
Solving sto
hasti
 di�erential equationsAnders MusztaJuly 12, 2005Consider a sto
hasti
 di�erential equation (SDE)dXt = a(t;Xt) dt+ b(t;Xt) dBt;X0 = x0: (1)If we are interested in �nding the strong solution to this equation then we aresear
hing for a fun
tion f : [0;1)� R ! R su
h that Xt = f(t; Bt). This is sobe
ause the way Xt 
hanges is governed by t and Bt; The 
oeÆ
ients a(t;Xt)and b(t;Xt) only des
ribe the e�e
ts 
hanges in t and Bt respe
tively have on
hanges in Xt.Be
ause the pro
ess fXtg has the dynami
s as des
ribed in (1), there willbe a 
orresponding dynami
s for the fun
tion f . These 
hanges are obtained byapplying the Ito Formula to f(t; Bt).This givesf(t; Bt) = f(0; 0) + Z t0 n12 �2f�x2 (s;Bs) + �f�s (s;Bs)o ds+ Z t0 �f�x (s;Bs) dBs: (2)If we 
ompare this with the dynami
s for XtXt = x0 + Z t0 a(s;Xs) ds+ Z t0 b(s;Xs) dBs: (3)If we 
hoose the fun
tion f so that it satis�es the following system of partialdi�erential equations then we will have a 
andidate for the solution of SDE (1):12 �2f�x2 (s; x) + �f�s (s; x) = a(s; f(s; x));�f�x (s; x) = b(s; f(s; x));f(0; 0) = x0: (4)This te
hnique is useful mostly for linear 
oeÆ
ient fun
tions a(s; x) and b(s; x).Example 1. Consider the SDEdXt = dt+ dBt;X0 = x0;1



whi
h is the simplest linear SDE imaginable. We know that the strong solutionto this equation is Xt = x0 + t + Bt. Let us see what the 
oeÆ
ient mat
hingte
hnique gives us. The system we need to solve in this 
ase is12 �2f�x2 (s; x) + �f�s (s; x) = 1;�f�x (s; x) = 1;f(0; 0) = x0: (5)The solution is 
omputed as follows.�f�x (s; x) = 1) f(s; x) = x+ g(s);12 �2f�x2 (s; x) + �f�s (s; x) = 1) g0(s) = 1) g(s) = s+ 
0;f(0; 0) = x0 ) 
0 = x0Thus we have obtained f(s; x) = x0 + t + x, and the 
andidate strong solutionto the SDE is f(t; Bt) = x0 + t + Bt, whi
h in this 
ase a
tually is the strongsolution to (5).Example 2. Consider the so 
alled Ornstein-Uhlenbe
k SDEdXt = �rXtdt+ �dBt;X0 = x0;where r; � 2 R are 
onstants. If we apply the 
oeÆ
ient mat
hing te
hnique weget the system 12 �2f�x2 (s; x) + �f�s (s; x) = �rf(t; x);�f�x (s; x) = �;f(0; 0) = x0:This results in an equation f(t; x) = �x + g(t), where the fun
tion g satis�esthe ODE rg(t) + g0(t) = �r�x: (6)Sin
e the right-hand side of (6) is a fun
tion of t alone, and the left-hand sidea fun
tion of x alone, these have to be 
onstant. So we are for
ed to 
on
ludethat x is 
onstant. But this is absurd, sin
e x is a variable quantity.This simple example shows that even for harmless looking linear 
oeÆ
ientfun
tions a(t; x) and b(t; x), the 
oeÆ
ient mat
hing te
hnique might lead tononsense!1 Te
hniques based on 
oeÆ
ient mat
hingConsider the SDE dXt = b(t;Xt) dBt;X0 = x0: (7)2



We want to �nd a transformation f(t; x) su
h that f(t;Xt) = Bt.Consider a �xed t 2 [0; T ℄ and de�ne the map gt : x 7! f(t; x). Thengt(Xt) = Bt and if gt is inje
tive, i.e., if it has an inverse map, g�1t , thenXt = g�1t (Bt), and the solution to the SDE (7) is obtained as the pro
essfg�1t (Bt)gt2[0;T ℄:The Itô Formula applied to the pro
ess f(t;Xt) givesf(t;Xt) = f(0; x0) + Z t0 ��f�s (s;Xs) + 12b2(s;Xs)�2f�x2 (s;Xs)� ds+ Z t0 b(s;Xs)�f�x (s;Xs) dBs:Let the fun
tion (t; x) 7! f(t; x) satisfy the following system of partial di�eren-tial equations: �f�t (t; x) + 12b2(t; x)�2f�x2 (t; x) = 0;b(t; x)�f�x (t; x) = 1;f(0; x0) = 0:If su
h a fun
tion exists then the Itô Formula tells us that f(t;Xt) = Bt.2 Cal
ulation of mean valuesLet X solve the SDE dXt = a(Xt) dt+ b(Xt) dBt;X0 = x0: (8)By the general Itô Formula for pro
esses like X we havef(Xt) = f(x0) + Z t0 a(Xs)f 0(Xs) ds+ Z t0 b(Xs)f 0(Xs) dBs+ 12 Z t0 b2(Xs)f 00(Xs) ds: (9)Guided by Hand-in 3, Problem 3.2, we ask the question: For whi
h fun
tions fdo we get an integral equationEff(Xt )g = f(x0) + 
 Z t0 Eff(Xs)g ds;for the mean Eff(Xt)g? By taking expe
tations in the Ito Formula we getEff(Xt)g = f(x0) + Z t0 Ena(Xs)f 0(Xs) + 12b2(Xs)f 00(Xs)o ds:From this we note that if the fun
tion f solves the di�erential equationa(x)f 0(x) + 12b2(x)f 00(x) = 
f(x);3



for some 
onstant 
 2 R, then we get the desired integral equation.Thus we have obtained the result that if X solves the SDEdXt = a(Xt) dt+ b(Xt) dBt;X0 = x0;and f solves the ODE a(x)f 0(x) + 12b2(x)f 00(x) = 
f(x);then Eff(Xt)g = f(x0)e
t:Example 3. If a(x) = rx and b(x) = �x for some 
onstants r; � 2 R, thenevery monomial f(x) = xn solves the ODErxf 0(x) + 12�2x2f 00(x) = 
nf(x);where the 
onstant, 
n, is given1 by 
n = nr + n(n�1)2 �2. The 
orrespondingSDE is the usual geometri
 Brownian motiondXt = rXt dt+ �Xt dBt; X0 = x0:Consequently we have the result thatEfXnt g = xn0 e(nr+n(n�1)�2=2)t;spe
ial 
ases of whi
h are EfXtg = x0ertand EfX2t g = x20e(2r+�2)t:Thus we have obtainedV ar[Xt℄ = EfX2t g � (EfXtg)2 = x20e2rt(e�2t � 1):If the 
oeÆ
ients r and � satisfy 2r + �2 = 0, i.e. if we have the SDEdXt = ��2=2Xt dt+ �Xt dBt; X0 = x0;then we getV ar[Xt℄ = EfX2t g � (EfXtg)2 = x20(1� e��2t) " x20; as t!1:Let p(x) = nXk=1 akxkbe any polynomial with 
oeÆ
ients 
k 2 R. Then, by the linearity of expe
tation,Efp(Xt)g = nXk=1 akxk0e(kr+ k(k�1)2 �2)t:1Just insert the monomial f(x) = xn into the ODE and equate the 
oeÆ
ient of xn on theleft-hand side (nr + n(n�1)2 �2) with that of xn on the right-hand side.4



Sin
e one is often interested in 
omputing the nth moment, EfXnt g, of thesolution Xt governed by an SDE, it is interesting to know for whi
h 
oeÆ
ientfun
tions a(x) and b(x) this method 
an be used to 
ompute EfXnt g, i.e., we askthe question: For whi
h 
oeÆ
ient fun
tions a(x) and b(x) are the monomialsf(x) = xn solutions to the ODEa(x)f 0(x) + 12b2(x)f 00(x) = 
f(x)?To answer this question, we simply assume that any monomial is a solution tothe ODE and see what this implies regarding the 
oeÆ
ients a(x) and b(x). Weget the equation na(x)x + n(n� 1)2 �b(x)x �2 = 
;where 
 2 R is a 
onstant. In order for this equation to make sense, a(x) = a0xand b(x) = b0x, for some 
onstants a0; b0 2 R.Thus we have 
ome to the 
on
lusion that this method of 
omputing themoments EfXnt g works only for the geometri
 Brownian motion.Note 1. The ODE-SDE 
onne
tion is useful for SDEs other that geometri
Brownian motion. We have only shown that the 
onne
tion is not useful if we areinterested in �nding the expe
tations EfXnt g. If we are interested in 
omputingthe expe
tation Eff(Xt )g, where f satis�es the ODE, then the 
onne
tion isuseful.3 Redu
ible equationsConsider solving the SDEdXt = a(t;Xt) dt+ b(t;Xt) dBtX0 = x0:Suppose you 
an �nd a transformation f : [0; T ℄�R ! R su
h that Yt � f(t;Xt)is governed by the SDE dYt = r(t) dt + �(t) dBtY0 = f(0; x0) = 0: (10)What kind of 
oeÆ
ient fun
tions a and b admit su
h a transformation? In whatway are the x-independent 
oeÆ
ients r and � determined by the 
oeÆ
ients aand b? We will now attempt to �nd answers to these questions.By the Itô Formula,dYt = f�tf + a�xf + 12b2�2xxfg dt+ fb�xfg dBt;where we have suppressed most of the notation in favour of brevity; E.g. a�xfreads fa(t; x) ��xf(t; x)gjx=Xt . Our demands (10) on the transformation f givethe system of PDE r(t) = �tf + �(t)nab � 12�xbo;�xf = �(t)b : 5



The fa
t that r(t) does not depend on x gives�xr(t) = 0 = �2xtf + �(t)�xnab � 12�xbo, �2xtf = ��(t)�xnab � 12�xbo:Applying the operator �t on the equation �xf = �(t)b gives�2txf = 1b2 (b�t�(t)� �(t)�tb):If the fun
tion f is assumed to have 
ontinuous partial se
ond derivatives, thenwe may equate the mixed partial derivatives �2txf and �2xtf to obtain a singleequation b�t�(t)� �(t)�tb = �b2�(t)�xnab � 12�xbo:Assuming that �(t)b(t; x) 6= 0 for no pair (t; x) 2 [0; T ℄� R, we may divide theequation by �(t)b(t; x) to get�t�(t)�(t) � �tbb = �b�xnab � 12�xbo:Sin
e the ratio �t�(t)�(t) does not depend on the variable x, if we apply the operator�x to the equation, we arrive at a PDE determining for what kind of 
oeÆ
ientfun
tions a and b the SDE dXt = a(t;Xt) dt + b(t;Xt) dBt 
an be transformedto an SDE dYt = r(t) dt + �(t) dBt:�x��tbb � b�xnab � 12�xbo�:Theorem 1 (Redu
ible SDE). If the 
oeÆ
ient fun
tions a(t; x) and b(t; x)satisfy the partial di�erential equation��x� �b�t (t; x)b(t; x) � b(t; x) ��xna(t; x)b(t; x) � 12 �b�x (t; x)o� = 0;then there exists a transformation, Yt = f(t;Xt), transforming the sto
hasti
di�erential equation dXt = a(t;Xt) dt+ b(t;Xt) dBtX0 = x0;to the sto
hasti
 di�erential equationdYt = r(t) dt + �(t) dBtY0 = f(0; x0) = 0:The 
oeÆ
ients, r(t) and �(t), of the transformed equation are determined bythe system of partial di�erential equationsd�(t)dt = �(t)( �b�t (t; x)b(t; x) � b(t; x) ��xna(t; x)b(t; x) � 12 �b�x (t; x)o)r(t) = �(t)�a(t; x)b(t; x) � 12 �b�x (t; x)� + ��t��(t) Z xx0 dyb(t; y)�;6



and the transformation, f : [0; T ℄� R ! R, by the system of partial di�erentialequations �f�x (t; x) = �(t)b(t; x)�f�t (t; x) = r(t) � �(t)�a(t; x)b(t; x) � 12 �b�x (t; x)�:Example 4 (Geometri
 Brownian motion). Consider the geometri
 Brow-nian motion governed by the sto
hasti
 di�erential equationdXt = a0Xt dt+ b0Xt dBtX0 = x0:We �rst investigate whether it is possible to transform this equation to an equa-tion of the form dYt = r(t) dt + �(t) dBtY0 = f(0; x0) = 0:In order for this to be possible, the 
oeÆ
ient fun
tions a(t; x) = a0x andb(t; x) = b0x have to satisfy the partial di�erential equation��x� �b�t (t; x)b(t; x) � b(t; x) ��xna(t; x)b(t; x) � 12 �b�x (t; x)o� = 0:A simple 
omputation shows that this is indeed the 
ase. We next pro
eed to de-termine the 
oeÆ
ients r(t) and �(t) of the transformed equation. The equationfor �(t) in this 
ase reads d�(t)dt = 0;implying that �(t) = � = 
onstant. This gives an equation determining the
oeÆ
ient r(t) to be r(t) = �b0�a0 � b202 � � r = 
onstant:Thus, the transformed SDE readsdYt = r dt+ � dBtY0 = f(0; x0) = 0;whose solution is Yt = rt+�Bt. All that is left for us to �nd the solution of theoriginal SDE dXt = a0Xt dt+ b0Xt dBtX0 = x0;is to �nd the transformation f(t; x) 
onne
ting Yt and Xt throughYt = f(t;Xt)and then to invert it to get Xt = f�1(t; Yt);7



if the inverse 
an be obtained. The partial di�erential equations governing thetransformation f(t,x) reads �f�x (t; x) = �b0 1x�f�t (t; x) = 0;giving f(t; x) = �b0 log(x) + 
0; where 
0 is some 
onstant, determined by the
ondition 0 = f(0; x0). This gives 
0 = � �b0 log(x0) and 
onsequentlyf(t; x) = �b0 log( xx0 ):The inverse 
an be obtained and readsf�1(t; x) = x0e b0� x:If we insert the transformed pro
ess Yt = rt+ �Bt we getXt = f�1(t; Yt) = x0e b0� (rt+�Bt):Now, b0� r = b0� �b0�a0 � b202 � = a0 � b202 ;resulting in the geometri
 Brownian motionXt = x0e(a0� b202 )t+b0Bt ;as the solution to the sto
hasti
 di�erential equationdXt = a0Xt dt+ b0Xt dBtX0 = x0:The reason the pro
edure of �nding the solution of the SDE governing thegeometri
 Brownian motion was so long-winded, is that we used a general te
h-nique �nding it. It is almost invariably the 
ase that whenever a general resultis applied to a spe
i�
 problem, lengthy 
al
ulations are the result.We have seen that for this problem, the te
hnique of 
oeÆ
ient mat
hingo�ered a mu
h faster route towards �nding the geometri
 Brownian motion.However, we have also seen that the te
hnique of 
oeÆ
ient mat
hing is farfrom perfe
t. Indeed it 
an fail for simple linear sto
hasti
 di�erential equationssu
h as the one governing the Ornstein-Uhlenbe
k pro
ess.Example 5. Consider the Ornstein-Uhlenbe
k pro
essdXt = �rXt dt+ � dBt;X0 = x0; (11)for whi
h the te
hnique of 
oeÆ
ient mat
hing failed to provide a solution. Letus apply the te
hnique of redu
tion and see if this works. There exists a redu
ingtransformation, f(t;Xt), if the 
oeÆ
ient fun
tions of the Ornstein-Uhlenbe
kpro
ess, a(t; x) = �rx and b(t; x) = �, satisfy the partial di�erential equation�x��tbb � b�xnab � 12�xbo� = 0: (12)8



A simple 
omputation shows that this is indeed the 
ase. Thus there exists atransformation f : [0; T ℄�R ! R su
h that the pro
ess Yt = f(t;Xt) is governedby the SDE dYt = �(t) dt + �(t) dBt;Y0 = f(0; x0); (13)where the 
oeÆ
ients �(t) and �(t) are given by�0(t) = �(t)��tbb � b�xnab � 12�xbo�;�(t) = �(t)nab � 12�xbo+ �t��(t) Z xx0 dyb(t; y)�: (14)For us this amounts to �0(t) = r�(t);�(t) = � r�x�(t) + x� x0� �0(t); (15)i.e., �(t) = b0ert;�(t) = �x0r� �(t); (16)for some 
onstant b0 2 R. The SDE for the pro
ess Yt readsdYt = �x0r� b0ert dt+ b0ert dBt;Y0 = f(0; x0): (17)Next, we will �nd a transformation f(t;Xt) su
h that f(t;Xt) = Yt. Su
h aredu
ing transformation satis�es the partial di�erential equations�tf = �(t)� �(t)nab � 12�xbo = (x� x0)r� �(t);�xf = �(t)b : (18)Everything that is required to solve for f(t; x) is known and we obtainf(t; x) = f(0; x0) + (x� x0)� �(t):For a �xed t 2 [0; T ℄ we 
an invert this transformation to obtainx = f�1(t; y) = x0 + ��(t)fy � f(0; x0)g;from whi
h we �ndXt = f�1(t; Yt) = x0 + ��(t) (Yt � Y0) = x0 + ��(t) Z t0 dYs= x0 � x0r Z t0 �(s)�(t) ds+ � Z t0 �(s)�(t) dBs = x0e�rt + �e�rt Z t0 ers dBs:9



Sin
e the integrand, ers, in the sto
hasti
 integral R t0 ers dBs of the Ornstein-Uhlenbe
k pro
ess is non-random, the sto
hasti
 integral pro
ess fR t0 ers dBsgt2[0;T ℄is a Gaussian pro
ess whose expe
tation fun
tion ism(t) = EfZ t0 ers dBsg = 0;be
ause the sto
hasti
 integral is a martingale, and whose 
ovarian
e fun
tionis Cov�Z s0 eru dBu; Z t0 erv dBv� = E� Z s0 eru dBu Z t0 erv dBv�= Z min(s;t)0 Eferuerug du = Z min(s;t)0 e2ru du = 12rfe2rmin(s;t) � 1g:From these fa
ts we dedu
e that the expe
tation fun
tion of the Ornstein-Uhlenbe
k pro
ess X is EfXtg = x0e�rtand the 
ovarian
e fun
tion isCov(Xt; Xs) = Cov�x0e�rt + �e�rt Z t0 erv dBv ; x0e�rs + �e�rs Z s0 erv dBv�= �2e�r(s+t)Cov�Z s0 eru dBu; Z t0 erv dBv�= �22r e�r(s+t)fe2rmin(s;t) � 1g:The reason we 
al
ulate the expe
tation and 
ovarian
e fun
tions are thatthey 
ompletely determine the Ornstein-Uhlenbe
k pro
ess, X , sin
e this pro-
ess is Gaussian.
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