Lecture on Applications Monday 10 December

In this lecture we give a detailed demonstration of SDE and diffusion theory as well as
statistical likelihood methodology to the Ornstein-Uhlenbeck (OU) process.

1. Elements of diffusion theory

Diffusion processes

Given “nice” drift and volatility function y : R — R and ¢ : R — R, respectively, a

time homogeneous diffusion process is the solution X (¢) to an SDE of the form

dX (1) = p(X () dt + o(X (t)) dB(2).

Transition densities
The transition density function
d
pt,z,y) = @P{X(HS) <y|X(s)=z}, >0,
of the diffusion process satisfies the Kolmogorov backward PDE
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Conversely, under general conditions, a solution to this PDE is the transition density

function of the diffusion process if it is a density function for each z and ¢ > 0, that is,

p(t,z,y) >0 and /p(t,:v,y) dy =1,
R

and in addition it satisfies p(¢,z,y) — 0 as ¢t 0 for z #y.
In general it is not easy to find an explicit expression for the transition density func-
tion. The most common way is to solve the PDE by means of Laplace transformation
)
(A, z,y) 2/0 e Mp(t,z,y)dt for A>0.
The Laplace transformed density p(\, z,y) must satisfy the ODE

o(z)? 62

—)\ﬁ(/\,x,y) = 9 W

R 0 .
p()\,:zz,y) + M("I") gp()\,x,y)

(for z #y), as
o a o0
/ e M 8—p(t,w,y) dt = —/\/ e Mp(t,z,y) dt
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(for z #y) when p(0,z,y) =0. The conditions that p is a density function translates to

o
1
/ (A, z,y)dy = // p(t,z,y) dtdy = / )‘t/ (t,z,y) dydt = /e’\tdt:X.
0

As the ODE for p(\, z,y) usually has a unique solution that integrates to 1/A, in the
above fashion, this determines the Laplace transform p(\, z,y) of p(¢,z,y), after which
p(t,z,y) is found by inverse Laplace tranformation.

Although the above method to find transition densities works for many important
equations, the details are often too difficult to attempt on undergraduate level, and it is

more rewarding to search the literature (web) for solutions than to try own derivations.

Stationary distribution

A stationary density function is a probability density function 7 that satisfies

7(y) :/R%P{X(t—ks)Sy\X(s):x}w(a:)dm:/Rp(t,a:,y)ﬂ(a:)dm for t>0.

This means that if the process has the stationary distribution at a ceratin time, then
it also has the stationary distribution at all later times. This implies (by some further
considerations), that if the process is started with the stationary distribution, then it is
a stationary process. Also, if the process is started at a fixed value, then it will converge
(in a ceratin sense) to a stationary process with the stationary marginal distribution.

As the transition density satisfies the Kolmogorov forward PDE

p(t,z,y) = 3622 (0(3)2 p(t,w,y)) + a%(u(y)p(t,x,y)>,
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we see from the above integral equation that
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If it exists, the stationary density is given by

= e [ 1],

where y € R is any constant and C > 0 is a normalizing constant selected to make 7 a

density, that is, fR y) dy = 1. The stationary density exists when this normalization

can be carried out. Note that it is easy to see that this 7 satisfies the ODE (cf. above)
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Finite dimensional distributions

The joint density function of (X (¢1),...,X(t)), 0<t1 < ... <tp, is given by

n
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when the process is started at a fixed value X (0) =z, and by
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when the process is started with the stationary distribution (provided that it exists).

Euler method

We may simulate an approximate weak solution to the SDE at a time grid 0 =1y < t; <

... <tn, =T by means of the Euler method, as

X(ti) = X(tic1) + p(X (tic1)) (ti —tica) + o(X(ti1)) Vi —tici & for i=1,...,n,

where {{;}I; are independent zero-mean unit variance normal distributed random vari-
ables, and where X (0) =z if X (¢) is started at a fixed value z(, while X (0) is a ran-
dom variable that is indepedent of {¢;}"_; and has the stationary distribution if X (¢)
is started according to the stationary distribution.

For a simulated approximate strong solution based on a given Brownian motion B(t)

we use B(t;) — B(t;—1) instead of v/#; —t;—1 & in the above algorithm.

Likelihood ratios

If for two different probability measures P; and Py the diffusion process X (t) satisfies
dX(t) = p(X(t))dt + o (X (t)) dB(t)

for a P1-Brownian motion B(t), and
dX(t) = p2(X(2)) dt + o (X(£)) dW (1)

for a Py-Brownian motion W (t), then the likelihood ratio between Py and P;, based

on the process in the time interval [0, 7] is given by

aPy _ [ [T me(X(#) —m(X(1) 1T (X ()% - (X (1))
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Given a data set {X (t)},c[o,7] the likelihood ratio can be used to judge which is the
most likely (best) of the above two SDE models for X (t): If dP2/dP; is (significantly)
bigger than 1, then the model with the drift uo is the most likely, while a dPy/dP;
(significantly) smaller than 1 indicates that the drift uq is the most likely.

The likelihood ratio can also be used to estimate parameters of a parametric SDE.
2. The OU process
Given parameters p, o > 0, an OU process is the solution X (¢) to the Langevin SDE
dX(t) = —p X (t)dt + o dB(t).

In other words, the drift is u(z) = —px and the volatility o(z) = o.

By the above formula for stationary densities, we see that for the OU process
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that is, the stationary density is zero-mean normal with variance o2/(2 p).

The OU process has transition density
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that is, a normal distribution with mean e #!z and variance o%(1—e 2#%)/(2u). Note

p(t,z,y) =

that, although one might wonder how this formula is derived, it is straightforward to
differentiate in order to check that this p satisfies the backward PDE.

A strong solution to the Langevin SDE is given by

X (1) :e_“t(X(0)+/0tesadB(s)> for t>0:

This can be seen by mean of direct calculations checking that this X (¢) really solves the
SDE. Alternatively, we can deduce this fact from the theory for linear SDE’s.
If X (t) is an OU process

dX(t) = —p1 X(t)dt + o dB(t)
for a P, -Brownian motion B(t), and an OU process

AX () = —po X () dt + o dW (2)



for a P,,-Brownian motion W (t), then the likelihood ratio is given by

dPuz M2 — ,ul / /
= X(t)dX(t X(t
dP,, exp { )d 2 -2 2 dt

In particular, we can find which is the most likely of the models

dX (t) = dB(t)

and

dX(t) = —X(t) dt + dW (t)

by computing the likelihood ratio for yu; =0, yg=1and o =1

j—;’; _ exp {_ /OTX(t) X (t) — %/OTX(N dt},

and then check whether dP;/dPy >> 1, indicating that u =1 is the most appropriate
model, or dP;/dPy << 1, indicating that x4 =0 is the most appropriate model.

We can also estimate the parameter u for the equation
dX(t) = —p X (t)dt + dW (t)

by means of maximizing the likelihood

dP,
P, exp{ /X t)dX (¢ ——/ X(t dt}

which by differentiation gives the estimate

- [Frwexo(['xora)

3. Application to the OU process

We used the Euler method to simulate an OU process { X (t)}4¢[0,10] started according
to the stationary distribution, and an OU process {Y (t)},c[0,10] started at zero. In
both cases the drift was p(z) = —poz and the diffusion coefficient o(z) = og, where
po =09 =1.

We use distance ﬁ between the time points of the simulation grid, so that 0 =1y <
th1 < ... <tigoo =10, where t; —t;_ 100 for i =1,...,1000.

The simulations were carried out by means of the following Mathematica programs.

<<Statistics‘ContinuousDistributions®;



dt=1/100; T=10; {mu0,sigma0}={1,1};

For[i=2; X={Random[NormalDistribution[0,sigmaO/Sqrt[2*mu0]]1]},

i<=T/dt, i++, AppendTo[X, X[[i-1]] - muO*X[[i-1]1]*dt

+ Random[NormalDistribution[0,sigmaO*Sqrt [dt]1]1]1]1]

For[i=2; Y=0, i<=T/dt, i++, AppendTol[Y, Y[[i-1]] - muO*Y[[i-1]]*dt

+ Random[NormalDistribution[0,sigmaO*Sqrt[dt]]1]]]

The results of the simulations are depicted in the following two figures

X(t) stationary OU process dx(t)=-X(t)dt+dB (t)

Y(t) oy process dY (t)=-Y(t)dt+dB(t

Y (0)=0

The joint density functions of (X (tp),...,X(t1000)) and (Y (¢o),-.-,Y (t1000)) are

given by
fX(to),...,X(tlgoo)(:L.O; .. 7$1000)
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1000
IY (o), Y (t1000) (Y05 - - - Y1000) = H p(ti—ti—1,Yi—1,Yi)
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respectively. Hence we may use the maximum likelihood method to estimate y and o
from our simulated data (pretending that they are unknown), by means of maximizing

the likelihood
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respectively. These maximum likelihood estimates were carried out by means of the

following Mathematcia code (with the densities logged to not get numerical underflows).

fO0UStationary[mu_,sigma_,x_]
:= Sqrt [mu] *Exp [-mu*x~2/sigma~2]/(Sqrt [Pi]*sigma) ;
pO0U[mu_,sigma_,x_,y_,t_]
:= Exp[-(y-x*Exp[-mu*t]) "2/ (2*sigma”2* (1-Exp [-2*mux*t] )/ (2*mu) )]
/(Sqrt [2*¥Pi] *sigma*Sqrt [1-Exp [-2*mu*t]]/Sqrt [2*mu]) ;
MLStationary[mu_,sigma_,dt_,Data_]
:= Log[fOUStationary[mu,sigma,Datal[[1]]]1]
+ Sum[Log[pOU[mu,sigma,Datal[[i-1]] ,Datal[[i]],dt]],
{i,2,Length[Datal}]
MLNonStationary[mu_,sigma_,dt_,Data_]
:= Sum[Log[pOU[mu,sigma,Datal[[i-1]],Datal[i]],dt]],
{i,2,Length[Datal}]
NMaximize [MLStationary[mu,sigma,dt,X] ,mu>0,sigma>0, mu,sigma]
Out[]:= {890.45, {mu -> 1.01156, sigma -> 0.996303}}
NMaximize [MLNonStationary[mu,sigma,dt,Y] ,mu>0,sigma>0, mu,sigma]

Out[]:= {886.86, {mu -> 0.997098, sigma -> 1.00088}}

Note how well this fits with the correct values ;4 =1 and o =1 for the parameters.



We calculate the likelihood ratios
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d—PO(Y)—exp{— Cymare -z Yo dt},

for our simulated processes, in order to fine whether
dX(t) =dB(t) or dX(t)=-X(t)dt+ dW(t)

and

dY () = dB(t) or dY(t) = —Y(t)dt+dW (),

respectively, are the most likely models for the data. As both ratios where significantly
larger than 1 (see the enclosed Mathematica code), the model with ;=1 was the most

likely for both data sets.

OURatioTest [Data ]
:= Exp[Sum[-Data[[i-1]]1*(Data[[il]-Datal[[i-111), {i,2,
Length[Datal}] - Sum[Datal[[il]~2*dt, {i,1,Length[Datal}l/2];
{OURatioTest[X], OURatioTest[Y]}
Out[]:= {10.1342, 10.5346}

We may estimate the parameter y by means of maximizing the likelihood ratios
(dP,/dPo)(X) and (dP,/dPg)(Y), respectively, which gives the u estimates
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p=— OIOX(t)dX(t)/< OIOX(t)2dt) and p=— OIOY(t)dY(t)/< Y(t)th),

0
respectively. Both results were very close to the correct u =1, as the following Mathe-

matica code illustrates:

OURatioEst [Data.]
:= —-Sum[Data[[i-1]]1*(Data[[i]l]-Datal[[i-1]]), {i,2,Length[Data]}]
/Sum[Data[[i]]"2#dt, {i,1,Length[Data]}];
{OURatioEst[X], OURatioEst[Y]}
{0.954688, 0.991207}



