Hand-in no 5 Stochastic, Calculus II

Let $\{N_t\}_{t\geq 0}$ be a Poisson process with intensity $\lambda = 1$. Let $M_t = N_t - t$ be the compensated Poisson process.

1 Calculate $Y_t = \int_0^t M_{s-} dM_s$. What is the quadratic covariation $[Y, M]_t$? (2p)

2 Let $\Lambda_t = e^{-t} 2^{N_t}$. Calculate $\mathbb{E}[\Lambda_t]$ and $Var(\Lambda_t)$. Show that Λ_t is a martingale. Simulate a trajectory of Λ_t . (2p)

3 As you know the Compound Poisson Process (CPP) $\{X_t\}_{t\geq 0}$ can be defined as

$$X_t = X_0 + \sum_{i=1}^{\infty} \mathbb{I}(\tau_i \le t)\xi_i = X_0 + \sum_{i=1}^{N_t} \xi_i$$

where the ξ_i are iid random variables, independent of $\{N_t\}_{t\geq 0}$ (which has jump times τ_i).

- Let $X_0 = 0$ and ξ_i be iid N(0, 1).
 - a) Show, from $E[X_t|\mathcal{F}_s] = X_s$, that X_t is a martingale. (2p)
 - b) Calculate $E[X_t]$ and $Var(X_t)$. (2p)
 - c) Find estimates of $E[X_t]$ and $Var(X_t)$ by doing simulations. (2p)
 - d) Show that the characteristic function of X_t is given by

$$\phi(u) := E[e^{iuX_t}] = e^{t(\phi_{\xi}(u)-1)} = e^{t(e^{-u^2/2}-1)}.$$

The fact that the characteristic function of the ξ_i 's is given by $\phi_{\xi}(u) = e^{-u^2/2}$ does not have to be shown. (3p)

- e) Find the moment generating function of X_t . (1p)
- f) Calculate $E[X_t^4]/3t$. (2p)

4 The Weibull distribution is widely used for modelling life times of objects. Its density and cdf, for $\alpha, \beta > 0$ and $\nu \in \mathbb{R}$, are given by

$$f(x;\alpha,\beta,\nu) = \begin{cases} 0 & x \le \nu \\ \frac{\beta}{\alpha} \left(\frac{x-\nu}{\alpha}\right)^{\beta-1} \exp\left\{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}\right\} & x > \nu \end{cases}$$

and

$$F(x;\alpha,\beta,\nu) = \begin{cases} 0 & x \le \nu \\ 1 - \exp\left\{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}\right\} & x > \nu \end{cases}$$

respectively (where β is the shape parameter, α is the scale parameter, and ν is the location parameter).

Just as in the CPP case let $\{X_t\}_{t\geq 0}$ be given by

$$X(t) = X(0) + \sum_{n=0}^{\infty} \mathbb{I}(\tau_i \le t) \,\xi_i,$$

However, now let the interarrival times $\tau_{i+1} - \tau_i$ be iid Weibull $(\alpha, \beta, \nu) =$ Weibull $(\alpha, 1, 0)$ -distributed, for some $\alpha > 0$, and let the jumps ξ_i be iid N (μ, σ) -distributed.

- a) Find the compensator A(t) of X(t). (2p)
- b) Simulate one trajectory of X(t) and one of X(t) A(t). Also simulate estimates of E[X(t)] and E[M(t)] = E[X(t) - A(t)]. (2p)
- c) Give an example of a possible situation where one could use X(t) as a modelling tool. (1p)