
Sto
hasti
 integral pro
essAnders MusztaJune 28, 20051 The Ito integral pro
essWe have often emphasised the fa
t that the sto
hasti
 integral I(f) is a randomvariable. In this se
tion we shall try to 
onstru
t a sto
hasti
 pro
ess out of theindividual random variables.For this purpose we pi
k an f 2 H2 arbitrarily and we let T > 0 be a �xedpoint of [0;1). Then we know that there exists a unique random variableI(f) = Z T0 f(�; s) dBsin L2(dP) whi
h we 
all a sto
hasti
 integral.If we introdu
e a 
olle
tion fmtgt2[0;T ℄ of trun
ation fun
tions mt : 
 �[0; T ℄! R de�ned by mt(!; s) = (1; s 2 [0; t℄;0; s =2 [0; t℄;then the sto
hasti
 pro
ess mtf 2 H2, as soon as f 2 H2. Thus there exists aunique random variableI(mtf) = Z T0 mt(�; s)f(�; s) dBs � Z t0 f(�; s) dBsin L2(dP). Thus, the problem of 
onstru
ting a sto
hasti
 integral pro
ess seemsto be solved by simply de�ning the pro
ess to be the 
olle
tion fI(mtf)gt2[0;T ℄
orresponding to the 
olle
tion of trun
ation fun
tions fmtgt2[0;T ℄, right?WRONG!Why, what is wrong with this 
onstru
tion?The answer is that the sto
hasti
 integral I(f) is a very fuzzy obje
t due tothe problem of uniqueness with L2(dP)-de�ned obje
ts as we dis
ussed in Note??.The fa
t that I(mtf) exists as a unique random variable in L2(dP) impliesthat on subsets At � 
 su
h that PfAtg = 0, I(mtf) is not de�ned in a uniqueway. Sin
e PfAtg exists, ea
h set, At,is FT -measurable, i.e., At 2 FT . Thus wehave an un
ountable 
olle
tion fAtgt2[0;T ℄ of elements in the sigma-algebra FT .If we 
onsider their union A = [t2[0;T ℄At;1



we 
annot tell if A 2 FT or not. It might a
tually be possible that A = 
, whi
himplies that "For every ! 2 
, there exist at least one point t 2 [0; T ℄ su
h thatI(mtf) is not a random variable. (A random variable has to be de�ned in aunique way, and I(mtf) is not de�ned in a unique way.)"Thus it might be possible that there is at least one t 2 [0; T ℄ that preventsthe 
olle
tion fI(mtf)gt2[0;T ℄ from being a sto
hasti
 pro
ess. An easy way outwould of 
ourse have been to disregard su
h points t 2 [0; T ℄, but the problemis that we don't know where they are. Neither do we know for a fa
t if indeedA = 
. All these un
ertainties make us try a di�erent approa
h in �nding TheSto
hasti
 Integral Pro
ess,�Z t0 f(�; s) dBs�t2[0;T ℄:The following theorem gets us as 
lose as we need to get in order to have asto
hasti
 integral pro
ess whi
h we 
an use in sto
hasti
 
al
ulus. The pointis that we do not need a sto
hasti
 integral I(mtf)(!) to be de�ned for every! 2 
, only for suÆ
iently many ! 2 
, i.e., for ! 2M , where M � 
 is a setof probability one, PfMg = 1. Here then is the theorem.Theorem 1 (Sto
hasti
 integral pro
ess). For any sto
hasti
 pro
ess f 2H2; there exists a 
ontinuous martingale fXtgt2[0;T ℄ with respe
t to the �ltrationfFtgt2[0;T ℄, su
h thatfor every t 2 [0; T ℄; PfXt = I(mtf) g = 1:The �ltration, fFtgt2[0;T ℄, is the natural �ltration generated by the Brownianmotion, i.e., Ft = �(fBs : s 6 tg).This is quite remarkable! Not only do we get our sto
hasti
 integral pro
ess,but it is also a 
ontinuous martingale!The key result of this theorem is the Doob maximal inequality whi
h we nowpresent.Theorem 2 (The Doob maximal inequality). Let fMng1n=1 be a positivesub-martingale and " > 0 any real number. ThenPn sup06 k6nMk > "o 6 1"2 EfM2ng:The Doob maximal inequality is a 
onsiderable improvement of the Cheby-
hev inequality, 1 but then again the Cheby
hev inequality applies to any ran-dom variableMn su
h that EfjMn j2g <1, whereas the Doob maximal inequal-ity "only" applies to positive sub-martingales.De�nition 1 (Sub martingale). A positive sub-martingale is a pair (fMng1n=1; fFng1n=1)where, for every 1 6 m 6 n,� EfjMn jg <1;1Re
all the Cheby
hev inequality: For any random variable Mn su
h that EfjMn j2g <1and for any " > 0 PfjMnj > "g 6 1"2 EfjMn j2g:2



� 0 6Mn 2 Fn;� EfMn jFmg >Mm.Proof of Theorem 1. Let f 2 H2 be an arbitrary sto
hasti
 pro
ess. Then, bythe Approximation theorem ofH2, there exists a sequen
e of sto
hasti
 pro
essesffng1n=1 2 H20 su
h thatjjfn � f jjL2(dP�dt)! 0 as n!1:Let t 2 [0; T ℄ be an arbitrary real number. Then, for ea
h of the pro
essesfn 2 H20, the pro
esses mtfn 2 H20. Sin
e the sto
hasti
 integral I(g) is de�nedexpli
itly for any sto
hasti
 pro
ess g 2 H20, the sto
hasti
 integral I(mtfn) isde�ned expli
itly.Let 0 = t0 < t1 < � � � < tn = Tbe a partition of the interval [0; T ℄, asso
iated with the sto
hasti
 pro
ess fn.Our arbitrary number t 2 [0; T ℄ has to lie between some tk < t 6 tk+1.Xnt (!) � I(mtfn)(!) = 
k(!)fB(t)�B(tk)g+ kXi=1 
i(!)fB(ti)�B(ti�1)g:Sin
e Brownian motion is a 
ontinuous martingale with respe
t to its natural�ltration, fFtgt2[0;T ℄, so is, for every n 2 N, fXnt gt2[0;T ℄ a 
ontinuous martingalewith respe
t to the same �ltration, fFtgt2[0;T ℄.Take any two m;n 2 N and de�ne the 
ontinuous sto
hasti
 pro
ess M =fMtgt2[0;T ℄ by Mt � jXnt �Xmt j:Sin
e the fun
tion '(x) = jxj is 
onvex, by the Jensen inequality for 
onditionalexpe
tation 2 we have, for any s 6 t,'�EfXnt �Xmt jFsg� 6 Ef'(Xnt �Xmt )jFtg;i.e., jEfXnt �Xmt jFsgj 6 EfMt jFsg:But fXnt �Xmt gt2[0;T ℄ is a martingale with respe
t to fFtgt2[0;T ℄, soEfXnt �Xmt jFsg = Xns �Xms ;implying thatMs = jXns �Xms j = jEfXnt �Xmt jFsgj 6 EfMt jFsg;i.e., Mt is a positive sub-martingale.2The Jensen inequality for 
onditional expe
tation: Let X : 
! R be any random variableand F any sigma-algebra of subsets of 
. If ' : R! R is a 
onvex fun
tion then'(EfXjFg) 6 Ef'(X)jFg:3



Wemay therefore apply the Doob maximal inequality to the pro
ess fMtgt2[0;T ℄to get P� supt2[0;T ℄Mt > "� 6 1"2 EfM2T g;where " > 0 is an arbitrary real number. Now,EfM2T g = EfjXnT �XmT j2g = EfjI(mT fn)� I(mT fm)j2g = EfjI(fn )� I(fm)j2g= jjI(fn � fm)jjL2(dP) = jjfn � fmjjL2(dP�dt);where we have used the Itô isometry for pro
esses fn; fm 2 H20, linearity of thesto
hasti
 integral I(�) and the fa
t that mT g = g, for any sto
hasti
 pro
ess g.Re
all that the sequen
e of pro
esses ffng1n=1 2 H20 is su
h thatjjfn � f jjL2(dP�dt)! 0 as n!1:This implies thatjjfn � fmjjL2(dP�dt) ! 0; as n;m!1 independently of ea
h other:Be
ause n;m!1 independently of ea
h other, we may �x the value of m andlet n!1. Then, for every 
hoi
e of m we getjjfn � fmjjL2(dP�dt)! 0; as n!1:So, if we 
hoose n big enough we 
an make jjfn � fmjjL2(dP�dt) be as small aswe like. Let us say that we want jjfn � fmjjL2(dP�dt) 6 2�3m: Then there is aninteger, Nm, su
h that whenever n > Nm we have jjfn � fmjjL2(dP�dt) 6 2�3m.Sin
e this inequality holds for every n > Nm, we getmaxn>Nm jjfn � fmjjL2(dP�dt) 6 2�3m:Every value of m is thus asso
iated with an integer Nm, i.e., we have obtaineda sequen
e fNmg1m=1. We may 
hoose the values of Nm to be in
reasing, i.e.,Nm < Nm+1 for every m 2 N. These 
onsiderations allow us to express theresult from the Doob maximal inequality asP� supt2[0;T ℄ jXnt �Xmt j > "� 6 1"2 jjfn � fmjjL2(dP�dt):Sin
e this inequality is valid for any n;m 2 N we may 
hoose n and m from thesequen
e fNkg1k=1. We 
hoose m = Nk and n = Nk+1. Thus we getP� supt2[0;T ℄ jXNk+1t �XNkt j > "� 6 1"2 jjfNk+1 � fNk jjL2(dP�dt)6 1"2 maxn>Nk jjfn � fNk jjL2(dP�dt) 6 2�3k"2 :This inequality holds for every " > 0, we may 
hoose " so that "�22�3k = 2�k,i.e., we 
hoose " = 2�k. Thus we have the inequalityP� supt2[0;T ℄ jXNk+1t �XNkt j > 2�k� 6 2�k:4



De�ne the eventsAk � f! 2 
 : supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j > 2�kg:For these events we have the probabilities PfAkg 6 2�k. If we 
onsider the sumP1k=1 PfAkg we get 1Xk=1PfAkg 6 1Xk=1 2�k <1:Then we may apply the Borel-Cantelli lemma to dedu
e that the eventA � f! 2 
 : All but �nitely many of the events A
k o

urghas probability one. Consequently, for every ! 2 A, there exists a �nite randominteger C(!) su
h that for every k > C(!), the events A
k o

ur, i.e.,for every k > C(!); supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j < 2�k:Re
all that for every n 2 N, fXnt gt2[0;T ℄ is a 
ontinuous sto
hasti
 pro
ess.(It is also a martingale, but we do not need this fa
t for the moment.) The fa
tthat fXnt gt2[0;T ℄ is a 
ontinuous pro
ess means that for every ! 2 
, the mapt 7! Xnt (!) is a 
ontinuous fun
tion on the interval [0; T ℄.The 
olle
tion, C([0; T ℄), of all 
ontinuous fun
tions on the interval [0; T ℄ isa 
omplete normed spa
e, i.e., a Bana
h spa
e, where the norm, jjgjj, is givenby jjgjj � supt2[0;T ℄ jg(t)j;for any element g 2 C([0; T ℄). We will use the following theorem, valid in anyBana
h spa
e:Every absolutely 
onvergent series in a Bana
h spa
e is 
onvergent:This implies that if fgng1n=1 2 C([0; T ℄) is a sequen
e of 
ontinuous fun
tionssu
h that 1Xk=1 jjgkjj <1 (Absolutely 
onvergent series);then P1k=1 gk is 
onvergent, i.e., it is a 
ontinuous fun
tion on [0; T ℄.If we 
hoose any ! 2 A, the fun
tions fgkg1k=1, de�ned bygk(t) � XNk+1t (!)�XNkt (!);are elements of the Bana
h spa
e C([0; T ℄). ThenmXk=1 gk(t) = mXk=1nXNk+1t (!)�XNkt (!)o = XNm+1t (!)�XN1t (!)and 1Xk=1 gk(t) = limm!1XNm+1t (!)�XN1t (!):5



Now, if P1k=1 jjgkjj < 1, then limm!1XNm+1t (!) � XN1t (!) is a 
ontinuousfun
tion on [0; T ℄, i.e., limm!1XNm+1t (!) is a 
ontinuous fun
tion on [0; T ℄.(Re
all that we already know that XN1t (!) is a 
ontinuous fun
tion.)All we need to do is to 
he
k whether the 
ondition P1k=1 jjgkjj < 1 issatis�ed.1Xk=1 jjgkjj = 1Xk=1 supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j= C(!)�1Xk=1 supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j+ 1Xk=C(!) supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j6 C(!)�1Xk=1 supt2[0;T ℄ jXNk+1t (!)�XNkt (!)j+ 1Xk=C(!) 2�k:Be
ause the fun
tions t 7! XNk+1t (!) � XNkt (!) are 
ontinuous and the inter-val [0; T ℄ is 
losed and bounded, the maximum value of XNk+1t (!) � XNkt (!)is �nite and attained for some t 2 [0; T ℄. Thus, ea
h of the terms in the sumPC(!)�1k=1 supt2[0;T ℄ jXNk+1t (!) � XNkt (!)j are �nite and sin
e there is a �nitenumber, C(!)�1, of terms, the sum is �nite. This implies thatP1k=1 jjgkjj <1and 
onsequently, for every ! 2 A, limm!1XNm+1t (!) is a 
ontinuous fun
tionon [0; T ℄. Denote this fun
tion by X(�)(!), i.e., the map t 7! Xt(!) is a 
ontin-uous fun
tion.Re
all that Xnt (!) � I(mtfn)(!) and de�ne the eventA0 � f! 2 
 : limm!1 I(m(�)fNm)(!) is a 
ontinuous fun
tion on [0; T ℄:g:We have seen that, if ! 2 A then ! 2 A0, i.e., A � A0. Sin
e PfAg = 1 we get1 = PfAg 6 PfA0g 6 1;i.e. PfA0g = 1.For every �xed t 2 [0; T ℄, fXNmt g1m=1 is a sequen
e of random variables onthe probability spa
e (
;F ;P) where Brownian motion is de�ned. Then theobje
t Xt � limm!1XNmt is also a random variable on the same probabilityspa
e (
;F ;P). Sin
e this holds for every t 2 [0; T ℄ we see that fXtgt2[0;T ℄is a 
olle
tion of random variables on the spa
e (
;F ;P), i.e., fXtgt2[0;T ℄ is asto
hasti
 pro
ess.We shall investigate whether the sto
hasti
 pro
ess fXtgt2[0;T ℄ is a mar-tingale with respe
t to the natural �ltration, fFtgt2[0;T ℄, of Brownian motion.In order for it to be a martingale is has to satisfy the properties, for everys 6 t 2 [0; T ℄,� EfjXt jg <1;� Xt 2 Ft;� EfXt jFsg = Xs.Sin
e for every �xed t 2 [0; T ℄, fXNmt g1m=1 2 Ft and Xt = limm!1XNmt ,Xt 2 Ft. 6



Next, by the de�nition of varian
e we haveVar[jXtj℄ = EfjXt j2g � (E [jXt j℄)2:Sin
e for every random variable Y , Var[Y ℄ > 0, we dedu
e thatEfjXt jg 6 (EfjXt j2g)1=2;whi
h shows that if we 
an establish that Xt is an obje
t in L2(dP), thenEfjXt jg < 1. We know that for every ! 2 A0, Xt(!) = limm!1XNmt (!),where ea
h of the random variables XNmt are elements of L2(dP). Sin
e L2(dP)is 
omplete, the limit limm!1XNmt is a random variable in L2(dP). This ran-dom variable is de�ned on the whole of 
, and thus may not 
oin
ide with therandom variable Xt. But we know that it does 
oin
ide on the subset A0 of 
and that A0 has probability one. Thus we may apply our knowledge on unique-ness in L2(dP) to realise that, as far as uniqueness in L2(dP) is 
on
erned, therandom variable Xt is an element of L2(dP). Consequently EfjXt jg <1.In order to be able to prove the martingale property of fXtgt2[0;T ℄, i.e.,for any s 6 t, EfXt jFsg = Xs, we will employ the 
onditional version of theDominated Convergen
e theorem: If, for every n 2 N, 8! 2 
; jYn(!)j 6 V (!),EfV g <1 and PfYn ! Y g = 1, then for any sigma-algebra, G, of subsets of 
P�EfYn jGg ! EfY jGg	 = 1:For an arbitrary t 2 [0; T ℄ we de�ne Yn � XNnt and Y � Xt. We know thatPfYn ! Y g = 1. Further, we have the expli
it representation of Yn for every! 2 
, given byYn(!) = 
k(!)fBt(!)�Btk(!)g+ kXi=1 
i(!)fBti(!)�Bti�1(!)g;from whi
h we dedu
e thatjYn(!)j 6 j
k(!)jjBt(!)�Btk(!)j+ kXi=1 j
i(!)jjBti(!)�Bti�1(!)j � V (!):By the Cau
hy-S
hwartz inequality we getEfV g2 6 Efj
k j2gEfjBt �Btk j2g+ kXi=1 Efj
i j2gEfjBti �Bti�1 j2g <1;be
ause Efj
i j2g <1 for every i 2 N.Thus, all the prerequisites are satis�ed for us to be able to apply the 
on-ditional version of the Dominated Convergen
e Theorem. We dedu
e that forevery t 2 [0; T ℄, P�EfXNnt jFsg ! EfXt jFsg	 = 1:Let ! 2 A0 and s 6 t 2 [0; T ℄ be arbitrary. ThenXNns (!) = EfXNnt jFsg(!)! EfXt jFsg(!);7



whereas, at the same time XNns (!)! Xs(!);whi
h by the uniqueness of limits implies thatEfXt jFsg(!) = Xs(!); for every ! 2 A0:Sin
e PfA0g = 1, PfEfXt jFsg = Xsg = 1;whi
h is all that is required for us to establish that the sto
hasti
 pro
essfXtgt2[0;T ℄ is a 
ontinuous martingale.The �nal pie
e of the proof of the theorem demonstrate that for every t 2[0; T ℄ the random variable whi
h we have denote by Xt is equal to the sto
hasti
integral I(mtf) in the sense of L2(dP), where f 2 H2 is the pro
ess we 
hose atthe beginning of the proof on page 3.Be
ause the sequen
e ffng1n=1 2 H20 approximates the pro
ess f in L2(dP�dt), we know that the sub-sequen
e ffNng1n=1 is su
h that for every t 2 [0; T ℄,jjmtfNn �mtf jjL2(dP�dt) ! 0; as n!1:By employing the Itô isometry for pro
esses in H2 we �nd thatjjI(mtfNn)� I(mtf)jjL2(dP) = jjmtfNn �mtf jjL2(dP�dt)! 0; as n!1:Sin
e we have already established the fa
t that XNnt = I(mtfNn) is su
h thatjjXNnt �XtjjL2(dP)! 0; as n!1;by the triangle inequalityjjI(mtf)�XtjjL2(dP) 6 jjXNnt �XtjjL2(dP)+ jjI(mtfNn)� I(mtf)jjL2(dP) ! 0;whi
h tells us that jjI(mtf)�XtjjL2(dP) = 0;i.e., I(mtf) and Xt are equal as elements in the spa
e L2(dP), and this holdsfor every t 2 [0; T ℄.Thus for every t 2 [0; T ℄;PfI(mtf) = Xtg = 1and we know that fXtgt2[0;T ℄ is a 
ontinuous martingale.The proof of Theorem 1 has been the longest so far and therefore any readerwho has followed the proof to its 
on
lusion is to be 
ommended. We hope thatthe reader has been able to follow the reasoning in every step of the way, sin
ethis was the reason for presenting su
h a lengthy proof in the �rst pla
e. Again,we thank the reader for bearing with us this far!Remark 1. It is possible to strengthen the 
on
lusion of Theorem 1 to thestatement that: If f 2 H2 thenPfFor every t 2 [0; T ℄; Xt = I(mtf)g = 1;8



by using the same te
hnique as we did to establish that for the quadrati
 vari-ation of Brownian motion we havePfFor every t 2 [0; T ℄; [B;B℄t = tg = 1:Sin
e the proof of Theorem 1 is long enough, this last part was left out.Be
ause we now have established that when f is a sto
hasti
 pro
ess fromthe spa
e H2 then the sto
hasti
 integral I(f) is a 
ontinuous martingale, awhole new world is opened up to us. Indeed we may now develop the theory ofsto
hasti
 
al
ulus in earnest.The spa
e H2 will be our "sandbox" in whi
h we play the game of sto
has-ti
 
al
ulus. The smaller spa
e H20 � H2 will be used when we need to haveexpli
it representations of the sto
hasti
 integrals. Later on we shall see that,unfortunately, the spa
eH2 is not large enough if we want to do serious sto
has-ti
 
al
ulus. For this we shall have to 
onsider a spa
e denoted L2lo
(dP). Thespa
es of sto
hasti
 
al
ulus are thusH20 � H2 � L2lo
(dP):Let us 
olle
t our �ndings so far. We know the following fa
ts:� If T 2 [0;1) is a �xed number and f 2 H20 a sto
hasti
 pro
ess, we havean expli
it 
onstru
tion of a random variable, I(f), whi
h we 
all thesto
hasti
 integral of f over the interval [0; T ℄ with respe
t to Brownianmotion;� If f 2 H20 the we have the Itô isometry : jjI(f)jjL2(dP) = jjf jjL2(dP�dt);� Every sto
hasti
 pro
ess f 2 H2 
an be approximated by a sequen
e ofsto
hasti
 pro
esses ffng1n=1 2 H20 in the sense that jjfn � f jjL2(dP�dt) !0; as n!1;� If T 2 [0;1) is a �xed number and f 2 H2 a sto
hasti
 there exists aunique random variable, I(f), in L2(dP) 
alled the sto
hasti
 integral off over the interval [0; T ℄ with respe
t to Brownian motion;� If f 2 H2 the we have the Itô isometry : jjI(f)jjL2(dP) = jjf jjL2(dP�dt);� If f 2 H2 is a sto
hasti
 pro
ess, then there exists a 
ontinuous martingale,fXtgt2[0;T ℄ with respe
t to the natural �ltration of Brownian motion, su
hthat PfFor every t 2 [0; T ℄; Xt = I(mtf)g = 1.Although we have done 
onsiderable work in establishing these results, theyare not suÆ
ient for us to be able to do sto
hasti
 
al
ulus in the same manneras we do ordinary 
al
ulus.The result whi
h enables us to do ordinary 
al
ulus is The FundamentalTheorem of Cal
ulus ; A result whi
h 
onne
ts integration and di�erentiation ofa fun
tion: F (b)� F (a) = Z ba F 0(x) dx:Without this theorem, any expli
it 
omputation of of an integral would havehad to be redu
ed to working from the de�nition of the integral; Sin
e this is9



so time 
onsuming, the subje
t of Ordinary Cal
ulus would probably not havedeveloped at all if it hadn't been for the Fundamental Theorem of Cal
ulus.The same thing holds for the subje
t of Sto
hasti
 Cal
ulus. The 
orrespond-ing result to the Fundamental Theorem of Cal
ulus in Sto
hasti
 Cal
ulus is TheItô Formula. This theorem will be our next goal to establish. But before we dothat, let us 
onsider the expli
it 
omputation of a sto
hasti
 integral pro
ess byusing the tools we have available at the moment.(The reason we do this 
omputation is to show just how time 
onsuming it
an be if we 
annot use "higher properties" of sto
hasti
 integrals, like the ItôFormula.)2 An expli
it 
omputationWe shall 
onsider the sto
hasti
 integral pro
ess I(mtf) 
orresponding to thepro
ess f 2 H2, de�ned byfor every s 2 [0; T ℄; f(!; s) = Bs(!);i.e., the Brownian motion pro
ess.(The veri�
ation that the Brownian motion B 2 H2 is left as an exer
iseto the reader! We have bigger �sh to fry!) Be
ause B 2 H2, we know bythe Approximation Theorem that there exists a sequen
e fBng1n=1 of pro
essesBn 2 H20 su
h that jjB � BnjjL2(dP�dt) ! 0; as n ! 1: These pro
esses aregiven expli
itly as Bn(!; t) � nXk=1 
k(!)1(tk�1;tk℄(t);where 
k(�) are Ftk�1-measurable and Ef
2kg <1. Be
ause we are approximat-ing Brownian motion itself and fFtgt2[0;T ℄ is the natural �ltration of Brownianmotion, the requirement that the 
oeÆ
ients 
k(�) be Ftk�1-measurable suggestthat we should 
hoose 
k(!) � B(!; tk�1):Then Ef
2kg = EfB2tk�1 g = tk�1 < 1 and the approximations to Brownianmotion be
ome Bn(!; t) � nXk=1B(!; tk�1)1(tk�1;tk℄(t):We know 
on�rm that, indeed, jjB � BnjjL2(dP�dt) ! 0; as n ! 1: Beforewe 
ommen
e with the 
al
ulation, note that sin
e 0 = t0 < t1 < � � � < tn = T ,and we know that the point t has to lie somewhere in the interval [0; T ℄, thereis an interval (tk�1; tk℄ whi
h 
ontains the point t. Therefore we have that1 =Pnk=1 1(tk�1;tk℄(t) and 
onsequentlyB(!; t) = B(!; t) � 1 = nXk=1B(!; t)1(tk�1;tk℄(t):10



jjB �BnjjL2(dP�dt) = Z
�[0;T ℄ jB(!; t)�Bn(!; t)j2dP(!)� dt= Z
�[0;T ℄ ���� nXk=1fB(!; t)�B(!; tk�1)g1(tk�1;tk℄(t)���� 2dP(!)� dt= Z
�[0;T ℄ nXk=1 jB(!; t)�B(!; tk�1)j21(tk�1;tk℄(t) dP(!)� dt= nXk=1 Z tktk�1 EfjBt �Btk�1 j2g dt = nXk=1 Z tktk�1(t� tk�1) dt= 12 nXk=1(tk � tk�1)2:If we 
hoose the uniform partition of [0; T ℄, i.e., tk � kTn , we getnXk=1(tk � tk�1)2 = T 2n2 nXk=1 k2 < T 2n2 1Xk=1 k2 = �26 T 2n2 ;and thus jjB �BnjjL2(dP�dt) < �26 T 2n2 ! 0; as n!1:By using the uniform partition of the interval [0; T ℄ we have 
onstru
ted anapproximating sequen
e in H20 of Brownian motion.Note 1. There are many approximation sequen
es ffng1n=1 2 H20 to a pro
essf 2 H2. We have found one of these for approximating Brownian motion. Thatis all we need!By using the trun
ation fun
tions fmtgt2[0;T ℄ and the fa
t that mtBn is anapproximation to mtB, for every t 2 [0; T ℄, in the sense thatjjmtB �mtBnjjL2(dP�dt)! 0; as n!1;we know that the sto
hasti
 integral I(mtB) is approximated by the sequen
efI(mtBn)g1n=1 in the sense thatfor every t 2 [0; T ℄; jjI(mtB)� I(mtBn)jjL2(dP)! 0; as n!1:Be
ause we have an expli
it 
onstru
tion of the sto
hasti
 integrals I(mtBn),we 
an say a bit more regarding the stru
ture of the sto
hasti
 integral I(mtB).Be
ause the point t has to lie somewhere in the partition 0 = t0 < t1 < � � � <tn = T , there exists an integer k(t) 2 f0; : : : ; ng su
h that t 2 [tk(t); tk(t)+1℄:Then I(mtBn)(!) = B(!; tk(t))fB(!; t)�B(!; tk(t))g+ k(t)Xi=1 B(!; ti�1)fB(!; ti)�B(!; ti�1)g:We abbreviate B(!; ti) as Bi and 
onsider the sum Pk(t)i=1 Bi�1fBi �Bi�1g:11



By using the elementary fa
t that for any x; y 2 R,2xy = (x+ y)2 � x2 � y2;we get 2Bi�1(Bi �Bi�1) = B2i �B2i�1 � (Bi �Bi�1)2;and 
onsequentlyk(t)Xi=1 Bi�1(Bi �Bi�1) = 12 k(t)Xi=1(B2i �B2i�1)� 12 k(t)Xi=1(Bi �Bi�1)2= B2k(t)2 � 12 k(t)Xi=1(Bi �Bi�1)2Sin
e we are using a uniform partition of [0; T ℄, we know that tk(t)+1�tk(t) =Tn ; hen
e tk(t) ! t, as n!1. We know also that there exists a set A � 
 havingprobability one, PfAg = 1, su
h that if ! 2 A then every fun
tion t 7! B(!; t)is 
ontinuous and the quadrati
 variation of Brownian motion t 7! [B;B℄t(!) issu
h that for every t 2 [0; T ℄, [B;B℄t(!) = t. For every ! 2 A, the quadrati
variation [B;B℄t(!) is de�ned as the limitlimn!1 nXi=1fB(!; ti)�B(!; ti�1)g2:These two fa
ts 
ombine to give that for every ! 2 A,k(t)Xi=1 B(!; ti�1)fB(!; ti)�B(!; ti�1)g ! B(!; t)22 � t2 ; as n!1:Be
ause Brownian motion has independent in
rements and PfB(0) = 0g =1, we getEh��fB(tk(t))�B(0)gfB(t)�B(tk(t))g��2i = E�jB(tk(t))�B(0)j2�E�jB(t)�B(tk(t))j2�= tk(t)(t� tk(t)) 6 tTn ! 0; as n!1:If we gather our a
hievements so far we see that for all ! in a set of probabilityone, I(mtBn)(!)! B(!; t)22 � t2 ; as n!1:Sin
e we also know that on a set of probability one I(mtBn)! I(mtB), we have,by uniqueness in the spa
e L2(dP), obtained the result that I(mtB) = 12 (B2t �t).If we denote the sto
hasti
 integral I(mtB) by R t0 Bs dBs we have obtained byexpli
it 
al
ulation the representationZ t0 Bs dBs = 12(B2t � t): (1)12



Note 2. The right-hand side, 12 (B2t � t), of equation (1) agrees with the left-hand hand side only on a set of probability one. This set 
annot be spe
i�ed. Allwe know is that it exists. Therefore is makes no sense to pi
k a 
ertain ! 2 
and ask whether �R t0 Bs dBs�(!) equals 12 (B2t � t)(!).But, if we 
onsider a bun
h of !s, then we know that for most of these !swe do have equality between the right- and the left-hand sides of equation (1).This probably seems 
onfusing, but the apparent 
ontradi
tion lies at thevery heart of probability theory. By its very nature, probability theory does not
onsider individual points, !, in the spa
e 
; it only 
onsiders 
olle
tions ofpoints. That is why we needed to introdu
e the 
on
ept of a sigma-algebra ofsubsets of 
, remember!The representation in (1) is very useful when we want to simulate the 
on-tinuous martingale R t0 Bs dBs, be
ause all we need to do is to simulate Brownianmotion fBtg[0;T ℄ and 
ompute the right-hand side of (1) for ea
h simulation.Then, most of our simulated traje
tories of 12 (B2t � t) will 
oin
ide with thesto
hasti
 integral R t0 Bs dBs .
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