
Solving stohasti di�erential equationsAnders MusztaJuly 12, 2005Consider a stohasti di�erential equation (SDE)dXt = a(t;Xt) dt+ b(t;Xt) dBt;X0 = x0: (1)If we are interested in �nding the strong solution to this equation then we aresearhing for a funtion f : [0;1)� R ! R suh that Xt = f(t; Bt). This is sobeause the way Xt hanges is governed by t and Bt; The oeÆients a(t;Xt)and b(t;Xt) only desribe the e�ets hanges in t and Bt respetively have onhanges in Xt.Beause the proess fXtg has the dynamis as desribed in (1), there willbe a orresponding dynamis for the funtion f . These hanges are obtained byapplying the Ito Formula to f(t; Bt).This givesf(t; Bt) = f(0; 0) + Z t0 n12 �2f�x2 (s;Bs) + �f�s (s;Bs)o ds+ Z t0 �f�x (s;Bs) dBs: (2)If we ompare this with the dynamis for XtXt = x0 + Z t0 a(s;Xs) ds+ Z t0 b(s;Xs) dBs: (3)If we hoose the funtion f so that it satis�es the following system of partialdi�erential equations then we will have a andidate for the solution of SDE (1):12 �2f�x2 (s; x) + �f�s (s; x) = a(s; f(s; x));�f�x (s; x) = b(s; f(s; x));f(0; 0) = x0: (4)This tehnique is useful mostly for linear oeÆient funtions a(s; x) and b(s; x).Example 1. Consider the SDEdXt = dt+ dBt;X0 = x0;1



whih is the simplest linear SDE imaginable. We know that the strong solutionto this equation is Xt = x0 + t + Bt. Let us see what the oeÆient mathingtehnique gives us. The system we need to solve in this ase is12 �2f�x2 (s; x) + �f�s (s; x) = 1;�f�x (s; x) = 1;f(0; 0) = x0: (5)The solution is omputed as follows.�f�x (s; x) = 1) f(s; x) = x+ g(s);12 �2f�x2 (s; x) + �f�s (s; x) = 1) g0(s) = 1) g(s) = s+ 0;f(0; 0) = x0 ) 0 = x0Thus we have obtained f(s; x) = x0 + t + x, and the andidate strong solutionto the SDE is f(t; Bt) = x0 + t + Bt, whih in this ase atually is the strongsolution to (5).Example 2. Consider the so alled Ornstein-Uhlenbek SDEdXt = �rXtdt+ �dBt;X0 = x0;where r; � 2 R are onstants. If we apply the oeÆient mathing tehnique weget the system 12 �2f�x2 (s; x) + �f�s (s; x) = �rf(t; x);�f�x (s; x) = �;f(0; 0) = x0:This results in an equation f(t; x) = �x + g(t), where the funtion g satis�esthe ODE rg(t) + g0(t) = �r�x: (6)Sine the right-hand side of (6) is a funtion of t alone, and the left-hand sidea funtion of x alone, these have to be onstant. So we are fored to onludethat x is onstant. But this is absurd, sine x is a variable quantity.This simple example shows that even for harmless looking linear oeÆientfuntions a(t; x) and b(t; x), the oeÆient mathing tehnique might lead tononsense!1 Tehniques based on oeÆient mathingConsider the SDE dXt = b(t;Xt) dBt;X0 = x0: (7)2



We want to �nd a transformation f(t; x) suh that f(t;Xt) = Bt.Consider a �xed t 2 [0; T ℄ and de�ne the map gt : x 7! f(t; x). Thengt(Xt) = Bt and if gt is injetive, i.e., if it has an inverse map, g�1t , thenXt = g�1t (Bt), and the solution to the SDE (7) is obtained as the proessfg�1t (Bt)gt2[0;T ℄:The Itô Formula applied to the proess f(t;Xt) givesf(t;Xt) = f(0; x0) + Z t0 ��f�s (s;Xs) + 12b2(s;Xs)�2f�x2 (s;Xs)� ds+ Z t0 b(s;Xs)�f�x (s;Xs) dBs:Let the funtion (t; x) 7! f(t; x) satisfy the following system of partial di�eren-tial equations: �f�t (t; x) + 12b2(t; x)�2f�x2 (t; x) = 0;b(t; x)�f�x (t; x) = 1;f(0; x0) = 0:If suh a funtion exists then the Itô Formula tells us that f(t;Xt) = Bt.2 Calulation of mean valuesLet X solve the SDE dXt = a(Xt) dt+ b(Xt) dBt;X0 = x0: (8)By the general Itô Formula for proesses like X we havef(Xt) = f(x0) + Z t0 a(Xs)f 0(Xs) ds+ Z t0 b(Xs)f 0(Xs) dBs+ 12 Z t0 b2(Xs)f 00(Xs) ds: (9)Guided by Hand-in 3, Problem 3.2, we ask the question: For whih funtions fdo we get an integral equationEff(Xt )g = f(x0) +  Z t0 Eff(Xs)g ds;for the mean Eff(Xt)g? By taking expetations in the Ito Formula we getEff(Xt)g = f(x0) + Z t0 Ena(Xs)f 0(Xs) + 12b2(Xs)f 00(Xs)o ds:From this we note that if the funtion f solves the di�erential equationa(x)f 0(x) + 12b2(x)f 00(x) = f(x);3



for some onstant  2 R, then we get the desired integral equation.Thus we have obtained the result that if X solves the SDEdXt = a(Xt) dt+ b(Xt) dBt;X0 = x0;and f solves the ODE a(x)f 0(x) + 12b2(x)f 00(x) = f(x);then Eff(Xt)g = f(x0)et:Example 3. If a(x) = rx and b(x) = �x for some onstants r; � 2 R, thenevery monomial f(x) = xn solves the ODErxf 0(x) + 12�2x2f 00(x) = nf(x);where the onstant, n, is given1 by n = nr + n(n�1)2 �2. The orrespondingSDE is the usual geometri Brownian motiondXt = rXt dt+ �Xt dBt; X0 = x0:Consequently we have the result thatEfXnt g = xn0 e(nr+n(n�1)�2=2)t;speial ases of whih are EfXtg = x0ertand EfX2t g = x20e(2r+�2)t:Thus we have obtainedV ar[Xt℄ = EfX2t g � (EfXtg)2 = x20e2rt(e�2t � 1):If the oeÆients r and � satisfy 2r + �2 = 0, i.e. if we have the SDEdXt = ��2=2Xt dt+ �Xt dBt; X0 = x0;then we getV ar[Xt℄ = EfX2t g � (EfXtg)2 = x20(1� e��2t) " x20; as t!1:Let p(x) = nXk=1 akxkbe any polynomial with oeÆients k 2 R. Then, by the linearity of expetation,Efp(Xt)g = nXk=1 akxk0e(kr+ k(k�1)2 �2)t:1Just insert the monomial f(x) = xn into the ODE and equate the oeÆient of xn on theleft-hand side (nr + n(n�1)2 �2) with that of xn on the right-hand side.4



Sine one is often interested in omputing the nth moment, EfXnt g, of thesolution Xt governed by an SDE, it is interesting to know for whih oeÆientfuntions a(x) and b(x) this method an be used to ompute EfXnt g, i.e., we askthe question: For whih oeÆient funtions a(x) and b(x) are the monomialsf(x) = xn solutions to the ODEa(x)f 0(x) + 12b2(x)f 00(x) = f(x)?To answer this question, we simply assume that any monomial is a solution tothe ODE and see what this implies regarding the oeÆients a(x) and b(x). Weget the equation na(x)x + n(n� 1)2 �b(x)x �2 = ;where  2 R is a onstant. In order for this equation to make sense, a(x) = a0xand b(x) = b0x, for some onstants a0; b0 2 R.Thus we have ome to the onlusion that this method of omputing themoments EfXnt g works only for the geometri Brownian motion.Note 1. The ODE-SDE onnetion is useful for SDEs other that geometriBrownian motion. We have only shown that the onnetion is not useful if we areinterested in �nding the expetations EfXnt g. If we are interested in omputingthe expetation Eff(Xt )g, where f satis�es the ODE, then the onnetion isuseful.3 Reduible equationsConsider solving the SDEdXt = a(t;Xt) dt+ b(t;Xt) dBtX0 = x0:Suppose you an �nd a transformation f : [0; T ℄�R ! R suh that Yt � f(t;Xt)is governed by the SDE dYt = r(t) dt + �(t) dBtY0 = f(0; x0) = 0: (10)What kind of oeÆient funtions a and b admit suh a transformation? In whatway are the x-independent oeÆients r and � determined by the oeÆients aand b? We will now attempt to �nd answers to these questions.By the Itô Formula,dYt = f�tf + a�xf + 12b2�2xxfg dt+ fb�xfg dBt;where we have suppressed most of the notation in favour of brevity; E.g. a�xfreads fa(t; x) ��xf(t; x)gjx=Xt . Our demands (10) on the transformation f givethe system of PDE r(t) = �tf + �(t)nab � 12�xbo;�xf = �(t)b : 5



The fat that r(t) does not depend on x gives�xr(t) = 0 = �2xtf + �(t)�xnab � 12�xbo, �2xtf = ��(t)�xnab � 12�xbo:Applying the operator �t on the equation �xf = �(t)b gives�2txf = 1b2 (b�t�(t)� �(t)�tb):If the funtion f is assumed to have ontinuous partial seond derivatives, thenwe may equate the mixed partial derivatives �2txf and �2xtf to obtain a singleequation b�t�(t)� �(t)�tb = �b2�(t)�xnab � 12�xbo:Assuming that �(t)b(t; x) 6= 0 for no pair (t; x) 2 [0; T ℄� R, we may divide theequation by �(t)b(t; x) to get�t�(t)�(t) � �tbb = �b�xnab � 12�xbo:Sine the ratio �t�(t)�(t) does not depend on the variable x, if we apply the operator�x to the equation, we arrive at a PDE determining for what kind of oeÆientfuntions a and b the SDE dXt = a(t;Xt) dt + b(t;Xt) dBt an be transformedto an SDE dYt = r(t) dt + �(t) dBt:�x��tbb � b�xnab � 12�xbo�:Theorem 1 (Reduible SDE). If the oeÆient funtions a(t; x) and b(t; x)satisfy the partial di�erential equation��x� �b�t (t; x)b(t; x) � b(t; x) ��xna(t; x)b(t; x) � 12 �b�x (t; x)o� = 0;then there exists a transformation, Yt = f(t;Xt), transforming the stohastidi�erential equation dXt = a(t;Xt) dt+ b(t;Xt) dBtX0 = x0;to the stohasti di�erential equationdYt = r(t) dt + �(t) dBtY0 = f(0; x0) = 0:The oeÆients, r(t) and �(t), of the transformed equation are determined bythe system of partial di�erential equationsd�(t)dt = �(t)( �b�t (t; x)b(t; x) � b(t; x) ��xna(t; x)b(t; x) � 12 �b�x (t; x)o)r(t) = �(t)�a(t; x)b(t; x) � 12 �b�x (t; x)� + ��t��(t) Z xx0 dyb(t; y)�;6



and the transformation, f : [0; T ℄� R ! R, by the system of partial di�erentialequations �f�x (t; x) = �(t)b(t; x)�f�t (t; x) = r(t) � �(t)�a(t; x)b(t; x) � 12 �b�x (t; x)�:Example 4 (Geometri Brownian motion). Consider the geometri Brow-nian motion governed by the stohasti di�erential equationdXt = a0Xt dt+ b0Xt dBtX0 = x0:We �rst investigate whether it is possible to transform this equation to an equa-tion of the form dYt = r(t) dt + �(t) dBtY0 = f(0; x0) = 0:In order for this to be possible, the oeÆient funtions a(t; x) = a0x andb(t; x) = b0x have to satisfy the partial di�erential equation��x� �b�t (t; x)b(t; x) � b(t; x) ��xna(t; x)b(t; x) � 12 �b�x (t; x)o� = 0:A simple omputation shows that this is indeed the ase. We next proeed to de-termine the oeÆients r(t) and �(t) of the transformed equation. The equationfor �(t) in this ase reads d�(t)dt = 0;implying that �(t) = � = onstant. This gives an equation determining theoeÆient r(t) to be r(t) = �b0�a0 � b202 � � r = onstant:Thus, the transformed SDE readsdYt = r dt+ � dBtY0 = f(0; x0) = 0;whose solution is Yt = rt+�Bt. All that is left for us to �nd the solution of theoriginal SDE dXt = a0Xt dt+ b0Xt dBtX0 = x0;is to �nd the transformation f(t; x) onneting Yt and Xt throughYt = f(t;Xt)and then to invert it to get Xt = f�1(t; Yt);7



if the inverse an be obtained. The partial di�erential equations governing thetransformation f(t,x) reads �f�x (t; x) = �b0 1x�f�t (t; x) = 0;giving f(t; x) = �b0 log(x) + 0; where 0 is some onstant, determined by theondition 0 = f(0; x0). This gives 0 = � �b0 log(x0) and onsequentlyf(t; x) = �b0 log( xx0 ):The inverse an be obtained and readsf�1(t; x) = x0e b0� x:If we insert the transformed proess Yt = rt+ �Bt we getXt = f�1(t; Yt) = x0e b0� (rt+�Bt):Now, b0� r = b0� �b0�a0 � b202 � = a0 � b202 ;resulting in the geometri Brownian motionXt = x0e(a0� b202 )t+b0Bt ;as the solution to the stohasti di�erential equationdXt = a0Xt dt+ b0Xt dBtX0 = x0:The reason the proedure of �nding the solution of the SDE governing thegeometri Brownian motion was so long-winded, is that we used a general teh-nique �nding it. It is almost invariably the ase that whenever a general resultis applied to a spei� problem, lengthy alulations are the result.We have seen that for this problem, the tehnique of oeÆient mathingo�ered a muh faster route towards �nding the geometri Brownian motion.However, we have also seen that the tehnique of oeÆient mathing is farfrom perfet. Indeed it an fail for simple linear stohasti di�erential equationssuh as the one governing the Ornstein-Uhlenbek proess.Example 5. Consider the Ornstein-Uhlenbek proessdXt = �rXt dt+ � dBt;X0 = x0; (11)for whih the tehnique of oeÆient mathing failed to provide a solution. Letus apply the tehnique of redution and see if this works. There exists a reduingtransformation, f(t;Xt), if the oeÆient funtions of the Ornstein-Uhlenbekproess, a(t; x) = �rx and b(t; x) = �, satisfy the partial di�erential equation�x��tbb � b�xnab � 12�xbo� = 0: (12)8



A simple omputation shows that this is indeed the ase. Thus there exists atransformation f : [0; T ℄�R ! R suh that the proess Yt = f(t;Xt) is governedby the SDE dYt = �(t) dt + �(t) dBt;Y0 = f(0; x0); (13)where the oeÆients �(t) and �(t) are given by�0(t) = �(t)��tbb � b�xnab � 12�xbo�;�(t) = �(t)nab � 12�xbo+ �t��(t) Z xx0 dyb(t; y)�: (14)For us this amounts to �0(t) = r�(t);�(t) = � r�x�(t) + x� x0� �0(t); (15)i.e., �(t) = b0ert;�(t) = �x0r� �(t); (16)for some onstant b0 2 R. The SDE for the proess Yt readsdYt = �x0r� b0ert dt+ b0ert dBt;Y0 = f(0; x0): (17)Next, we will �nd a transformation f(t;Xt) suh that f(t;Xt) = Yt. Suh areduing transformation satis�es the partial di�erential equations�tf = �(t)� �(t)nab � 12�xbo = (x� x0)r� �(t);�xf = �(t)b : (18)Everything that is required to solve for f(t; x) is known and we obtainf(t; x) = f(0; x0) + (x� x0)� �(t):For a �xed t 2 [0; T ℄ we an invert this transformation to obtainx = f�1(t; y) = x0 + ��(t)fy � f(0; x0)g;from whih we �ndXt = f�1(t; Yt) = x0 + ��(t) (Yt � Y0) = x0 + ��(t) Z t0 dYs= x0 � x0r Z t0 �(s)�(t) ds+ � Z t0 �(s)�(t) dBs = x0e�rt + �e�rt Z t0 ers dBs:9



Sine the integrand, ers, in the stohasti integral R t0 ers dBs of the Ornstein-Uhlenbek proess is non-random, the stohasti integral proess fR t0 ers dBsgt2[0;T ℄is a Gaussian proess whose expetation funtion ism(t) = EfZ t0 ers dBsg = 0;beause the stohasti integral is a martingale, and whose ovariane funtionis Cov�Z s0 eru dBu; Z t0 erv dBv� = E� Z s0 eru dBu Z t0 erv dBv�= Z min(s;t)0 Eferuerug du = Z min(s;t)0 e2ru du = 12rfe2rmin(s;t) � 1g:From these fats we dedue that the expetation funtion of the Ornstein-Uhlenbek proess X is EfXtg = x0e�rtand the ovariane funtion isCov(Xt; Xs) = Cov�x0e�rt + �e�rt Z t0 erv dBv ; x0e�rs + �e�rs Z s0 erv dBv�= �2e�r(s+t)Cov�Z s0 eru dBu; Z t0 erv dBv�= �22r e�r(s+t)fe2rmin(s;t) � 1g:The reason we alulate the expetation and ovariane funtions are thatthey ompletely determine the Ornstein-Uhlenbek proess, X , sine this pro-ess is Gaussian.
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