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1 Stochastic integral

The purpose of this section is to present a fairly rigorous construction of the
Ito integral. The text is written in the hope that the arguments leading up to
the stochastic integral will be easy to follow for the participants of the summer
course.

We will consider defining the stochastic integral with respect to Brownian
motion. This object will be denoted

T
/ f(w,t) dBt,
J0

but although the notation implies that the stochastic integral is just an ordinary
integral as in ordinary calculus, this is a deception for most stochastic processes
{f(t,-)}+€[0,00), because in order for the object fOT f(w,t)dB; to be a ordinary
integral, the process {B;}¢c[o,7) needs to be of finite variation. But as we have
seen, {B;} is Brownian motion and Brownian motion has positive quadratic
variation, hence it has infinite variation.

Any reasonable theory of integration should have no problem to integrate
continuous functions and we shall require no less from the theory of stochastic
integration. Thus, we want to show that for any continuous function g : R —» R
there exists such a thing as a stochastic integral

/OTg(Bt) dB;.

Before we can reach this goal we have to do a lot of hard work.

Remark 1 (Notation). Denote by L*(dP) the collection of random variables
X :Q = R such that

/ | X (w)|* dP(w) < oo
Q

and by L?(dP x dt) the collection of stochastic processes g : Q x [0, T] — R such
that

/ lg(w,t)|? (dP x dt)(w,t) < occ.
Qx[0,T]



1.1 Simple stochastic integral

We will first define the stochastic integral for simple processes {f(-,)}icj0,7]-
We will call a process simple if it is an element of the space H2 and we will call
a process general if it is an element of the space H2. The spaces HZ and H? are
defined as follows.

Definition 1 (The space of general processes, H?). The space H? is the
collection of stochastic processes f : Q x [0,T] = R having the properties:

e The map (w,t) = f(w,t) is Fr x By r-measurable, where Fr = o({B; :
s < T}) and By, denotes the Borel sigma-algebra of subsets of the in-
terval [0,T;

e For every t € [0,T], the random variable f(-,t) is F;-measurable, where
Fi=0({Bs:s <t});
e The collection f = {f(-,t)}icjo,r) of random variables is such that

/ |f(w, )% (dP x dt)(w,t) < oc.
JQx[0,T]

The third property in this list shows that H? is a subset of the space L?(dP x dt).

Our goal in this section will be to construct a stochastic integral for processes
in 2. Before we can accomplish this we will construct a stochastic integral for
processes in a subspace of H?, which we will denote 3. The point is of course
that it is easier to do the construction in Hj than it is in H?.

Definition 2 (The space of simple processes, H3). Let Hi be the subset
of H? consisting of stochastic processes f = {f(,1) }tepo,m such that

e For every w € Q and for every t € [0,T],
f(w= t) = Z Ck (w)l(f/k—lyf/k](t);
k=1

e Forevery k € {1,...,n}, the random variables ci(-) are Fy, _, -measurable;
e For every k € {1,...,n}, E{c}} < cc.

As a guide as to how we should define a stochastic integral fOT f(w,t)dB;
when f is a simple stochastic process, we consider what properties we expect a
stochastic integral to possess.

If f(w,t) = 1(ap)(t) for every w € Q, where (a,b) C [0,T], i.e., the stochastic

process f = {f(, 1) }+c[o, 7] is a collection of identical (random) variables 1(, ) (t),

then we expect a stochastic integral _fOT f(w,t)dB; to be

T
/ 1(a7b) (t) dB1L - Bb - Ba.
J0

We also expect a stochastic integral to be linear in the sense that if f and g are
stochastic processes and a,b € R are constants, then

T

T T
/ (af + bg)(w,t)dB; = a/ flw,t)dB; + b/ g(w,t) dB;.
0 0 0



Because we demand these properties of a stochastic integral and because the
way a process f € H2 is defined, we are forced to define a stochastic integral,
denoted I(f), for processes f in H3 as

Definition 3 (Stochastic integral for processes in H3). Let f € HE be a
simple process. Then the stochastic integral is defined by

I(f)(w) = Y er(@){B(tx) = Bltx-1)}.
k=1

The stochastic integral, I(f), is a random variable, since we have assumed
the time T to be fized. Thus for every fixed T' € [0, 00) we get a corresponding
random variable I(f). The dependence on T is implicit in the definition of I(f);
It is to be found through the partition 0 =tg <t < --- <t, =T of [0,T]:

I(f)(w) = cr(w{B(t1) = BO)} + - + cn(w{B(T) = B(tn-1)}-

For a random variable X :  — R, denote by [|X||z2(4p) the expectation

IXllezay = [ 1X(@)P Pl

and for a stochastic process Y : @ x [0,7] — R denote by |[Y||L2(4pxas) the
integral
Willasan = [ X0 dBw) x dt
Qx[0,T]
The following result is one of two key results in defining a stochastic integral
for processes in H2.

Lemma 1 (The Ité isometry for simple processes). Let f € H2 be any
simple process. Then

()L apy = [l L2(ap x ar)-

Proof. Because we are working with simple processes we have explicit construc-
tions of both the stochastic process f and the associated random variable I(f):

n n

Fe,t) = S @)y @ and (£ @) = 3 r@]{B(ts) — Blti_1)}-

k=1 k=1

This allows us to explicitly compute the norms || f[|52(4p xar) and [[1(f)||L2(ap)-
We will proceed to do just this.

We begin by computing the norm of the simple process f, ||f||52(apxat)-
By applying the Fubini theorem we may write the integral with respect to the
product measure dP x dt as a double integral,

HfHL?(dPth) = /

T
JQx[0,T] 0

Flo P e x di = [ {;Aﬂf@%ﬂQdPQA}dt
;

In order to proceed we need to compute the square |f(w,t)|?, but this we can

do since we have an explicit representation of f(w,t);

2 n

= len @)1ty 00 (1)

k=1

n

Z Ck (w)]'(tkflgtk] (f)

k=1

[f(w,t)] =




Thus
1112 ap et {/k )2 dP( )}/ Lo vy (8) dt

= Z]E{ Jex [} (8 — 1)
k=1

(1)

We will now show that the norm, ||I(f)||z2(4p), of the random variable I(f)
equals Y E{ ek >tk — t—1)-

2

1Ty = [ 1T7)0)* dB(o ch WB(t) - Bt} dP(w)

= Z/Q \Ck(w)|2|B(tk) — B(tkil)‘Z dP(w)

f2y / (B(t) — B(ti )HB(t) — Blt; 1)} dP(w)

i,j=1
1<j

= E E{|cr |*|Ax B|?} + 2 E E{cic;A;BA;B}
= i,j=1
i<j

where Ay B = B(t) — B(tr—1). Recall that by definition of a simple stochastic
process, f € HZ, the random variable ¢y is JF, ,-measurable. Also, A;B is
independent of F;, _,, because Fi, _, = 0({Bs : s < tx_1}) contains information
about the increments of Brownian motion up to, and including, time ¢;_; and
Brownian motion, B, has independent increments. By using the properties of
conditional expectation that

e For any random variable X and for any sigma-algebra F,
E{X} = E{E{X|F}};
e If Y is an F-measurable random variable, then E{XY |F} = YE{X|F},

together with the facts on the random variables ¢; and the increments A B, we
obtain

Fllex 218k B2} = B{E{ e | kB | Foo, } | = B{ lex PB{ 1A B 71, } }
= E{ ex PE{1A BI?}} = B{ jex [*YE{| Ak BI*} = E{ o4 "}t — tu-1):

As for the terms E{c;c;A;BA;B} we note that since i < j, ¢ic; € Fy,_, and
A;B € Fi;. We know further that 7, C F;,_, because {F;, }7_, is a filtration
and t; < tj_1. Thus ¢ic;A;B € Fi,_, which makes c;c;A; B independent of
A;B. Thus

—1

E{Q(’]A,BA]B} = E{(‘,CJA1B}E{A]B} = 0,

because increments, A; B, of Brownian motion has mean zero, i.e., E{A; B} = 0.
We may summarize our computations by stating that

()| L2 (apy = ZE{ lex P Mt — te—1) =[£I 12(ap xat)»
k=1

and the proof is complete. [l



If we use the notation I(f) = fOT f(-,t) dBy, then the It6 isometry can be
written

s{ ([ $60a8) Y =10 = 1 lsraaan = [ EOS60P i

This is the form of the It6 isometry that we will use later on in the course when
doing ”stochastic calculus”.

The form [[I(f)||z2(ap) = |[fllz2(apxar) of the Itd isometry is useful when
we consider fundamental properties of stochastic integrals such as convergence
issues. The most important consequence of the It6 isometry is that if {f,}52,
is a sequence of stochastic processes in Hz such that f, — f in the sense that
[ fn — fllz2(apxas) — 0 as n — oo, where f € H2 is a stochastic process, then
the It isometry implies

I(fn) — I(f)HL2(dP) = [[1(fn — f)HLz(dP) =|[fn — fHLz(ddet) — 0 asn — oo.

Thus the stochastic integral is continuous in the sense that if the stochastic
processes f and ¢ are close then the random variables I(f) and I(g) will be
close.

In order to extend our construction of the stochastic integral I(f) so that
we may consider not only processes f € HZ but also more general processes
f € H?%, we need a theorem that says that we may approximate any process
f € H? by processes in H32. The precise result is this.

Lemma 2 (Approximation of H? by H32). Let f € H? be any stochastic
process. Then there exists a sequence of stochastic processes {fn}52, in Hj
such that

|| fn — fllL2(apx aty = 0,asn — oc.

Of course, if we would not have had this result then the whole subject of
stochastic calculus would not have existed. After all, it is not very interesting
to only be able to consider simple processes when one is interested in modelling
real-world phenomena by stochastic differential equations, since most signals are
continuous by nature and simple processes are piecewise constant. If we were
to use piecewise constant processes to model real-world signals, then at least
we would require an approximation theorem which states that any results we
come up with using simple processes will be approximations to some real-world
counterparts. Therefore we are very fortunate indeed to have the approximation
result of Lemma 2 at our disposal.

1.2 General stochastic integral

With the approximation result of Lemma 2 and the Ité isometry (Lemma 1)
we have all the tools needed to construct the stochastic integral I(f) for any
stochastic process f € H2.

Therefore we pick any stochastic process f € H2. Then we use the ap-
proximation lemma to get a sequence {f,}3%, of processes in H2 such that
[ fn = fllL2(apx aty = 0, as n — oo. With every simple process f, € H2 we may
associate the stochastic integral I(f,), so we have a sequence of random vari-
ables {I(f.)}52 ;. Because the sequence {f,}52, converges to f it is a Cauchy



sequence in L2(dP x dt) in the sense that
for any n,m > 1,[|fn — full2(apxary = 0, as n,m — oo.

Then we use the Itd isometry to get that the sequence {I(f,)}32, is also a
Cauchy sequence, but in L2(dP), i.e.,

for any n,m > 1,[|I(f.) — I(fm)|[z2(ap) = 0, as n,m — oco.

But we have already done a calculation which confirms this: When we noted
that the stochastic integral is continuous in the sense that if g, h € H3 are close
then I(g) and I(h) are close. Here we simply use g = f, — fn, and h = 0 to get
that I(f, — fm) and I(0) = 0 are close. To be a bit more specific: Asn,m — oo
we have

L(fn) — L(fm)ll2ary = H(fo — fu)llzz@ap) = || fn — fmllz2(@pxary = 0.

The reason we are interested in the fact that {I(f,)}%2, is a Cauchy sequence
in L2(dP) is because the space L?(dP) is complete, i.e., any Cauchy sequence in
it converges to a limit, and that limit remains in the space L*(dP).

So, we have a Cauchy sequence {I(f,)}, of random variables in L?(dP)
and we know that every Cauchy sequence in L?(dP) has a limit in L?(dP). Then
our Cauchy sequence has a limit in L2(dP) and we denote this limit by I(f).
Thus for any stochastic process f € H? we have shown that there exists a
corresponding object T(f) in L2(dP) which we call the stochastic integral of f
with respect to Brownian motion.

The correspondence between f and I(f) was set up through a sequence
{fn}2%, of processes in H2. A natural question is: If we had a different sequence,
{90}, in HE, would we still get the same result that f corresponds to I(f), or
would f correspond to some other object in L2(dIP)? The answer to this question
is NO!, the object which we have denoted I(f) is unique for f. To prove this,
let {g,}22, be another sequence in H2 which approximates f. Then, by the
triangle inequality 1 we have

[ frn — gnHm(ddet) < — f”m(ddet) + [lgn — fHL?(dTP’xdt) — 0, as n — oo.

Because the stochastic process {f, — 9, }°%, are elements of H3 we may apply
the It6 isometry to get

[L(fn) — L(gn)llz2(ary = I (fn — gu)llz2(ap) = [|fn — gnllz2(apx ary = 0.

This is what we need to show that I(g,) converges to the same limit, I(f), as
I(f,) because

1 (gn) = L)l 22 @y < | (gn) = I(Fn)ll12(ap) + [11(fn) = I(H)Il2(ap) = 0,

since we have already shown that I(f,) converges to I(f).

Thus we have established that for every stochastic process f € H? there
exists a unique random variable I(f) in L2(dP), which we call the stochastic
integral of f with respect to Brownian motion.

I The triangle inequality for stochastic processes z,y € L?(dP x dt) reads:

|z — yHLQ(d]P’xdt) < HmHLz((i]P’xdt) + HyHLQ(d]P’xdt)'



Note 1 (The issue of uniqueness in L?(dP)). Uniqueness in L?(dP) is quite
a vague concept. The reason is that any two random variables X,V € L2(dP)
are said to be equal if || X —Y||r24p) = 0. This is the same as stating that

/|X ()| dP(w) = 0.

Howewver, this does not imply that X (w) = Y (w) for every w € Q (as we would
expect to hold, intuitively, if X and Y were to be equal); It only implies that
X(w) = Y(w) for every w € A, where A C Q is a subset of Q such that P{Q\
A} =0.

As an illustrative example of just how vague the concept of uniqueness in
L?(dP) is, consider the case when the probability space (Q, F,P) is such that
N =10,1], P(A) = Leb(A) (The Lebesgue measure on [0,1]; A generalisation
of the concept of length) and F=The Borel sigma-algebra on [0,1]. Define the
random variables X and Y on (Q,F,P) by

X(w) = {—1, w e [0,1]\ 4;

1, weE A,
and
Y(w) =1,w € [0,1],
where A =[0,1]\ ([0,1] N Q) is the set of irrational numbers in [0,1]. Then

| ¥ ()P e /|X ()| dP(w)

X(w )2 dP(w 112 dP(w —1—-1P2dP(w
/[01]\A|<> Y () /\ | >/]\A 2 dP(w)

= 4/ dP(w) = 4P{[0,1]\ A} = 4P{[0,1]N Q} = 0.
0,17\ A

The probability P{[0, 1]NQ} is zero because [0, 1]NQ is the set of rational numbers
in [0,1] and P{[0,1] N Q} is the length of the set of rational numbers of [0,1],
which is zero.

Thus we see that [, | X (w) — Y (w)|> dP(w) = 0, which, in the space L*(dP),
s the same thing as saying that the random variables

and

Y(w)=1,we|0,1],
are equal.

The price we have paid for not being able to construct a stochastic integral
in the usual way by means of Riemann-Stieltjes integrals is that the stochastic
integral, I(f), for f € H? is a very fuzzy object, in the sense that we cannot
represent it geometrically as some area under the graph of the function f. If we
insist on retaining a geometric representation of I(f) as the area under graph of



f, then we would have a whole bunch of different areas representing I(f) and no
means to tell then apart, due to the problem of uniqueness in L?(dP) discussed
above.

Recall that the reason we cannot construct a stochastic integral in the usual
way by means of Riemann-Stieltjes integrals, is the fact that Brownian motion
has positive quadratic variation, i.e.,

P{For every t € [0,0), [B,B]; =t} = 1.

3

Ito isometry

Lemma 3 (Ito isometry in H?). Let f € H? be any stochastic process. Then

() z2(apy = | f1]L2(dp xar)-

Proof. Let f € H? be any stochastic process. Then by the Approximation
Theorem there exists a sequence {f,}5°, of processes f, € Hg such that

IIf = fallz2(apxar) — 0, as n — oo.

This implies that anHLQ(d]P’th) — HfHLz(d]det)7 because

I fallr2@esary = || fll2aesan| < fa = fllzzaexar = 0.

We have also seen that,

L(fn) — L(H)|22(ar) = 0,

which, by the same reason as for f, and f, implies that

N (fullln2apy = () L2 ap)-

But, since f,, € Hg we may apply the It6 isometry for processes in Hg to observe
that

Hl(fn)HLQ(dTP’) = an”L?(ddet)-
Thus we have obtained the results that

| frllL2(apxar = 1| fllL2(ap xar)

and
U fnllzzapxary = 11T(f)L2(ap)-
Since there can be only one limit of the sequence {||f,||}52; of positive real

numbers, we are forced to conclude that

HI(.f)HLQ(dP) = Hf”L?(ddet)-
This proves the It6 isometry for processes in H2. O

Let us familiarise ourselves with the results we have obtained so far.

Consider the one dimensional Brownian motion B = {Bi}scjo,rj- Then
B € H2, because the defining properties of the space H? are satisfied. (The
first property, that the map (w,t) — B(w,t) is Fr x Bjg r-measurable, might



be somewhat difficult to prove.) Then the stochastic integral I(B), which we

denote by
T
/ B, dBg,
Jo

exists as a unique random variable of L?(dP). By the It6 isometry for processes
in %2 we may compute the expectation

T 2
]E{ / B, dB; } = HI(B)HL?(dP) = HBHL?(ddet)
Jo

T T T
:/Im&ﬁﬁ:/tﬁzﬁ
0 0 2

Next we take as (stochastic) process the collection {t};co,r], which also is
an element of the space H?. Then we know that the stochastic integral

I(t) = /OTtdBt

exists as a unique random variable in L?(dIP) and by the Ito isometry we compute
the expected value

T .
]E{‘/ t dBy
0

2
} O e = 12w
T T 3
. T
:/Ewmﬁz/ﬁﬁ:—.
0 0 3

As a generalisation of the stochastic integral fOT B;dB; we may consider
taking the process B" = {B['};c(0,1], for any positive integer n € N. Then

B™ € H? and we therefore know that the stochastic integral fOT B} dB; exists
as a unique random variable in L?(dP). Since any linear combination

m T
> i / B dB,
— '0

k=1

of random variables fOT B} dB; € L*(dP) is again a random variable in L?(dP)
we see that

3

m T
> ay / BFdB; € L*(dP).
k=1 0

But we also know that the stochastic integral is linear in the sense that

T T T
/ fi dB; + / g: dB; = / (ft + g¢+) dB¢, for any processes f, g € H2.
J0 J0 JO

Thus we have the result that for any finite linear combination, > ;" | arB*, of
Brownian motions, B*,

m

/T { Zaka} dB, € L*(dP).

k=1



