Stochastic Calculus Part I-2007

Hand-in No 1, due September 14.

Let $V_{g}(t)$ denote the variation of g and $[f, g](t)$ the quadratic covariation on $[0, t]$ of functions f and g.

1 Show that $V_{g}(t)-g(t)$ is a nondecreasing function of t. (1 point)

2 If g is continous, show that (3 points)
a) $V_{g}(t)=0 \Rightarrow[g, g](t)=0$
b) $[g, g](t)=0 \nRightarrow V_{g}(t)=0$
c) $[g, g](t)>0 \Rightarrow V_{g}(t)=\infty$

3 Let $f(x)=\cos x$ and $g(x)=\left\{\begin{array}{ll}0, & x<\pi \\ 1, & x \geq \pi\end{array}\right.$. Calculate the Stiltjes integrals

$$
\int_{0}^{2 \pi} f(x) d g(x) \text { and } \int_{0}^{2 \pi} g(x) d f(x)
$$

Motivate finite variation where necessary. (2 points)

4 Let X and Y be independent standard normal random variables, and $Z=$ $X+Y$. Calculate $\mathrm{E}[Z \mid Y=y], \mathrm{E}[X \mid Y=y], \mathrm{E}[X Y Z \mid Y=y]$ and $\mathrm{E}[Y \mid Z=z]$. (2 points)

Hand-in No 2, due September 21.

Let B_{t} denote Brownian motion at time t.

1 Find the conditional distribution of B_{s} given $B_{t}=b$, where $0<s<t$. (2 point)

2 Calculate $P\left(B_{t^{2}}+t B_{1} \leq 1\right)$, for all $t>0$. (2 points)
3 Show that $X_{t}=t B_{1 / t}, t>0$ and $X_{0}=0$ is a Brownian motion. (2 points)
4 Simulate B_{t} to find $P\left(B_{t}<t^{1 / 3}\right)$ for $t \in(0,1)$ and calculate $P\left(B_{t}<t^{1 / 3}\right)$ exact $\forall t \in(0,1)$. Display the results in a graph. (2 points)

Hand-in No 3, Stochastic Calculus Part I, due October 5.

1 Let $X_{t}=\sum_{k=1}^{N} \xi_{k} 1_{(k, k+1]}(t)$, where $\xi_{k}=1_{\left\{B_{k}-B_{k-1} \geq 0\right\}}$. Argue that X_{t} is a simple adopted process. Find $\int_{0}^{T} X_{t} d B_{t}$, and calculate its mean and variance. (3 points)

2 Let $d X_{t}=2 B_{t} d B_{t}+d t$. Find $\mathrm{E}\left[X_{t}\right]$ and $\operatorname{Var}\left(X_{t}\right)$. (1 point)

3 Solve $d X_{t}=r X_{t} d t+\sigma X_{t} d B_{t}$. (2 points)
Hint: Consider $f\left(X_{t}\right)=\ln \left(X_{t}\right)$.
On a financial market let r_{i} be the expected increase over time t [years] for market paper i and let σ_{i} be the volatility for paper i. Then the SDE displaying the dynamic for paper i is

$$
\begin{equation*}
d X_{t}^{i}=X_{t}^{i}\left(r_{i} d t+\sigma_{i} d B_{t}^{i}\right) \tag{1}
\end{equation*}
$$

(B_{t}^{i} is independent of $B_{t}^{j}, \forall i \neq j$).
4 Let X_{t}^{1} and X_{t}^{2} be two papers run by (1) with $r_{1}=\ln \left(\frac{11}{10}\right), \sigma_{1}=\ln \left(\frac{10}{9}\right)$ and $r_{2}=0, \sigma_{2}=\ln \left(\frac{100}{81}\right)$. Simulate 1000 times, using (1), to find approximate values for $E\left[X_{1}^{i}\right]$ and ξ that gives $P\left(X_{1}^{i}>\xi\right)=0.99$ (i.e. the 99%-quantile). Both papers are worth 100 SEK at starting time. (2 points)

Hint: An estimate of ξ is found by taking the 990 -largest sample of the 1000 .

Hand-in No 4, Stochastic Calculus Part I, due October 12.

1 Let $X_{t}=\int_{0}^{t} B_{s} d s+\int_{0}^{t} s d B_{s}$. Find $t B_{t}^{2} d \ln \left(X_{t}\right)$. (1 point)
2 Simulate to find implications that $d B_{t}^{2} \neq 2 B_{t} d B_{t}$ (which would have been the case if B_{t} was a C^{1}-function). (2 point)

3 Show that $M_{t}=e^{t / 2} \sin B_{t}$ is a martingale. Find the variation of M_{t}. (2 points)

Hint: Itô's formula.

4 Show that a strong solution exist for the $\operatorname{SDE} d X_{t}=X_{t} d t+\frac{B_{t}}{\sqrt{t}} d B_{t}, X_{0}=1$. Find it. (3 points)

Hand-in No 5, Stochastic Calculus Part I, due October 19.

1 Find $\mathrm{E}\left[X_{t}\right]$ and $\operatorname{Var}\left(X_{t}\right)$, when $d X_{t}=\sqrt{X_{t}+1} d B_{t}$. Itô integrals may be assumed martingales. (2 points)

2 Let

$$
d Z_{t}=\left(2 e^{\sqrt{2} B_{t}}+Z_{t}\right) d t+\left(2 e^{\sqrt{2} B_{t}}+\sqrt{2} Z_{t}\right) d B_{t}
$$

Find Z_{t} when $Z_{0}=0$. (2 points $)$
3 Find X_{t}, when $X_{0}=1$ and

$$
d X_{t}=-\left(\sqrt{1-X_{t}^{2}}+\frac{X_{t}}{2}\right) d t-\sqrt{1-X_{t}^{2}} d B_{t}
$$

What can you say about uniqueness? (2 points)
4 The Ornstein-Uhlenbeck and Black-Schols processes are defined via the SDE's

$$
d X_{t}=-\alpha X_{t} d t+\sigma d B_{t}, \quad \alpha>0
$$

and

$$
d X_{t}=X_{t}\left(r d t+\sigma d B_{t}\right)
$$

respectively. Show that their (strong) solutions are unique. (2 points)

Hand-in No 6, Stochastic Calculus Part I, due October 26.

1 Let $Y_{t}=B_{t}^{2}+\exp \left(B_{t}\right)$, calculate $E\left[[Y, Y]_{t}\right]$, and simulate $[Y, Y]_{t}$ to find indications that the calculations are correct. (2 points)

Let $\hat{Z}_{h}^{\xi}(t)$ denote the estimated $Z(t)$, of a known SDE, with steplength h using numerical method ξ. Consider the SDEs $\left\{d X_{t}=X_{t} d t+X_{t} d B_{t}, X_{0}=1\right\}$ and $\left\{d Y_{t}=-\left(\sqrt{1-Y_{t}^{2}}+Y_{t} / 2\right) d t-\sqrt{1-Y_{t}^{2}} d B_{t}, Y_{0}=1\right\}$ (which during the course you have solved analytically, i.e. $X(t)$ and $Y(t)$ are known explicit).

2 Simulate $\hat{X}_{h}^{\xi}(t)$ and $\hat{Y}_{h}^{\xi}(t)$ using both Milstein and Euler methods to find indications that;
a) $E\left[\left|\hat{Z}_{h}^{\text {Euler }}(t)-Z(t)\right|\right]$ is growing in h,
b) $\quad E\left[\left|\hat{Z}_{h}^{\text {Milstein }}(t)-Z(t)\right|\right] \leq E\left[\left|\hat{Z}_{h}^{\text {Euler }}(t)-Z(t)\right|\right]$,
if all conditions for the numerical methods are satisfied. (4 points)
Let the process $\left\{X_{s}\right\}_{s \in[t, T]}$ be the strong solution of the stochastic differential equation

$$
\begin{equation*}
d X_{s}=a\left(s, X_{s}\right) d s+b\left(s, X_{s}\right) d B_{s}, X_{t}=x, \quad s \in[t, T] \tag{2}
\end{equation*}
$$

Let $f:[t, T] \times \mathbb{R} \rightarrow \mathbb{R}$ be a function that is one time continuously differentiable in the first argument (t) and twice continuously differentiable in the second variable (x). Then, according to the Itô formula the stochastic process $\left\{f\left(s, X_{s}\right)\right\}_{s \in[t, T]}$ can be represented as
$f\left(s, X_{s}\right)=f\left(t, X_{t}\right)+\int_{t}^{s} \frac{\partial f}{\partial u}\left(u, X_{u}\right) d u+\int_{t}^{s} \frac{\partial f}{\partial x}\left(u, X_{u}\right) d X_{u}+\frac{1}{2} \int_{t}^{s} \frac{\partial^{2} f}{\partial x^{2}}\left(u, X_{u}\right) d[X, X]_{u}$,
where $\left\{[X, X]_{u}\right\}_{u \in[t, T]}$ is the quadratic variation process of $\left\{X_{u}\right\}_{u \in[t, T]}$. Suppose that the functions b and f are such that the stochastic integral process

$$
\left\{\int_{0}^{s} b\left(u, X_{u}\right) \frac{\partial f}{\partial x}\left(u, X_{u}\right) d B_{u}\right\}_{s \in[t, T]}
$$

is a martingale, with respect to the natural filtration of the Brownian motion.
3 Define the differential operator \mathcal{A} as $\mathcal{A}=a(s, x) \frac{\partial}{\partial x}+\frac{1}{2} b^{2}(s, x) \frac{\partial^{2}}{\partial x^{2}}$. By taking expectations in (3), show that if the function $f(t, x)$ satisfies the partial differential equation $\left\{\frac{\partial f}{\partial t}(t, x)+(\mathcal{A} f)(t, x)=0 ; f(T, x)=F(x)\right\}$, then the solution $f(t, x)$ can be represented as

$$
f(t, x)=\mathbb{E}\left\{F\left(X_{T}\right) \mid X_{t}=x\right\},
$$

where X_{T} is the solution of the $\operatorname{SDE}(2)$ evaluated at time T. (4 points)
4 Use the result of 6.3 to solve the partial differential equation

$$
\left\{\frac{\partial f}{\partial t}(t, x)+\frac{\sigma^{2}}{2} \frac{\partial^{2} f}{\partial x^{2}}(t, x)=0 ; f(T, x)=x^{2}\right\}
$$

where $\sigma \in \mathbb{R}$ is a constant. (3 points)

