuous martingale!The key result of this theorem is the Doob maximal inequality whih we nowpresent.Theorem 2 (The Doob maximal inequality). Let fMng1n=1 be a positivesub-martingale and " > 0 any real number. ThenPn sup06 k6nMk > "o 6 1"2 EfM2ng:The Doob maximal inequality is a onsiderable improvement of the Cheby-hev inequality, 1 but then again the Chebyhev inequality applies to any ran-dom variableMn suh that EfjMn j2g <1, whereas the Doob maximal inequal-ity "only" applies to positive sub-martingales.De�nition 1 (Sub martingale). A positive sub-martingale is a pair (fMng1n=1; fFng1n=1)where, for every 1 6 m 6 n,� EfjMn jg <1;1Reall the Chebyhev inequality: For any random variable Mn suh that EfjMn j2g <1and for any " > 0 PfjMnj > "g 6 1"2 EfjMn j2g:2



� 0 6Mn 2 Fn;� EfMn jFmg >Mm.Proof of Theorem 1. Let f 2 H2 be an arbitrary stohasti proess. Then, bythe Approximation theorem ofH2, there exists a sequene of stohasti proessesffng1n=1 2 H20 suh thatjjfn � f jjL2(dP�dt)! 0 as n!1:Let t 2 [0; T ℄ be an arbitrary real number. Then, for eah of the proessesfn 2 H20, the proesses mtfn 2 H20. Sine the stohasti integral I(g) is de�nedexpliitly for any stohasti proess g 2 H20, the stohasti integral I(mtfn) isde�ned expliitly.Let 0 = t0 < t1 < � � � < tn = Tbe a partition of the interval [0; T ℄, assoiated with the stohasti proess fn.Our arbitrary number t 2 [0; T ℄ has to lie between some tk < t 6 tk+1.Xnt (!) � I(mtfn)(!) = k(!)fB(t)�B(tk)g+ kXi=1 i(!)fB(ti)�B(ti�1)g:Sine Brownian motion is a ontinuous martingale with respet to its natural�ltration, fFtgt2[0;T ℄, so is, for every n 2 N, fXnt gt2[0;T ℄ a ontinuous martingalewith respet to the same �ltration, fFtgt2[0;T ℄.Take any two m;n 2 N and de�ne the ontinuous stohasti proess M =fMtgt2[0;T ℄ by Mt � jXnt �Xmt j:Sine the funtion '(x) = jxj is onvex, by the Jensen inequality for onditionalexpetation 2 we have, for any s 6 t,'�EfXnt �Xmt jFsg� 6 Ef'(Xnt �Xmt )jFtg;i.e., jEfXnt �Xmt jFsgj 6 EfMt jFsg:But fXnt �Xmt gt2[0;T ℄ is a martingale with respet to fFtgt2[0;T ℄, soEfXnt �Xmt jFsg = Xns �Xms ;implying thatMs = jXns �Xms j = jEfXnt �Xmt jFsgj 6 EfMt jFsg;i.e., Mt is a positive sub-martingale.2The Jensen inequality for onditional expetation: Let X : 
! R be any random variableand F any sigma-algebra of subsets of 
. If ' : R! R is a onvex funtion then'(EfXjFg) 6 Ef'(X)jFg:3



Wemay therefore apply the Doob maximal inequality to the proess fMtgt2[0;T ℄to get P� supt2[0;T ℄Mt > "� 6 1"2 EfM2T g;where " > 0 is an arbitrary real number. Now,EfM2T g = EfjXnT �XmT j2g = EfjI(mT fn)� I(mT fm)j2g = EfjI(fn )� I(fm)j2g= jjI(fn � fm)jjL2(dP) = jjfn � fmjjL2(dP�dt);where we have used the Itô isometry for proesses fn; fm 2 H20, linearity of thestohasti integral I(�) and the fat that mT g = g, for any stohasti proess g.Reall that the sequene of proesses ffng1n=1 2 H20 is suh thatjjfn � f jjL2(dP�dt)! 0 as n!1:This implies thatjjfn � fmjjL2(dP�dt) ! 0; as n;m!1 independently of eah other:Beause n;m!1 independently of eah other, we may �x the value of m andlet n!1. Then, for every hoie of m we getjjfn � fmjjL2(dP�dt)! 0; as n!1:So, if we hoose n big enough we an make jjfn � fmjjL2(dP�dt) be as small aswe like. Let us say that we want jjfn � fmjjL2(dP�dt) 6 2�3m: Then there is aninteger, Nm, suh that whenever n > Nm we have jjfn � fmjjL2(dP�dt) 6 2�3m.Sine this inequality holds for every n > Nm, we getmaxn>Nm jjfn � fmjjL2(dP�dt) 6 2�3m:Every value of m is thus assoiated with an integer Nm, i.e., we have obtaineda sequene fNmg1m=1. We may hoose the values of Nm to be inreasing, i.e.,Nm < Nm+1 for every m 2 N. These onsiderations allow us to express theresult from the Doob maximal inequality asP� supt2[0;T ℄ jXnt �Xmt j > "� 6 1"2 jjfn � fmjjL2(dP�dt):Sine this inequality is valid for any n;m 2 N we may hoose n and m from thesequene fNkg1k=1. We hoose m = Nk and n = Nk+1. Thus we getP� supt2[0;T ℄ jXNk+1t �XNkt j > "� 6 1"2 jjfNk+1 � fNk jjL2(dP�dt)6 1"2 maxn>Nk jjfn � fNk jjL2(dP�dt) 6 2�3k"2 :This inequality holds for every " > 0, we may hoose " so that "�22�3k = 2�k,i.e., we hoose " = 2�k. Thus we have the inequalityP� supt2[0;T ℄ jXNk+1t �XNkt j > 2�k� 6 2�k:4



De�ne the eventsAk � f! 2 
 : supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j > 2�kg:For these events we have the probabilities PfAkg 6 2�k. If we onsider the sumP1k=1 PfAkg we get 1Xk=1PfAkg 6 1Xk=1 2�k <1:Then we may apply the Borel-Cantelli lemma to dedue that the eventA � f! 2 
 : All but �nitely many of the events Ak ourghas probability one. Consequently, for every ! 2 A, there exists a �nite randominteger C(!) suh that for every k > C(!), the events Ak our, i.e.,for every k > C(!); supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j < 2�k:Reall that for every n 2 N, fXnt gt2[0;T ℄ is a ontinuous stohasti proess.(It is also a martingale, but we do not need this fat for the moment.) The fatthat fXnt gt2[0;T ℄ is a ontinuous proess means that for every ! 2 
, the mapt 7! Xnt (!) is a ontinuous funtion on the interval [0; T ℄.The olletion, C([0; T ℄), of all ontinuous funtions on the interval [0; T ℄ isa omplete normed spae, i.e., a Banah spae, where the norm, jjgjj, is givenby jjgjj � supt2[0;T ℄ jg(t)j;for any element g 2 C([0; T ℄). We will use the following theorem, valid in anyBanah spae:Every absolutely onvergent series in a Banah spae is onvergent:This implies that if fgng1n=1 2 C([0; T ℄) is a sequene of ontinuous funtionssuh that 1Xk=1 jjgkjj <1 (Absolutely onvergent series);then P1k=1 gk is onvergent, i.e., it is a ontinuous funtion on [0; T ℄.If we hoose any ! 2 A, the funtions fgkg1k=1, de�ned bygk(t) � XNk+1t (!)�XNkt (!);are elements of the Banah spae C([0; T ℄). ThenmXk=1 gk(t) = mXk=1nXNk+1t (!)�XNkt (!)o = XNm+1t (!)�XN1t (!)and 1Xk=1 gk(t) = limm!1XNm+1t (!)�XN1t (!):5



Now, if P1k=1 jjgkjj < 1, then limm!1XNm+1t (!) � XN1t (!) is a ontinuousfuntion on [0; T ℄, i.e., limm!1XNm+1t (!) is a ontinuous funtion on [0; T ℄.(Reall that we already know that XN1t (!) is a ontinuous funtion.)All we need to do is to hek whether the ondition P1k=1 jjgkjj < 1 issatis�ed.1Xk=1 jjgkjj = 1Xk=1 supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j= C(!)�1Xk=1 supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j+ 1Xk=C(!) supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j6 C(!)�1Xk=1 supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j+ 1Xk=C(!) 2�k:Beause the funtions t 7! XNk+1t (!) � XNkt (!) are ontinuous and the inter-val [0; T ℄ is losed and bounded, the maximum value of XNk+1t (!) � XNkt (!)is �nite and attained for some t 2 [0; T ℄. Thus, eah of the terms in the sumPC(!)�1k=1 supt2[0;T ℄ jXNk+1t (!) � XNkt (!)j are �nite and sine there is a �nitenumber, C(!)�1, of terms, the sum is �nite. This implies thatP1k=1 jjgkjj <1and onsequently, for every ! 2 A, limm!1XNm+1t (!) is a ontinuous funtionon [0; T ℄. Denote this funtion by X(�)(!), i.e., the map t 7! Xt(!) is a ontin-uous funtion.Reall that Xnt (!) � I(mtfn)(!) and de�ne the eventA0 � f! 2 
 : limm!1 I(m(�)fNm)(!) is a ontinuous funtion on [0; T ℄:g:We have seen that, if ! 2 A then ! 2 A0, i.e., A � A0. Sine PfAg = 1 we get1 = PfAg 6 PfA0g 6 1;i.e. PfA0g = 1.For every �xed t 2 [0; T ℄, fXNmt g1m=1 is a sequene of random variables onthe probability spae (
;F ;P) where Brownian motion is de�ned. Then theobjet Xt � limm!1XNmt is also a random variable on the same probabilityspae (
;F ;P). Sine this holds for every t 2 [0; T ℄ we see that fXtgt2[0;T ℄is a olletion of random variables on the spae (
;F ;P), i.e., fXtgt2[0;T ℄ is astohasti proess.We shall investigate whether the stohasti proess fXtgt2[0;T ℄ is a mar-tingale with respet to the natural �ltration, fFtgt2[0;T ℄, of Brownian motion.In order for it to be a martingale is has to satisfy the properties, for everys 6 t 2 [0; T ℄,� EfjXt jg <1;� Xt 2 Ft;� EfXt jFsg = Xs.Sine for every �xed t 2 [0; T ℄, fXNmt g1m=1 2 Ft and Xt = limm!1XNmt ,Xt 2 Ft. 6



Next, by the de�nition of variane we haveVar[jXtj℄ = EfjXt j2g � (E [jXt j℄)2:Sine for every random variable Y , Var[Y ℄ > 0, we dedue thatEfjXt jg 6 (EfjXt j2g)1=2;whih shows that if we an establish that Xt is an objet in L2(dP), thenEfjXt jg < 1. We know that for every ! 2 A0, Xt(!) = limm!1XNmt (!),where eah of the random variables XNmt are elements of L2(dP). Sine L2(dP)is omplete, the limit limm!1XNmt is a random variable in L2(dP). This ran-dom variable is de�ned on the whole of 
, and thus may not oinide with therandom variable Xt. But we know that it does oinide on the subset A0 of 
and that A0 has probability one. Thus we may apply our knowledge on unique-ness in L2(dP) to realise that, as far as uniqueness in L2(dP) is onerned, therandom variable Xt is an element of L2(dP). Consequently EfjXt jg <1.In order to be able to prove the martingale property of fXtgt2[0;T ℄, i.e.,for any s 6 t, EfXt jFsg = Xs, we will employ the onditional version of theDominated Convergene theorem: If, for every n 2 N, 8! 2 
; jYn(!)j 6 V (!),EfV g <1 and PfYn ! Y g = 1, then for any sigma-algebra, G, of subsets of 
P�EfYn jGg ! EfY jGg	 = 1:For an arbitrary t 2 [0; T ℄ we de�ne Yn � XNnt and Y � Xt. We know thatPfYn ! Y g = 1. Further, we have the expliit representation of Yn for every! 2 
, given byYn(!) = k(!)fBt(!)�Btk(!)g+ kXi=1 i(!)fBti(!)�Bti�1(!)g;from whih we dedue thatjYn(!)j 6 jk(!)jjBt(!)�Btk(!)j+ kXi=1 ji(!)jjBti(!)�Bti�1(!)j � V (!):By the Cauhy-Shwartz inequality we getEfV g2 6 Efjk j2gEfjBt �Btk j2g+ kXi=1 Efji j2gEfjBti �Bti�1 j2g <1;beause Efji j2g <1 for every i 2 N.Thus, all the prerequisites are satis�ed for us to be able to apply the on-ditional version of the Dominated Convergene Theorem. We dedue that forevery t 2 [0; T ℄, P�EfXNnt jFsg ! EfXt jFsg	 = 1:Let ! 2 A0 and s 6 t 2 [0; T ℄ be arbitrary. ThenXNns (!) = EfXNnt jFsg(!)! EfXt jFsg(!);7



whereas, at the same time XNns (!)! Xs(!);whih by the uniqueness of limits implies thatEfXt jFsg(!) = Xs(!); for every ! 2 A0:Sine PfA0g = 1, PfEfXt jFsg = Xsg = 1;whih is all that is required for us to establish that the stohasti proessfXtgt2[0;T ℄ is a ontinuous martingale.The �nal piee of the proof of the theorem demonstrate that for every t 2[0; T ℄ the random variable whih we have denote by Xt is equal to the stohastiintegral I(mtf) in the sense of L2(dP), where f 2 H2 is the proess we hose atthe beginning of the proof on page 3.Beause the sequene ffng1n=1 2 H20 approximates the proess f in L2(dP�dt), we know that the sub-sequene ffNng1n=1 is suh that for every t 2 [0; T ℄,jjmtfNn �mtf jjL2(dP�dt) ! 0; as n!1:By employing the Itô isometry for proesses in H2 we �nd thatjjI(mtfNn)� I(mtf)jjL2(dP) = jjmtfNn �mtf jjL2(dP�dt)! 0; as n!1:Sine we have already established the fat that XNnt = I(mtfNn) is suh thatjjXNnt �XtjjL2(dP)! 0; as n!1;by the triangle inequalityjjI(mtf)�XtjjL2(dP) 6 jjXNnt �XtjjL2(dP)+ jjI(mtfNn)� I(mtf)jjL2(dP) ! 0;whih tells us that jjI(mtf)�XtjjL2(dP) = 0;i.e., I(mtf) and Xt are equal as elements in the spae L2(dP), and this holdsfor every t 2 [0; T ℄.Thus for every t 2 [0; T ℄;PfI(mtf) = Xtg = 1and we know that fXtgt2[0;T ℄ is a ontinuous martingale.The proof of Theorem 1 has been the longest so far and therefore any readerwho has followed the proof to its onlusion is to be ommended. We hope thatthe reader has been able to follow the reasoning in every step of the way, sinethis was the reason for presenting suh a lengthy proof in the �rst plae. Again,we thank the reader for bearing with us this far!Remark 1. It is possible to strengthen the onlusion of Theorem 1 to thestatement that: If f 2 H2 thenPfFor every t 2 [0; T ℄; Xt = I(mtf)g = 1;8



by using the same tehnique as we did to establish that for the quadrati vari-ation of Brownian motion we havePfFor every t 2 [0; T ℄; [B;B℄t = tg = 1:Sine the proof of Theorem 1 is long enough, this last part was left out.Beause we now have established that when f is a stohasti proess fromthe spae H2 then the stohasti integral I(f) is a ontinuous martingale, awhole new world is opened up to us. Indeed we may now develop the theory ofstohasti alulus in earnest.The spae H2 will be our "sandbox" in whih we play the game of stohas-ti alulus. The smaller spae H20 � H2 will be used when we need to haveexpliit representations of the stohasti integrals. Later on we shall see that,unfortunately, the spaeH2 is not large enough if we want to do serious stohas-ti alulus. For this we shall have to onsider a spae denoted L2lo(dP). Thespaes of stohasti alulus are thusH20 � H2 � L2lo(dP):Let us ollet our �ndings so far. We know the following fats:� If T 2 [0;1) is a �xed number and f 2 H20 a stohasti proess, we havean expliit onstrution of a random variable, I(f), whih we all thestohasti integral of f over the interval [0; T ℄ with respet to Brownianmotion;� If f 2 H20 the we have the Itô isometry : jjI(f)jjL2(dP) = jjf jjL2(dP�dt);� Every stohasti proess f 2 H2 an be approximated by a sequene ofstohasti proesses ffng1n=1 2 H20 in the sense that jjfn � f jjL2(dP�dt) !0; as n!1;� If T 2 [0;1) is a �xed number and f 2 H2 a stohasti there exists aunique random variable, I(f), in L2(dP) alled the stohasti integral off over the interval [0; T ℄ with respet to Brownian motion;� If f 2 H2 the we have the Itô isometry : jjI(f)jjL2(dP) = jjf jjL2(dP�dt);� If f 2 H2 is a stohasti proess, then there exists a ontinuous martingale,fXtgt2[0;T ℄ with respet to the natural �ltration of Brownian motion, suhthat PfFor every t 2 [0; T ℄; Xt = I(mtf)g = 1.Although we have done onsiderable work in establishing these results, theyare not suÆient for us to be able to do stohasti alulus in the same manneras we do ordinary alulus.The result whih enables us to do ordinary alulus is The FundamentalTheorem of Calulus ; A result whih onnets integration and di�erentiation ofa funtion: F (b)� F (a) = Z ba F 0(x) dx:Without this theorem, any expliit omputation of of an integral would havehad to be redued to working from the de�nition of the integral; Sine this is9



so time onsuming, the subjet of Ordinary Calulus would probably not havedeveloped at all if it hadn't been for the Fundamental Theorem of Calulus.The same thing holds for the subjet of Stohasti Calulus. The orrespond-ing result to the Fundamental Theorem of Calulus in Stohasti Calulus is TheItô Formula. This theorem will be our next goal to establish. But before we dothat, let us onsider the expliit omputation of a stohasti integral proess byusing the tools we have available at the moment.(The reason we do this omputation is to show just how time onsuming itan be if we annot use "higher properties" of stohasti integrals, like the ItôFormula.)2 An expliit omputationWe shall onsider the stohasti integral proess I(mtf) orresponding to theproess f 2 H2, de�ned byfor every s 2 [0; T ℄; f(!; s) = Bs(!);i.e., the Brownian motion proess.(The veri�ation that the Brownian motion B 2 H2 is left as an exeriseto the reader! We have bigger �sh to fry!) Beause B 2 H2, we know bythe Approximation Theorem that there exists a sequene fBng1n=1 of proessesBn 2 H20 suh that jjB � BnjjL2(dP�dt) ! 0; as n ! 1: These proesses aregiven expliitly as Bn(!; t) � nXk=1 k(!)1(tk�1;tk℄(t);where k(�) are Ftk�1-measurable and Ef2kg <1. Beause we are approximat-ing Brownian motion itself and fFtgt2[0;T ℄ is the natural �ltration of Brownianmotion, the requirement that the oeÆients k(�) be Ftk�1-measurable suggestthat we should hoose k(!) � B(!; tk�1):Then Ef2kg = EfB2tk�1 g = tk�1 < 1 and the approximations to Brownianmotion beome Bn(!; t) � nXk=1B(!; tk�1)1(tk�1;tk℄(t):We know on�rm that, indeed, jjB � BnjjL2(dP�dt) ! 0; as n ! 1: Beforewe ommene with the alulation, note that sine 0 = t0 < t1 < � � � < tn = T ,and we know that the point t has to lie somewhere in the interval [0; T ℄, thereis an interval (tk�1; tk℄ whih ontains the point t. Therefore we have that1 =Pnk=1 1(tk�1;tk℄(t) and onsequentlyB(!; t) = B(!; t) � 1 = nXk=1B(!; t)1(tk�1;tk℄(t):10



jjB �BnjjL2(dP�dt) = Z
�[0;T ℄ jB(!; t)�Bn(!; t)j2dP(!)� dt= Z
�[0;T ℄ ���� nXk=1fB(!; t)�B(!; tk�1)g1(tk�1;tk℄(t)���� 2dP(!)� dt= Z
�[0;T ℄ nXk=1 jB(!; t)�B(!; tk�1)j21(tk�1;tk℄(t) dP(!)� dt= nXk=1 Z tktk�1 EfjBt �Btk�1 j2g dt = nXk=1 Z tktk�1(t� tk�1) dt= 12 nXk=1(tk � tk�1)2:If we hoose the uniform partition of [0; T ℄, i.e., tk � kTn , we getnXk=1(tk � tk�1)2 = T 2n2 nXk=1 k2 < T 2n2 1Xk=1 k2 = �26 T 2n2 ;and thus jjB �BnjjL2(dP�dt) < �26 T 2n2 ! 0; as n!1:By using the uniform partition of the interval [0; T ℄ we have onstruted anapproximating sequene in H20 of Brownian motion.Note 1. There are many approximation sequenes ffng1n=1 2 H20 to a proessf 2 H2. We have found one of these for approximating Brownian motion. Thatis all we need!By using the trunation funtions fmtgt2[0;T ℄ and the fat that mtBn is anapproximation to mtB, for every t 2 [0; T ℄, in the sense thatjjmtB �mtBnjjL2(dP�dt)! 0; as n!1;we know that the stohasti integral I(mtB) is approximated by the sequenefI(mtBn)g1n=1 in the sense thatfor every t 2 [0; T ℄; jjI(mtB)� I(mtBn)jjL2(dP)! 0; as n!1:Beause we have an expliit onstrution of the stohasti integrals I(mtBn),we an say a bit more regarding the struture of the stohasti integral I(mtB).Beause the point t has to lie somewhere in the partition 0 = t0 < t1 < � � � <tn = T , there exists an integer k(t) 2 f0; : : : ; ng suh that t 2 [tk(t); tk(t)+1℄:Then I(mtBn)(!) = B(!; tk(t))fB(!; t)�B(!; tk(t))g+ k(t)Xi=1 B(!; ti�1)fB(!; ti)�B(!; ti�1)g:We abbreviate B(!; ti) as Bi and onsider the sum Pk(t)i=1 Bi�1fBi �Bi�1g:11



By using the elementary fat that for any x; y 2 R,2xy = (x+ y)2 � x2 � y2;we get 2Bi�1(Bi �Bi�1) = B2i �B2i�1 � (Bi �Bi�1)2;and onsequentlyk(t)Xi=1 Bi�1(Bi �Bi�1) = 12 k(t)Xi=1(B2i �B2i�1)� 12 k(t)Xi=1(Bi �Bi�1)2= B2k(t)2 � 12 k(t)Xi=1(Bi �Bi�1)2Sine we are using a uniform partition of [0; T ℄, we know that tk(t)+1�tk(t) =Tn ; hene tk(t) ! t, as n!1. We know also that there exists a set A � 
 havingprobability one, PfAg = 1, suh that if ! 2 A then every funtion t 7! B(!; t)is ontinuous and the quadrati variation of Brownian motion t 7! [B;B℄t(!) issuh that for every t 2 [0; T ℄, [B;B℄t(!) = t. For every ! 2 A, the quadrativariation [B;B℄t(!) is de�ned as the limitlimn!1 nXi=1fB(!; ti)�B(!; ti�1)g2:These two fats ombine to give that for every ! 2 A,k(t)Xi=1 B(!; ti�1)fB(!; ti)�B(!; ti�1)g ! B(!; t)22 � t2 ; as n!1:Beause Brownian motion has independent inrements and PfB(0) = 0g =1, we getEh��fB(tk(t))�B(0)gfB(t)�B(tk(t))g��2i = E�jB(tk(t))�B(0)j2�E�jB(t)�B(tk(t))j2�= tk(t)(t� tk(t)) 6 tTn ! 0; as n!1:If we gather our ahievements so far we see that for all ! in a set of probabilityone, I(mtBn)(!)! B(!; t)22 � t2 ; as n!1:Sine we also know that on a set of probability one I(mtBn)! I(mtB), we have,by uniqueness in the spae L2(dP), obtained the result that I(mtB) = 12 (B2t �t).If we denote the stohasti integral I(mtB) by R t0 Bs dBs we have obtained byexpliit alulation the representationZ t0 Bs dBs = 12(B2t � t): (1)12



Note 2. The right-hand side, 12 (B2t � t), of equation (1) agrees with the left-hand hand side only on a set of probability one. This set annot be spei�ed. Allwe know is that it exists. Therefore is makes no sense to pik a ertain ! 2 
and ask whether �R t0 Bs dBs�(!) equals 12 (B2t � t)(!).But, if we onsider a bunh of !s, then we know that for most of these !swe do have equality between the right- and the left-hand sides of equation (1).This probably seems onfusing, but the apparent ontradition lies at thevery heart of probability theory. By its very nature, probability theory does notonsider individual points, !, in the spae 
; it only onsiders olletions ofpoints. That is why we needed to introdue the onept of a sigma-algebra ofsubsets of 
, remember!The representation in (1) is very useful when we want to simulate the on-tinuous martingale R t0 Bs dBs, beause all we need to do is to simulate Brownianmotion fBtg[0;T ℄ and ompute the right-hand side of (1) for eah simulation.Then, most of our simulated trajetories of 12 (B2t � t) will oinide with thestohasti integral R t0 Bs dBs .
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