Stochastic Calculus Part I - 2007 Hand-in No 1, due September 14.

Let $V_g(t)$ denote the variation of g and [f,g](t) the quadratic covariation on [0,t] of functions f and g.

- **1** Show that $V_g(t) g(t)$ is a nondecreasing function of t. (1 point)
- **2** If g is continous, show that (3 points)
 - a) $V_g(t) = 0 \Rightarrow [g, g](t) = 0$
 - b) $[g,g](t) = 0 \not\Rightarrow V_g(t) = 0$
 - c) $[g,g](t) > 0 \Rightarrow V_g(t) = \infty$

3 Let $f(x) = \cos x$ and $g(x) = \begin{cases} 0, & x < \pi \\ 1, & x \ge \pi \end{cases}$. Calculate the Stiltjes integrals $\int_{0}^{2\pi} f(x)dg(x) \text{ and } \int_{0}^{2\pi} g(x)df(x).$

Motivate finite variation where necessary. (2 points)

4 Let X and Y be independent standard normal random variables, and Z = X+Y. Calculate E[Z | Y = y], E[X | Y = y], E[XYZ | Y = y] and E[Y | Z = z]. (2 points)

Hand-in No 2, due September 21.

Let B_t denote Brownian motion at time t.

1 Find the conditional distribution of B_s given $B_t = b$, where 0 < s < t. (2 point)

- **2** Calculate $P(B_{t^2} + tB_1 \le 1)$, for all t > 0. (2 points)
- **3** Show that $X_t = tB_{1/t}$, t > 0 and $X_0 = 0$ is a Brownian motion. (2 points)

4 Simulate B_t to find $P(B_t < t^{1/3})$ for $t \in (0, 1)$ and calculate $P(B_t < t^{1/3})$ exact $\forall t \in (0, 1)$. Display the results in a graph. (2 points)

Hand-in No 3, Stochastic Calculus Part I, due October 5.

1 Let $X_t = \sum_{k=1}^N \xi_k \mathbb{1}_{\{k,k+1\}}(t)$, where $\xi_k = \mathbb{1}_{\{B_k - B_{k-1} \ge 0\}}$. Argue that X_t is a simple adopted process. Find $\int_0^T X_t dB_t$, and calculate its mean and variance. (3 points)

- **2** Let $dX_t = 2B_t dB_t + dt$. Find $E[X_t]$ and $Var(X_t)$. (1 point)
- 3 Solve $dX_t = rX_t dt + \sigma X_t dB_t$. (2 points) Hint: Consider $f(X_t) = \ln(X_t)$.

On a financial market let r_i be the expected increase over time t[years] for market paper i and let σ_i be the volatility for paper i. Then the SDE displaying the dynamic for paper i is

$$dX_t^i = X_t^i (r_i dt + \sigma_i dB_t^i) \tag{1}$$

 $(B_t^i \text{ is independent of } B_t^j, \forall i \neq j).$

4 Let X_t^1 and X_t^2 be two papers run by (1) with $r_1 = \ln(\frac{11}{10})$, $\sigma_1 = \ln(\frac{10}{9})$ and $r_2 = 0$, $\sigma_2 = \ln(\frac{100}{81})$. Simulate 1000 times, using (1), to find approximate values for $E[X_1^i]$ and ξ that gives $P(X_1^i > \xi) = 0.99$ (i.e. the 99%-quantile). Both papers are worth 100 SEK at starting time. (2 points)

Hint: An estimate of ξ is found by taking the 990-largest sample of the 1000.

Hand-in No 4, Stochastic Calculus Part I, due October 12.

1 Let $X_t = \int_0^t B_s ds + \int_0^t s dB_s$. Find $t B_t^2 d \ln(X_t)$. (1 point)

2 Simulate to find implications that $dB_t^2 \neq 2B_t dB_t$ (which would have been the case if B_t was a C^1 -function). (2 point)

3 Show that $M_t = e^{t/2} \sin B_t$ is a martingale. Find the variation of M_t . (2 points)

Hint: Itô's formula.

4 Show that a strong solution exist for the SDE $dX_t = X_t dt + \frac{B_t}{\sqrt{t}} dB_t$, $X_0 = 1$. Find it. (3 points)

Hand-in No 5, Stochastic Calculus Part I, due October 19.

1 Find $E[X_t]$ and $Var(X_t)$, when $dX_t = \sqrt{X_t + 1}dB_t$. Itô integrals may be assumed martingales. (2 points)

2 Let

$$dZ_t = \left(2e^{\sqrt{2}B_t} + Z_t\right)dt + \left(2e^{\sqrt{2}B_t} + \sqrt{2}Z_t\right)dB_t.$$

Find Z_t when $Z_0 = 0$. (2 points)

3 Find X_t , when $X_0 = 1$ and

$$dX_t = -\left(\sqrt{1 - X_t^2} + \frac{X_t}{2}\right)dt - \sqrt{1 - X_t^2}dB_t.$$

What can you say about uniqueness? (2 points)

4 The Ornstein-Uhlenbeck and Black-Schols processes are defined via the SDE's

$$dX_t = -\alpha X_t dt + \sigma dB_t, \quad \alpha > 0,$$

and

$$dX_t = X_t (rdt + \sigma dB_t),$$

respectively. Show that their (strong) solutions are unique. (2 points)

Hand-in No 6, Stochastic Calculus Part I, due October 26.

1 Let $Y_t = B_t^2 + \exp(B_t)$, calculate $E[[Y,Y]_t]$, and simulate $[Y,Y]_t$ to find indications that the calculations are correct. (2 points)

Let $\hat{Z}_{h}^{\xi}(t)$ denote the estimated Z(t), of a known SDE, with steplength h using numerical method ξ . Consider the SDEs $\{dX_t = X_t dt + X_t dB_t, X_0 = 1\}$ and $\{dY_t = -(\sqrt{1-Y_t^2}+Y_t/2)dt - \sqrt{1-Y_t^2}dB_t, Y_0 = 1\}$ (which during the course you have solved analytically, i.e. X(t) and Y(t) are known explicit).

2 Simulate $\hat{X}_h^{\xi}(t)$ and $\hat{Y}_h^{\xi}(t)$ using both Milstein and Euler methods to find indications that;

a) $E[|\hat{Z}_h^{Euler}(t) - Z(t)|]$ is growing in h,

b)
$$E[|\hat{Z}_{h}^{Milstein}(t) - Z(t)|] \le E[|\hat{Z}_{h}^{Euler}(t) - Z(t)|]$$

if all conditions for the numerical methods are satisfied. (4 points)

Let the process $\{X_s\}_{s \in [t,T]}$ be the strong solution of the stochastic differential equation

$$dX_s = a(s, X_s) \, ds + b(s, X_s) \, dB_s, \ X_t = x, \quad s \in [t, T].$$
⁽²⁾

Let $f : [t,T] \times \mathbb{R} \to \mathbb{R}$ be a function that is one time continuously differentiable in the first argument (t) and twice continuously differentiable in the second variable (x). Then, according to the Itô formula the stochastic process $\{f(s, X_s)\}_{s \in [t,T]}$ can be represented as

$$f(s, X_s) = f(t, X_t) + \int_t^s \frac{\partial f}{\partial u}(u, X_u) \, du + \int_t^s \frac{\partial f}{\partial x}(u, X_u) \, dX_u + \frac{1}{2} \int_t^s \frac{\partial^2 f}{\partial x^2}(u, X_u) \, d[X, X]_u \tag{3}$$

where $\{[X, X]_u\}_{u \in [t,T]}$ is the quadratic variation process of $\{X_u\}_{u \in [t,T]}$. Suppose that the functions b and f are such that the stochastic integral process

$$\left\{\int_0^s b(u, X_u) \frac{\partial f}{\partial x}(u, X_u) \, dB_u\right\}_{s \in [t, T]}$$

is a martingale, with respect to the natural filtration of the Brownian motion.

3 Define the differential operator \mathcal{A} as $\mathcal{A} = a(s, x)\frac{\partial}{\partial x} + \frac{1}{2}b^2(s, x)\frac{\partial^2}{\partial x^2}$. By taking expectations in (3), show that if the function f(t, x) satisfies the partial differential equation $\{\frac{\partial f}{\partial t}(t, x) + (\mathcal{A}f)(t, x) = 0; f(T, x) = F(x)\}$, then the solution f(t, x) can be represented as

$$f(t,x) = \mathbb{E}\{F(X_T) \mid X_t = x\},\$$

where X_T is the solution of the SDE (2) evaluated at time T. (4 points)

4 Use the result of 6.3 to solve the partial differential equation

$$\{\frac{\partial f}{\partial t}(t,x)+\frac{\sigma^2}{2}\frac{\partial^2 f}{\partial x^2}(t,x)=0; f(T,x)=x^2\},$$

where $\sigma \in \mathbb{R}$ is a constant. (3 points)