Solving stochastic differential equations

Anders Muszta

June 26, 2005

Consider a stochastic differential equation (SDE)

$$
\begin{align*}
d X_{t} & =a\left(t, X_{t}\right) d t+b\left(t, X_{t}\right) d B_{t} \\
X_{0} & =x_{0} \tag{1}
\end{align*}
$$

If we are interested in finding the strong solution to this equation then we are searching for a function $f:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ such that $X_{t}=f\left(t, B_{t}\right)$. This is so because the way X_{t} changes is governed by t and B_{t}; The coefficients $a\left(t, X_{t}\right)$ and $b\left(t, X_{t}\right)$ only describe the effects changes in t and B_{t} respectively have on changes in X_{t}.

Because the process $\left\{X_{t}\right\}$ has the dynamics as described in (1), there will be a corresponding dynamics for the process $\left.f t, B_{t}\right)$. The dynamics is obtained by applying the Itô Formula to $f\left(t, B_{t}\right)$.

This gives

$$
\begin{align*}
f\left(t, B_{t}\right)=f(0,0) & +\int_{0}^{t}\left\{\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(s, B_{s}\right)+\frac{\partial f}{\partial s}\left(s, B_{s}\right)\right\} d s \\
& +\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, B_{s}\right) d B_{s} \tag{2}
\end{align*}
$$

If we compare this with the dynamics for X_{t}

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} a\left(s, X_{s}\right) d s+\int_{0}^{t} b\left(s, X_{s}\right) d B_{s} \tag{3}
\end{equation*}
$$

If we choose the function f so that it satisfies the following system of partial differential equations then we will have a candidate for the solution of SDE (1):

$$
\begin{align*}
\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(s, x)+\frac{\partial f}{\partial s}(s, x) & =a(s, f(s, x)) ; \\
\frac{\partial f}{\partial x}(s, x) & =b(s, f(s, x)) ; \tag{4}\\
f(0,0) & =x_{0} .
\end{align*}
$$

This technique is useful mostly for linear coefficient functions $a(s, x)$ and $b(s, x)$.
Example 1. Consider the $S D E$

$$
\begin{aligned}
d X_{t} & =d t+d B_{t} \\
X_{0} & =x_{0},
\end{aligned}
$$

which is the simplest linear SDE imaginable. We know that the strong solution to this equation is $X_{t}=x_{0}+t+B_{t}$. Let us see what the coefficient matching technique gives us. The system we need to solve in this case is

$$
\begin{align*}
\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(s, x)+\frac{\partial f}{\partial s}(s, x) & =1 \\
\frac{\partial f}{\partial x}(s, x) & =1 \tag{5}\\
f(0,0) & =x_{0}
\end{align*}
$$

The solution is computed as follows.

$$
\begin{aligned}
\frac{\partial f}{\partial x}(s, x)=1 & \Rightarrow f(s, x)=x+g(s) \\
\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(s, x)+\frac{\partial f}{\partial s}(s, x)=1 & \Rightarrow g^{\prime}(s)=1 \Rightarrow g(s)=s+c_{0} \\
f(0,0)=x_{0} & \Rightarrow c_{0}=x_{0}
\end{aligned}
$$

Thus we have obtained $f(s, x)=x_{0}+t+x$, and the candidate strong solution to the SDE is $f\left(t, B_{t}\right)=x_{0}+t+B_{t}$, which in this case actually is the strong solution to (5).

Example 2. Consider the so called Ornstein-Uhlenbeck SDE

$$
\begin{aligned}
d X_{t} & =-r X_{t} d t+\sigma d B_{t} \\
X_{0} & =x_{0}
\end{aligned}
$$

where $r, \sigma \in \mathbb{R}$ are constants. If we apply the coefficient matching technique we get the system

$$
\begin{aligned}
\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(s, x)+\frac{\partial f}{\partial s}(s, x) & =-r f(t, x) ; \\
\frac{\partial f}{\partial x}(s, x) & =\sigma ; \\
f(0,0) & =x_{0} .
\end{aligned}
$$

This results in an equation $f(t, x)=\sigma x+g(t)$, where the function g satisfies the $O D E$

$$
\begin{equation*}
r g(t)+g^{\prime}(t)=-r \sigma x . \tag{6}
\end{equation*}
$$

Since the right-hand side of (6) is a function of t alone, and the left-hand side a function of x alone, these have to be constant. So we are forced to conclude that x is constant. But this is absurd, since x is a variable quantity.

This simple example shows that even for harmless looking linear coefficient functions $a(t, x)$ and $b(t, x)$, the coefficient matching technique might lead to nonsense!

