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1 The Ito integral process

We have often emphasised the fact that the stochastic integral I(f) is a random
variable. In this section we shall try to construct a stochastic process out of the
individual random variables.

For this purpose we pick an f € H? arbitrarily and we let T > 0 be a fized
point of [0,00). Then we know that there exists a unique random variable

—/OTf(-,s)dB

in L2(dP) which we call a stochastic integral.
If we introduce a collection {my};eo,r) of truncation functions m; : Q x

[0,T] — R defined by
1, ;
m,t(b.),S) = ' °c [07t]’
0, s¢][0,1],

then the stochastic process m;f € H?, as soon as f € H2. Thus there exists a
unique random variable

I(myf) = /m, dB—/f

in L?(dP). Thus, the problem of constructing a stochastic integral process seems
to be solved by simply defining the process to be the collection {1(m;f)}iejo, 7
corresponding to the collection of truncation functions {m;}c[o, 1), right?

WRONG!

Why, what is wrong with this construction?

The answer is that the stochastic integral I(f) is a very fuzzy object due to
the problem of uniqueness with 2(dP)-defined objects as we discussed in Note
79

The fact that I(m;f) exists as a unique random variable in L?(dP) implies
that on subsets 4; C 2 such that P{A;} = 0, I(m.f) is not defined in a unique
way. Since P{A;} exists, each set, A;,is Fp-measurable, i.e., A, € Fp. Thus we
have an uncountable collection {A; };c(o 7] of elements in the sigma-algebra Fr.
If we consider their union

= U 4

t€[0,T]



we cannot tell if A € Fp or not. It might actually be possible that A = €2, which
implies that ”For every w € ), there exist at least one point ¢ € [0, T'] such that
I(myf) is not a random variable. (A random variable has to be defined in a
unique way, and I(m;f) is not defined in a unique way.)”

Thus it might be possible that there is at least one ¢ € [0, T] that prevents
the collection {I(m;f)}icjo,7) from being a stochastic process. An easy way out
would of course have been to disregard such points ¢ € [0,T], but the problem
is that we don’t know where they are. Neither do we know for a fact if indeed
A = Q. All these uncertainties make us try a different approach in finding The
Stochastic Integral Process,

t
{/ f(-,s)st} .
Jo t€[0,T]

The following theorem gets us as close as we need to get in order to have a
stochastic integral process which we can use in stochastic calculus. The point
is that we do not need a stochastic integral I(m;f)(w) to be defined for every
w € Q, only for sufficiently many w € Q, i.e., for w € M, where M C Q) is a set
of probability one, P{M} = 1. Here then is the theorem.

Theorem 1 (Stochastic integral process). For any stochastic process f €
H2, there exists a continuous martingale {Xt}repo, 1) with respect to the filtration

{Fi}tero,m, such that
for every t € [0,T], P{ X; = I[(m.f) } = 1.

The filtration, {Fi}icpo,1), is the natural filtration generated by the Brownian
motion, i.e., Fx = o({Bs : s < t}).

This is quite remarkable! Not only do we get our stochastic integral process,
but it is also a continuous martingale!

The key result of this theorem is the Doob mazimal inequality which we now
present.

Theorem 2 (The Doob maximal inequality). Let {M,}>2, be a positive
sub-martingale and € > 0 any real number. Then

IF’{ sup My > z—:} < %E{Mﬁ}
0<k<n €

The Doob maximal inequality is a considerable improvement of the Cheby-
chev inequality, ! but then again the Chebychev inequality applies to any ran-
dom variable M,, such that E{|M,,|*} < oo, whereas the Doob maximal inequal-
ity "only” applies to positive sub-martingales.

Definition 1 (Sub martingale). A positive sub-martingale is a pair ({ My}, {Fn}2;)
where, for every 1 < m < n,

o E{|M,[} < oo;

IRecall the Chebychev inequality: For any random variable M,, such that E{|M,,|?} < oo
and for any £ > 0

1
P{|Mn| > e} < E—QE{\MnP}n



e 0 < Mn € -7:1’7,7'
o E{M,|Fmn} > M,,.

Proof of Theorem 1. Let f € H? be an arbitrary stochastic process. Then, by
the Approximation theorem of 72, there exists a sequence of stochastic processes
{fn}5e, € HZ such that

an - .fHL2(d]P’><dt) — 0 asn — oo.

Let t € [0,T] be an arbitrary real number. Then, for each of the processes
fn € H2, the processes m; f,, € H3. Since the stochastic integral I(g) is defined
explicitly for any stochastic process g € H32, the stochastic integral I(myf,) is
defined explicitly.
Let
O=tog<t1 <---<t, =T

be a partition of the interval [0, 7], associated with the stochastic process f,.
Our arbitrary number ¢ € [0, 7] has to lie between some ¢ < t < tg41.

k

X['(w) = I(mifa) (@) = cr(@){B(t) = B(te)} + Y ci(@){B(t:) — B(ti-1)}.

i=1

Since Brownian motion is a continuous martingale with respect to its natural
filtration, {F };eo,17, so is, for every n € N, { X} };¢[0,7) a continuous martingale
with respect to the same filtration, {F;}scjo,7]-

Take any two m,n € N and define the continuous stochastic process M =

{Mt}te[o,T] by
M; = \Xt” — Xtm|

Since the function ¢(x) = |z| is convex, by the Jensen inequality for conditional
expectation 2 we have, for any s < ¢,

e(B{X] — X" 7)) < E{o(X) — X[ F

ie.,

[E{X — X[\ T} < B{M¢ |7}
But {X{ — X{"};¢[0,77 is a martingale with respect to {F;}sef0,17, 50
B{X[ — X" Fe} = X7 = X7,
implying that
M, = |X{ = X' = [E{XY — X7 Fs | < B{M,|F},

i.e., M; is a positive sub-martingale.

2The Jensen inequality for conditional expectation: Let X : Q — R be any random variable
and F any sigma-algebra of subsets of Q. If ¢ : R — R is a convex function then

p(R{X[F}) < B{o(X)[F}.



We may therefore apply the Doob mazimal inequality to the process { My }4cio, 1
to get

1
IP{ sup M; > 5} < S E{M7},
te[0,7] €

where € > 0 is an arbitrary real number. Now,

E{M7}} = B{|X} — X|?} = E{|I(mq fn) — I(mr fm)|*} = E{I(fn) — I(fm)*}
= 1I(fu = fm)llL2apy = |1fn = fmllr2(ap < )

where we have used the It6 isometry for processes f,, fm € Hi, linearity of the
stochastic integral I(-) and the fact that myg = g, for any stochastic process g.
Recall that the sequence of processes {f,}5°, € Hj is such that

an _fHLQ(d]P’xdt) — 0 asn — oo.

This implies that
[ fr = fmllL2(apxar) = 0, as n,m — oo independently of each other.

Because n, m — oo independently of each other, we may fix the value of m and
let n — oo. Then, for every choice of m we get

an - meLz(d]P’th) — 0, as n = .

So, if we choose n big enough we can make ||f, — fm||£2(apxar) be as small as
we like. Let us say that we want [|fn, — fmll£2(ap xat) < 273m Then there is an
integer, Ny,, such that whenever n > N,,, we have ||f, — fm|l12(apxar) < 27°™.
Since this inequality holds for every n > N,,, we get

ma — <27%m,

n>N?fn | fn meL?(d]det) X

Every value of m is thus associated with an integer NN,,, i.e., we have obtained
a sequence {N,,}>°_,. We may choose the values of N,, to be increasing, i.e.,
N,y < Nppqa for every m € N. These considerations allow us to express the
result from the Doob maximal inequality as

n m 1
P{ sup | X7 — X} |>s} < L = Fulliscaean,
t€[0,T) £

Since this inequality is valid for any n,m € N we may choose n and m from the
sequence {N.}52,. We choose m = Ny and n = Njy;. Thus we get

N, 1
JP{ sup | xV Xt”k|>s}<—2|fm+1ka|,12<dpxdt)
t€[0,T] €

1 9
< ;T{gﬁl@i fn = el L2 (apxar) < —
This inequality holds for every £ > 0, we may choose € so that ¢~ 2273% = 2=k,
i.e., we choose e = 27%. Thus we have the inequality

IF’{ sup |xXV - XNy > 2’“} <27k
te[0,T]



Define the events

Ap={weQ: sup \XtNk*‘ () — XN*(w)] = 27%).
te[0,T

For these events we have the probabilities P{ A} < 27*. If we consider the sum

>oreq P{AL} we get
ST
k=1 k=1

Then we may apply the Borel-Cantelli lemma to deduce that the event
A ={we Q: All but finitely many of the events A, occur}

has probability one. Consequently, for every w € A, there exists a finite random
integer C'(w) such that for every k > C(w), the events Af, occur, i.e.,

for every k > C(w), sup |XtN'°+1 () — XM (W) < 27*
te[0,T

Recall that for every n € N, {X{"},c(o,7] is a continuous stochastic process.
(It is also a martingale, but we do not need this fact for the moment.) The fact
that {X/"}icj0,77 is @ continuous process means that for every w € €2, the map
t = X[*(w) is a continuous function on the interval [0, T'].

The collection, C([0,T]), of all continuous functions on the interval [0,7T] is
a complete normed space, i.e., a Banach space, where the norm, ||g|, is given
by

lgll = sup |g(?)],
te[0,T]

for any element g € C([0,7]). We will use the following theorem, valid in any
Banach space:

Every absolutely convergent series in a Banach space is convergent.

This implies that if {g,}>>, € C([0,T]) is a sequence of continuous functions
such that

oo
Z ll9r|] < oo (Absolutely convergent series)
k=1

3

then 3.7, gi is convergent, i.e., it is a continuous function on [0, 7.
If we choose any w € A, the functions {gx }32 ,, defined by

gk(t) = X (W) — XM (),

are elements of the Banach space C(]0,7]). Then

St =3 { XM ) - XV )} = X ) - XM )
k=1

k=1
and -
S ge(t) = lim XN () - XM (w)
m— 00
k=1



Now, if 3227, |lgkll < oo, then limp, a0 X, (w) — XV (w) is a continuous

function on [0, T], i.e., limpy_ oo X; ™' (w) is a continuous function on [0, T].
(Recall that we already know that X;}¥*(w) is a continuous function.)
All we need to do is to check whether the condition Y ;- ||gk|| < oo is

satisfied.

Ny
D llgell =D sup [X (w) = X (w)]
b—1 r—1 t€[0,T]
C(w)—1 oS
= 3 swp (X (w) - X))+ Y s X (w) - X W)
r—1 t€[0,T] k=C(w) te[0,T]
C(w)—1 oS
<Y s XMW - XN+ Y 2
k=1 t€l0.T] k=C(w)

Because the functions ¢ — szk+1 (w) — XM (w) are continuous and the inter-
val [0,T] is closed and bounded, the maximum value of X,"***(w) — XN*(w)
is finite and attained for some ¢ € [0,T]. Thus, each of the terms in the sum
Zf:@f)*] SUD;e(0,7] |XtN'“+1(w) — XV (w)]| are finite and since there is a finite
number, C'(w) —1, of terms, the sum is finite. This implies that >~ | ||gk|] < o0
and consequently, for every w € A, lim,,, XtN’"+1 (w) is a continuous function
on [0, T]. Denote this function by X(,)(w), i.e., the map ¢ = X;(w) is a contin-
uous function.
Recall that X' (w) = I(myfn)(w) and define the event

A'={weQ: lim I(mfn,)(w) is a continuous function on [0,77].}.
m—r0oQ

We have seen that, if w € A then w € A’  i.e., A C A’. Since P{A} =1 we get
1= P{A} <P{A} <1,

ie. P{A'} =1

For every fixed t € [0,T], {X¥™}2°_, is a sequence of random variables on
the probability space (2, F,P) where Brownian motion is defined. Then the
object X; = lim,,_ oo XtN’"' is also a random variable on the same probability
space (§,F,IP). Since this holds for every ¢ € [0,T] we see that {X;};cp0,m
is a collection of random variables on the space (2, F,P), i.e., {Xi}ico,m is a
stochastic process.

We shall investigate whether the stochastic process {X;};c[o,7) is a mar-
tingale with respect to the natural filtration, {F;}scjo,7], of Brownian motion.
In order for it to be a martingale is has to satisfy the properties, for every
s<tel0,T],

o E{|X¢[} < oo
o X, € Fy;
° E{Xt‘fs} = X,.

Since for every fixed t € [0,T], {XN"}°_, € F; and X; = lim,,_00 XV,
Xt S ft.



Next, by the definition of variance we have
Var[|Xe[] = B{| X [} — (B[ X¢]])*.
Since for every random variable Y, Var[Y] > 0, we deduce that
E{| X[} < (B{|X,[*})'/?,

which shows that if we can establish that X; is an object in L?(dP), then
E{|X;|} < co. We know that for every w € A', X;(w) = lim, 00 X7 (w),
where each of the random variables XY™ are elements of L?(dP). Since L(dP)
is complete, the limit lim,, .. X' is a random variable in L?(dP). This ran-
dom variable is defined on the whole of 2, and thus may not coincide with the
random variable X;. But we know that it does coincide on the subset A’ of Q
and that A’ has probability one. Thus we may apply our knowledge on unique-
ness in L?(dP) to realise that, as far as uniqueness in L?(dP) is concerned, the
random variable X; is an element of L?(dP). Consequently E{|X;|} < oco.

In order to be able to prove the martingale property of {X;},cjo,1), i-e.,
for any s < ¢, E{X;|Fs} = X, we will employ the conditional version of the
Dominated Convergence theorem: If, for everyn € N, Vw € Q,]Y,,(w)| < V(w),
E{V} < cc and P{Y,, — Y} = 1, then for any sigma-algebra, G, of subsets of

P{E{Y, |G} —» E{Y|G}} = 1.

For an arbitrary t € [0, T] we define V;,, = X' and Y = X;. We know that
P{Y,, — Y} = 1. Further, we have the explicit representation of Y, for every
w € , given by

k

Y (w) = en(@){Br(w) = By, (@)} + Y ci(@){Br, (@) = By, (W)},

i=1

from which we deduce that
Vo (w)] < ek (w)|[Br(w) — By (w)] + Z |ci(w)||Bt; (w) — B, (w)| = V(w).

By the Cauchy-Schwartz inequality we get

k
E{V}* <E{lee|*YE{|B: — By, [} + D B{leiYE{|By, — By, '} < oc,

because E{|c;|*} < oo for every i € N.

Thus, all the prerequisites are satisfied for us to be able to apply the con-
ditional version of the Dominated Convergence Theorem. We deduce that for
every t € [0,T],

P{E{X{"™"|F,} = E{X;|F}} = 1.

Let w e A" and s <t € [0,T] be arbitrary. Then

XV (w) = B{X" | F}(w) = B{X¢|Fi}w),

S



whereas, at the same time
X (w) = Xy(w),
which by the uniqueness of limits implies that
E{X;|F;s}(w) = Xs(w), for every w € A'.
Since P{A'} =1,
P{E{ X | Fs} = X} = 1,

which is all that is required for us to establish that the stochastic process
{Xt}tejo,m is a continuous martingale.

The final piece of the proof of the theorem demonstrate that for every ¢ €
[0,T] the random variable which we have denote by X; is equal to the stochastic
integral I(m;f) in the sense of L?(dP), where f € H? is the process we chose at
the beginning of the proof on page 3.

Because the sequence {f,}2%, € H2 approximates the process f in L%(dP x
dt), we know that the sub-sequence {fn, }52, is such that for every ¢ € [0,T],

mefn, —mefllLzapxar — 0, asn — oc.
By employing the Ité isometry for processes in H#? we find that
[ I(m¢fn,) — I(me f)l|p2apy = [|mefn, — mefll2apxarn — 0, as n — oo.
Since we have already established the fact that XY = I(m;fx, ) is such that
IX" = Xi|lz2(am) = 0, as n — oo,
by the triangle inequality

T (muf) — Xillzgar) < 1 X = Xollp2qaey + 1 T(mefn,) — Imef)| p2 ey = 0,

which tells us that
[[T(m¢f) — X¢l|p2@apy = O,

i.e., I(m;f) and X; are equal as elements in the space L?(dP), and this holds
for every t € [0,T].
Thus
for every t € [0,T],P{I(m:f) = X:} =1

and we know that {X;};c0,7) is a continuous martingale. O

The proof of Theorem 1 has been the longest so far and therefore any reader
who has followed the proof to its conclusion is to be commended. We hope that
the reader has been able to follow the reasoning in every step of the way, since
this was the reason for presenting such a lengthy proof in the first place. Again,
we thank the reader for bearing with us this far!

Remark 1. It is possible to strengthen the conclusion of Theorem 1 to the
statement that: If f € H? then

P{For every t € [0,T],X; = I(msf)} =1,



by using the same technique as we did to establish that for the quadratic vari-
ation of Brownian motion we have

P{For every t € [0,T],[B,B]: =t} = 1.
Since the proof of Theorem 1 is long enough, this last part was left out.

Because we now have established that when f is a stochastic process from
the space H? then the stochastic integral I(f) is a continuous martingale, a
whole new world is opened up to us. Indeed we may now develop the theory of
stochastic calculus in earnest.

The space H? will be our "sandbox” in which we play the game of stochas-
tic calculus. The smaller space HZ C H? will be used when we need to have
explicit representations of the stochastic integrals. Later on we shall see that,
unfortunately, the space H? is not large enough if we want to do serious stochas-
tic calculus. For this we shall have to consider a space denoted L}, (dP). The
spaces of stochastic calculus are thus

Hy C H® C LY (dP).
Let us collect our findings so far. We know the following facts:

e If T € [0,00) is a fixed number and f € H2 a stochastic process, we have
an explicit construction of a random variable, I(f), which we call the
stochastic integral of f over the interval [0,7T] with respect to Brownian
motion;

o If f € Hg the we have the Itd isometry: |[I(f)|[12(ap) = || f]]12(ap xat):

e Every stochastic process f € H? can be approximated by a sequence of
stochastic processes {f,}p2; € H§ in the sense that ||f, — f|12(apxat) =
0, as n — oo;

o If T € [0,¢) is a fixed number and f € H? a stochastic there exists a
unique random variable, I(f), in L?(dP) called the stochastic integral of
f over the interval [0,7] with respect to Brownian motion;

e If f € H? the we have the Ité isometry: () L2 (apy = [ f1|L2(ap xar);

e If f € H? is a stochastic process, then there exists a continuous martingale,
{Xt}tepo,7) With respect to the natural filtration of Brownian motion, such
that P{For every t € [0,T], X; = I(m:f)} = 1.

Although we have done considerable work in establishing these results, they
are not sufficient for us to be able to do stochastic calculus in the same manner
as we do ordinary calculus.

The result which enables us to do ordinary calculus is The Fundamental
Theorem of Calculus; A result which connects integration and differentiation of
a function:

Without this theorem, any explicit computation of of an integral would have
had to be reduced to working from the definition of the integral; Since this is



so time consuming, the subject of Ordinary Calculus would probably not have
developed at all if it hadn’t been for the Fundamental Theorem of Calculus.

The same thing holds for the subject of Stochastic Calculus. The correspond-
ing result to the Fundamental Theorem of Calculus in Stochastic Calculus is The
1té Formula. This theorem will be our next goal to establish. But before we do
that, let us consider the explicit computation of a stochastic integral process by
using the tools we have available at the moment.

(The reason we do this computation is to show just how time consuming it
can be if we cannot use "higher properties” of stochastic integrals, like the Ito
Formula.)

2 An explicit computation

We shall consider the stochastic integral process I(m;f) corresponding to the
process f € H2, defined by

for every s € [0,T], f(w,s) = Bs(w),

i.e., the Brownian motion process.

(The verification that the Brownian motion B € H? is left as an exercise
to the reader! We have bigger fish to fry!) Because B € H?, we know by
the Approzimation Theorem that there exists a sequence {B,,}52; of processes
B,, € H} such that ||B — By||r2(apxary — 0, as n — oc. These processes are
given explicitly as

n

Bn(“: t) = Z Ck (w)l(tk717tk](t)7

k=1

where ¢ (+) are F, ,-measurable and E{c} } < co. Because we are approximat-
ing Brownian motion itself and {F;};c[o,77 is the natural filtration of Brownian
motion, the requirement that the coefficients ¢ (-) be F;, _,-measurable suggest
that we should choose

cr(w) = B(w, tg_1)-

Then E{c}} = E{B} } = ti—1 < oo and the approximations to Brownian
motion become

Bp(w,t) =Y Blw, tr 1)1t .40 ()
k=1

We know confirm that, indeed, ||B — B,||r2(apxdr) — 0, as n — oco. Before
we commence with the calculation, note that since 0 = tg <t < --- <t, =T,
and we know that the point ¢ has to lie somewhere in the interval [0, T, there
is an interval (tx_1,t;] which contains the point ¢. Therefore we have that
1= 1 1, .+ (t) and consequently

3

B(w7t) = B(U.),t) 1= B(w7t)]‘(tk—1;tk](t)'
k=1

10



1B~ Bulluanar = [ |Blont)  Balw, ) dP(w) x de
JQx[0,T]
a -/Q><[0,T]
:/ Z|B w,1) = B(w, ti)|"Laa_y 01 () dP(w) x dt
Q
tr
—Z/ E{|B; — By, |} dt = 2/ (t —tp_1)dt
te—1

te—1
= 5 Z(tk - tk71)2
k=1
k

If we choose the uniform partition of [0,T], i.e., t;, = TT, we get

n

Z{B(w,t) = B(w, te—1) (8, .60 (1)

2
dP(w) x dt

n

3t thoa) :—Zkz QikQZF—TQ
2k:1 6 n2

k=1

and thus
w2 T2
||B — Bul|r2(apxaty < ———5 — 0, as n — oo.
6 n2

By using the uniform partition of the interval [0,7] we have constructed an

approximating sequence in H3 of Brownian motion.

Note 1. There are many approzimation sequences {fn}52, € ’H% to a process
f € H%. We have found one of these for approzimating Brownian motion. That
is all we need!

By using the truncation functions {my}s¢c[o,7] and the fact that m; B, is an
approximation to mB, for every t € [0, T], in the sense that

|[m¢B — myBy||r2(apxar) — 0, as n — oo,

we know that the stochastic integral I(m;B) is approximated by the sequence
{I(m:By)}52, in the sense that

for every t € [0, T], [[I(m;B) — I(m¢By,)||r2ap) — 0, as n — oo.
Because we have an ezplicit construction of the stochastic integrals I (m;B,,),

we can say a bit more regarding the structure of the stochastic integral I(m,B)
Because the point t has to lie somewhere in the partition 0 = tg < f1 < - <

tn = T, there exists an integer k(t) € {0,...,n} such that ¢ € [ty +1]
Then
I(mBy)(w) = B(w, typ)){Bw, 1) — B(w, tk(p)) }
k(t)
+ ) B(w,ti 1){B(w,t;) — B(w,t; 1)}
i=1

We abbreviate B(w, t;) as B; and consider the sum ngf B;_1{B; — B;_1}.

11



By using the elementary fact that for any z,y € R,
2y = (z+y)° —2” —y°,

we get
2B;_1(B; — B;_1) = B} — B]_, — (B; — B;_1)?,

and consequently

K(t) L) |k
Y Bia(Bi—Bi)= 3 > (B} - B) - 3 > (Bi—Bi 1)’
i=1 i=1 i=1
B2 1 k(t)
k(t) 2
= 2 SSY(B, - By
5 QZ; 1)

Since we are using a uniform partition of [0, T'], we know that t;(;)41 —tg) =
%; hence t;,;) — t, asn — co. We know also that there exists a set A C (2 having
probability one, P{A} = 1, such that if w € A then every function ¢t — B(w,t)
is continuous and the quadratic variation of Brownian motion ¢ + [B, Bl;(w) is
such that for every t € [0,T], [B, B]:(w) = t. For every w € A, the quadratic
variation [B, B];(w) is defined as the limit

lim > {B(w.ti) ~ B(w,ti 1)}
i=1

These two facts combine to give that for every w € A,

k(t) )
B(w,t t

3" Bw, ti ){B(w,t;) — B(w,ti1)} = 7(‘*; )© S, asm = .

i=1

Because Brownian motion has independent increments and P{B(0) = 0} =
1, we get

E[[{B(twn) = BOHB() — Bltun)} ] = E[|B(tn) — BO)IP]E[|BE) - Bty

tT
= tp) (t = th)) < - — 0, as n — oo.

If we gather our achievements so far we see that for all w in a set of probability
one,

B(w,t)? t
I(myB,)(w) — % — 5 asn— oo

Since we also know that on a set of probability one I(mB,,) — I(m;B), we have,
by uniqueness in the space L?(dP), obtained the result that I(m;B) = (B} —t).

If we denote the stochastic integral I(m;B) by fot B, dB; we have obtained by
explicit calculation the representation

/t B, dB, = %(Bf — ). (1)
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Note 2. The right-hand side, (B} —t), of equation (1) agrees with the left-
hand hand side only on a set of probability one. This set cannot be specified. All
we know is that it exists. Therefore is makes no sense to pick a certain w € Q)

and ask whether (fot Bq dBS) (w) equals L(B} —t)(w).

But, if we consider a bunch of ws, then we know that for most of these ws
we do have equality between the right- and the left-hand sides of equation (1).

This probably seems confusing, but the apparent contradiction lies at the
very heart of probability theory. By its very nature, probability theory does not
consider individual points, w, in the space €; it only considers collections of
points. That is why we needed to introduce the concept of a sigma-algebra of
subsets of Q, remember!

The representation in (1) is very useful when we want to simulate the con-
tinuous martingale fot B dBg, because all we need to do is to simulate Brownian
motion {Bi}o,7) and compute the right-hand side of (1) for each simulation.
Then, most of our simulated trajectories of %(Bt2 — t) will coincide with the

stochastic integral fot B, dB; .
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