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Consider a stochastic differential equation (SDE)

dXt = (l(thf)dt'i_b(thf) dBf, 1
XO = Zg- ( )
If we are interested in finding the strong solution to this equation then we are
searching for a function f : [0, 00) x R — R such that X; = f(¢, B;). This is so
because the way X; changes is governed by ¢ and B;; The coefficients a(t, X;)
and b(t, X;) only describe the effects changes in ¢t and B; respectively have on
changes in Xj;.
Because the process {X;} has the dynamics as described in (1), there will
be a corresponding dynamics for the function f. These changes are obtained by
applying the Ito Formula to f(¢, By).

This gives
b 102 0
f(t, By) = £(0,0) —|—/ {——{(&BS) + —f(s,Bs)} ds
o (20x ds
Loy (2)
— (s, Bs) dB;.
+ '/0 aw (q7 £ ) £
If we compare this with the dynamics for X;
t t
X, :.7:0+/ a(s,Xs)ds+/ b(s, Xs) dBs. (3)
0 0

If we choose the function f so that it satisfies the following system of partial
differential equations then we will have a candidate for the solution of SDE (1):

10%f of _ .
Em(sx) + E(&ﬂf) = G(S:f(s=$)):
%(s,az) =b(s, f(s,2)); @
7(0,0) = xq.

This technique is useful mostly for linear coefficient functions a(s, z) and b(s, z).

Example 1. Consider the SDE

Xp = xo,



which is the simplest linear SDE imaginable. We know that the strong solution
to this equation is X; = xog + t + B¢. Let us see what the coefficient matching
technique gives us. The system we need to solve in this case is

10%f af L
5@(8733) + g(&ﬂ?) =1
Of (g o) — 1. (5)
8.7: (8723) - 1’
f(o 0) = Zo-
The solution is computed as follows.
0
O (s.0) =12 f(s,2) = 2+ g(s)
102 0
o)+ s ) =15 () = 1 () = 5 4 eo:

f(0,0) = zo = co = 20

Thus we have obtained f(s,z) = xzo +t + z, and the candidate strong solution
to the SDE is f(t, B;) = xg + t + B¢, which in this case actually is the strong
solution to (5).

Example 2. Consider the so called Ornstein-Uhlenbeck SDE

dXt == —T'Xtdt + O'dBt;

XO = To,

where r;0 € R are constants. If we apply the coefficient matching technique we
get the system

10° 9
58—3;];(?77‘) + a_z(an) = —rf(t,z);
%(s,m) =o0;
£(0,0) = xo.

This results in an equation f(t,z) = ox + g(t), where the function g satisfies
the ODE
rolt) + ¢'() = —row. ©)

Since the right-hand side of (6) is a function of t alone, and the left-hand side
a function of x alone, these have to be constant. So we are forced to conclude
that x is constant. But this is absurd, since x is a variable quantity.

This simple example shows that even for harmless looking linear coefficient
functions a(t,z) and b(t,x), the coefficient matching technique might lead to
nonsense!

1 Techniques based on coefficient matching
Consider the SDE

de = b(tl Xf) dBf,

XO = Zg-



We want to find a transformation f(¢,x) such that f(¢, X;) = Bs.

Consider a fixed ¢ € [0,7] and define the map g, : © — f(¢,z). Then
9:(Xt) = By and if g; is injective, i.e., if it has an inverse map, g[], then
X; = g; "(B:), and the solution to the SDE (7) is obtained as the process
{9 (B) hrepo.1-

The It6 Formula applied to the process f(t, X;) gives

t 2
f(t, Xy) = £(0,20) +/0 {%(S,Xs) + %b2(s,Xs)%(s,Xs)}ds
t 9
+/0 b(s,Xs)a—i(s,Xs)st.

Let the function (¢,2) — f(t, z) satisfy the following system of partial differen-
tial equations:

of 1 O f
E(tam) + 552(75:37)@(75,37) = 0;
b(tT)g_i(f‘T) =1;
f(o,.']'f(]) == 0

If such a function exists then the Ité Formula tells us that f(¢, X;) = B;.

2 Calculation of mean values

Let X solve the SDE

XO = Zq-

By the general It6 Formula for processes like X we have

F(X0) = f(0) + / a(X,)f (X.) ds + / b(X,) f'(X,) dB,
. 0 0 (9)
+%/0 b2 (X)) f"(X,) ds.

Guided by Hand-in 3, Problem 3.2, we ask the question: For which functions f
do we get an integral equation

E{f(X,)} = f(z0) + / E{f(X,)} ds,

for the mean E{f(X;)}? By taking expectations in the Ito Formula we get

BUIXD) = fan) + [ B{a(X)f/(X) + 387(X0"(X0) | ds.

From this we note that if the function f solves the differential equation

() 1'(2) + 50 (@) 1" () = ef (a),



for some constant ¢ € R, then we get the desired integral equation.
Thus we have obtained the result that if X solves the SDE

Xo = o,

and f solves the ODE

(o) (2) + 58 (@) " (2) = ef (),

then
E{f(X:)} = f(xo)e .

Example 3. If a(z) = rz and b(z) = ox for some constants r,o € R, then
every monomial f(x) = 2™ solves the ODE

raf (@) + 50° () = caf (2),

where the constant, c,, is given' by c, = nr + @02. The corresponding

SDE is the usual geometric Brownian motion
dX; =rX;dt + 0 X; dBy, Xgo = xg.
Consequently we have the result that
(X[} = apelmrnin-bo/2,

special cases of which are
E{X;} = zpe""

and
E{sz} — $(2)€(2T+02)t.

Thus we have obtained
Var[X,] = E{X2} — (B{X,})? = a2e2(e” " — 1).
If the coefficients r and o satisfy 2r + o® = 0, i.e. if we have the SDE
dX; = —0%/2X;dt + 0 X;dB;, Xo = o,

then we get

Var[X,] = E{X2} — (B{X,)?=22(1—e 7 ") 122, ast— oo.
Let .

p(z) = Z apz”
k=1

be any polynomial with coefficients c;, € R. Then, by the linearity of expectation,

n k(k—1) 0_2
E{p(Xe)} =) apafetr >t
k=1

1 Just insert the monomial f(x) = ™ into the ODE and equate the coefficient of ™ on the
left-hand side (nr + "1 52) with that of 2™ on the right-hand side.



Since one is often interested in computing the n'" moment, E{ X'}, of the
solution X; governed by an SDE;, it is interesting to know for which coefficient
functions a(z) and b(z) this method can be used to compute E{ X'}, i.e., we ask
the question: For which coefficient functions a(z) and b(z) are the monomials
f(z) = x™ solutions to the ODE

() 1'(2) + 51(@) " () = ef(a)?

To answer this question, we simply assume that any monomial is a solution to
the ODE and see what this implies regarding the coefficients a(x) and b(x). We
get the equation

n

a(z) nn-1) {b(az) }2
+ = =c
T 2 T
where ¢ € R is a constant. In order for this equation to make sense, a(z) = aox
and b(z) = bz, for some constants ag, by € R.

Thus we have come to the conclusion that this method of computing the
moments E{X/*} works only for the geometric Brownian motion.

Note 1. The ODE-SDE connection is useful for SDEs other that geometric
Brownian motion. We have only shown that the connection is not useful if we are
interested in finding the expectations BE{X[*}. If we are interested in computing
the expectation E{f(X;)}, where f satisfies the ODE, then the connection is
useful.

3 Reducible equations

Consider solving the SDE
de = (I(t, Xf) dt + b(t, Xf) dBf

X(] =1TIg.
Suppose you can find a transformation f : [0, 7] x R — R such that Y; = f(¢, X;)
is governed by the SDE
dY; = r(t)dt + o(t) dB;

Yo = f(0,20) = 0. (10)

What kind of coefficient functions a and b admit such a transformation? In what
way are the x-independent coefficients r and o determined by the coefficients a
and b? We will now attempt to find answers to these questions.

By the It6 Formula,

1
dYy = {0 f + a0, f + §b28§mf} dt + {00, f} dBy,
where we have suppressed most of the notation in favour of brevity; E.g. ad, f

reads {a(t,x)%f(uaz)}h:xt. Our demands (10) on the transformation f give
the system of PDE

r(6) = 0f + o) {5 - 300}
_olt)



The fact that r(¢) does not depend on x gives

Oyr(t) = 0= 0% f + (18, {5 -

b %(‘%b} &0 f = *(T(t)am{g _ %@b}.

Applying the operator d; on the equation 0, f = @ gives

92 f = b%(bata(t) — o (t)dyb).

If the function f is assumed to have continuous partial second derivatives, then
we may equate the mixed partial derivatives 92, f and 02, f to obtain a single
equation

bio(t) — o (Db = 1o ()0 {5 - %amb}.

Assuming that o(¢)b(¢, ) # 0 for no pair (¢,z) € [0,T] x R, we may divide the
equation by o (t)b(t, z) to get
61;(T(t) 61»[)

ot b b0 - %8*”}'

Since the ratio 8“2()) does not depend on the variable z, if we apply the operator

0, to the equation, we arrive at a PDE determining for what kind of coefficient
functions a and b the SDE dX; = a(t, X¢) dt + b(t, X¢) dB; can be transformed
to an SDE dY; = r(t) dt + o(t) dBy:

am{al’) ba{ %@b}}.

Theorem 1 (Reducible SDE). If the coefficient functions a(t,z) and b(t, x)
satisfy the partial differential equation

o (%t x) 0 (a(t,z) 10b

o — bt ) — — — - —(t, =0

637{ b(t, x) (733)8.7:{6(75,.7:) 267“(:6)}} ’
then there exists a transformation, Y; = f(t,X:), transforming the stochastic
differential equation

dXt = a(t, Xt) dt + b(t, Xt) dBt

Xo = o,
to the stochastic differential equation
dY; = r(t)dt + o(t) dB;
Yo = f(0,20) = 0.

The coefficients, r(t) and o(t), of the transformed equation are determined by
the system of partial differential equations

do(t) _ U(t){ Bt )

0 (a(t,z 1
dt b(t, z) ol x)%{bz‘r _iﬁ(t’w)}}
(f,T) 10b

)

o)
>

~




and the transformation, f : [0,T] x R — R, by the system of partial differential
equations

af B a(t,z) 10b
E(t,az) =r(t) — a(t){ o) EE(tx)}

Example 4 (Geometric Brownian motion). Consider the geometric Brow-
nian motion governed by the stochastic differential equation

dXt = aoXt dt + b()Xt dBt
X(] =1Tg.

We first investigate whether it is possible to transform this equation to an equa-
tion of the form

dY; = r(t) dt + o(t) dB,
YO = f(oaTO) =0.

In order for this to be possible, the coefficient functions a(t,z) = aox and
b(t,z) = box have to satisfy the partial differential equation

o (t,z) a(t,z
%{ %(tfaz) B b(t’m)%{b((;w)) B é%(fﬂ)}} =0

A simple computation shows that this is indeed the case. We next proceed to de-
termine the coefficients r(t) and o(t) of the transformed equation. The equation
for o(t) in this case reads
do(t)
dt
implying that o(t) = o = constant. This gives an equation determining the
coefficient r(t) to be

=0,

b2
r(t) 7 ((10 - —0) = r = constant.

Thus, the transformed SDE reads

dY; =rdt+ odB;
YO = f(07$0) = 07

whose solution is Y; = rt 4+ oB;. All that is left for us to find the solution of the
original SDE
dX; = ag Xy dt + bo X, dB;

XO = To,

is to find the transformation f(t,z) connecting Y and X; through
1/t = f(t7 Xt)
and then to invert it to get

Xi = fﬁl(t=}/t)7



if the inverse can be obtained. The partial differential equations governing the
transformation f(t,x) reads

ol
as ) = 57
of
ot
giving f(t,z) = %log(:v) + cqg, where ¢y is some constant, determined by the
condition 0 = f(0,x0). This gives ¢co = — log(xg) and consequently

(t,z) =0,

a r

log(—).
b Og(wo)

f(t,7) =

The inverse can be obtained and reads
ft,z) = xgebTO'”.

If we insert the transformed process Yy = rt + o By we get

Xe=f1(t,Y) = 3306%0(”4—”3”-

Now,
bo _bgU’ b%)_ b(Z]
oriabg(ao 2 - 2’

resulting in the geometric Brownian motion

b2
X; = azge(“‘)*TO)HbU B

as the solution to the stochastic differential equation

dXt == agXt dt + b()Xt dBt

XO = Zg-

The reason the procedure of finding the solution of the SDE governing the
geometric Brownian motion was so long-winded, is that we used a general tech-
nique finding it. It is almost invariably the case that whenever a general result
is applied to a specific problem, lengthy calculations are the result.

We have seen that for this problem, the technique of coefficient matching
offered a much faster route towards finding the geometric Brownian motion.
However, we have also seen that the technique of coefficient matching is far
from perfect. Indeed it can fail for simple linear stochastic differential equations
such as the one governing the Ornstein-Uhlenbeck process.

Example 5. Consider the Ornstein-Uhlenbeck process
dXt = T'Xt dt+0'dBt, (11)
Xo = @o,

for which the technique of coefficient matching failed to provide a solution. Let
us apply the technique of reduction and see if this works. There exists a reducing
transformation, f(t,X:), if the coefficient functions of the Ornstein-Uhlenbeck
process, a(t,z) = —rz and b(t,x) = o, satisfy the partial differential equation

8tb a 1 _
am{Tbam{ggamb}}_o. (12)



A simple computation shows that this is indeed the case. Thus there exists a
transformation f : [0,T] xR — R such that the process Y; = f(t, X}) is governed
by the SDE

dY; = a(t) dt + 5(t) dBy;

13
Yo = f(o $0)7 ( )
where the coefficients a(t) and 3(t) are given by
[ af
B(t):ﬂ(f){Tba f—ab }
(14)
a
o) = {5 ~ 5ot} +ads [ 72
For us this amounts to
B(t) = rB(t);
o , (15)
a(t) = —=aB(t) + —=8'(1),
i.€.,
B(t) = boe”'
(16)
a(t) = ~=4(1),
for some constant by € R. The SDE for the process Y; reads
_ _w rt rt .
dY; = . boe"" dt + boe"" dBy; (a7)

Yo = f(07330)'

Nezt, we will find a transformation f(t,X:) such that f(t,X:) = Y;. Such a
reducing transformation satisfies the partial differential equations

Ocf = alt) _B(t){% - %a””b} E aTO) p): (18)

Everything that is required to solve for f(t,x) is known and we obtain

(z — x0)

ftx) = (0, 20) + B(#).

For a fized t € [0,T] we can invert this transformation to obtain

—Z_{y— £(0,20)},

r=f" (t=y):w0+6(t)

from which we find

a

W(Y; -Y) :m0+m'/0 dy,

t t t
= 29 —azgr/o %ds—l—a/o %dBS :azge*”—l—ae*”/o e"* dB,.

X;=f1tY) =20 +



Since the integrand, e"*, in the stochastic integral fot e"® dB, of the Ornstein-

Uhlenbeck process is non-random, the stochastic integral process {fot e"* dBs}ieio,m
is a Gaussian process whose expectation function is

m(t) —]E{/Ot " dB,} = 0,

because the stochastic integral is a martingale, and whose covariance function

is
s t s t
C’m)(/ e dBu,/ e dBv> :E{ / e dBu/ e’ dBv}
Jo Jo Jo Jo

min(s,t) min(s,t) 1 ,
= / E{erueTU} du = / e2ru du = _{627" min(s,t) _ 1}_
0 0 2r

From these facts we deduce that the expectation function of the Ornstein-
Uhlenbeck process X is
E{X;} = zge "

and the covariance function is

t s
Cov(Xy, X5) = Cov <£L’0€Tt +oe "t / e dB,,xge” "* +o0e " / e’ dBU>
0 0

s t
= azer(SH)Coq)(/ e dBy,, / e’ dB1,>
Jo Jo

2
— U_Pfr(s+t){€2r min(s,t) 1}

2r

The reason we calculate the expectation and covariance functions are that
they completely determine the Ornstein-Uhlenbeck process, X, since this pro-
cess is Gaussian.
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