
Lecture 8 

Continuous Data



Types of Data

Continuous

Blood pressure

Time to event

Ordered 

Categorical

Pain level

Discrete

No of relapses

Categorical

sex

quantitative qualitative



Types of data analysis (Inference)

Parametric

Vs

Non parametric

Frequentist

Vs

Bayesian

Model based

Vs

Data driven



One way analysis of variance (Anova1)

• Here we want to compare several (k) groups (doses) with respect to the average response in 
each group. The following model is assumed  

and

• Main point: individuals only differ with respect to one criterion: group belonging
Var



Looking at the pictures we see that the variation says something about the difference 
between the cases where the groups are different and when they are similar.



Anova 1 continued

• The deviation of an individual observation from the 
overall mean can be described by

• The null hypothesis and the alternative 

hypothesis can be formulated as

SST/SST SSA/SSB SSE/SSW



Anova1 continued

• Manipulating these gives:

MSA

• When the null hypothesis is false we expect 

the ratio MSA/MSE to be large. To calculate 

exact significance levels we use the fact that 

it F-distributed with (k-1,N-k) d.f.

MSE MSA



Anova table

Source of 

variation

Sum of 

squares

d.f. Mean 

squares

F/p-value

Beween SSA K-1 MSA F0=MSA/MSE 

/p

Within SSE N-k MSE

Total SST N-1



• Example: 3 groups with the same mean 20 and the same 
standard deviation 2. We reject for large values of F0.

Source of 

variation

Sum of 

squares

d.f. Mean 

squares

F0/p-value

Treatment 9.56 2 4.78 1.22/ 0.29

Error 4671.1 1197 3.9

Total 4680.65 1199

F is F-distributed and F0 the value of MSA/MSE

We cannot reject



• Example: 3 groups with means 20, 20 and 20.5 and 
the same standard deviation 3.

Source 

of 

variation

Sum of 

squares

d.f. Mean 

squares

F/p-

value

Treatmen

t

59.4 2 29.7 3.25/ 

0.039

Error 10942.8 1197 9.14

Total 11002.3 1199
We can reject



We can reject



Multiple comparisons

• When we reject the null hypothesis                                                            we only 
know that the groups are not equal but some of them might still be. 

• To find out more, we have to consider all the pairwise comparisons between the 
groups. With k groups this gives m=k(k-1)/2 such comparisons. 

• How do we do this and still have a reasonable overall significance level? 

• The simplest way to deal with this is using Bonferroni’s inequality. This implies 
that when performing m tests if each test is at the 1-α/m level then the tests 
taken simultaneously will be on the 1- α level. 

• We will deal with problem in detail later.



Two way analysis of variance (anova 2)

• Here we assume that individuals can differ with respect to 
two factors (e.g. two drugs, treatment and centre). The 
following model is usually suitable for this situation

• As before the deviation of an individual observation 

from the overall average can be decomposed into 

terms related to the effects of the factors (e.g. 

treatment, center, treatment by center as well as to  a 

pure random component.



Anova2

• We use a similar notation as before



• Tests of treatment effect, center effect or treatment 
by center interaction can be performed by using the 
appropriate ratio between mean square values.

Var



Anova2

• As an example assume we want to test if there is a 
treatment effect:

• This can be tested using the test statistic

• Which has under the null hypothesis an F distribution 
with (a-1) and ab(n-1) degrees of freedom. 

• The various tests are summarized in the following 
table



Two-way anova



Analysis of covariance

• Here we assume that individuals can differ with 
respect baseline values. It is sometimes  desirable to 
adjust the model for the endpoint measures Y so 
baseline values X are taken into account. The 
following model can then be useful

The analysis uses an F distribution based on

Mean sums of squares (cf. Table 8.4.5)





Example: Blood pressure



Example: Blood pressure



Example: Blood pressure



Example: Blood pressure



Example: Blood pressure



Various forms of models and relation between them
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LM: Assumptions:

1. independence,

2. normality,

3. constant parameters 

GLM: assumption 2) 

Exponential family

LMM: 

Assumptions 1) 

and 3) are modified

GLMM: Assumption 2) Exponential 

family and assumptions 1) and 3) are 

modified 

Repeated measures: 

Assumptions 1) and 3) 

are modified

Longitudinal dataMaximum likelihood

Classical statistics (Observations are random, parameters are unknown constants)

Bayesian statistics, parameters are random

LM - Linear model

GLM - Generalised linear model

LMM - Linear mixed model

GLMM - Generalised linear mixed model

Non-linear models

Mixed models, both random and constant parameters 



Simple linear regression
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Average evolution Subject specific

• The linear mixed effects model is quite flexible and does not need balance, 
independence etc. Usually some version of maximum l likelihood is used for 
the inference

The Linear Mixed-effects Model

Linear model

Random parameter



Date Name, department 28

Convenient using multivariate normal.

Very difficult with other distributions

The general mixed effects models can be summarized by:

Terminology:

• Fixed ffects: 

• Random effects: bi

• Variance components: elements in D and Si



Remarks

iiiii bZXY  ++=

Date Name, department 29

1. It is occasionally unclear if we should treat an effect as a fixed or a mixed

effect. For example in clinical trials with treatment and clinic as “factors”

should we consider clinics as random?

2. Considering the general form of a mixed effects model

notice that the fixed effects are involved only in mean values (just like in 

ordinary linear models) while random effects modify the covariance matrix of 

the observations. 

?



The hierarchical versus the marginal 
Model

Date Name, department 30

The general mixed model is given by It can be written as

It is therefore also called a hierarchical model



Date 31

f(yi I bi)

f(bi)
f(yi)



Example (Verbecke et al – mixed models 
course)

Date Name, department 32



Example

Date Name, department 33

Linear model where each

Subject has own intercept

and own slope

Can be negative or positive

reflecting individual deviation

from average



Stage 2 model:

• In the second stage, the subject-specific intercepts and time effects are related to the 
treatment of the rats

Date Name, department 34
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Stochastic components in general linear 
mixed model

Date 36

Average evolution

Group 2

Group 1

Time

R
e
s
p
o
n
s
e

Comments:

• Linear average evolution in each group

• Equal average intercepts

• Different average slopes



Abdominal Aortic Aneurysm (AAA)
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• Summary of Growth Data

• Endpoint AD with range 25-70. 

• AD0: baseline value with range 25-70

• Number of subjects 211

• Number of screens 2-18

• Time 0-13

• Other variables: Age (5-87) - Diabetes -



Possible NLS models

mod1=nls(AD~(ADO+k*TIME), start=list(k=2), data=G)

mod2=nls(AD~(ADO+k*TIME*TIME), start=list(k=2), data=G)

mod3=nls(AD~(ADO*exp(k*TIME)), start=list(k=0.2), data=G)

mod4=nls(AD~(ADO*exp(k*TIME*TIME)), start=list(k=0.2), data=G)

38Author | 00 Month Year Set area descriptor | Sub level 1



Summary NLS mod1-mod4

> summary(mod1)

Formula: AD ~ (ADO + k * TIME)

Parameters:

Estimate Std. Error t value Pr(>|t|)    

k  1.85931    0.03666   50.71   <2e-16 ***

>  summary(mod2)

Formula: AD ~ (ADO + k * TIME * TIME)

Parameters:

Estimate Std. Error t value Pr(>|t|)    

k 0.232701   0.006618   35.16   <2e-16 ***

>  summary(mod3)

Formula: AD ~ (ADO * exp(k * TIME))

Parameters:

Estimate Std. Error t value Pr(>|t|)    

k 0.0454132  0.0008365   54.29   <2e-16 ***

>  summary(mod4)

Formula: AD ~ (ADO * exp(k * TIME * TIME))

Parameters:

Estimate Std. Error t value Pr(>|t|)    

39Author | 00 Month Year
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Linear mixed effects (lme) models

• md1<- lme(AD~TIME, data=Growth, random=~ TIME|SUBJECT) 

• md2<- lme(AD~TIME+TIME*TIME, data=Growth, random=~ TIME|SUBJECT)

• md3<- lme(AD~TIME+AGE+ADO, data=Growth, random=~ TIME|SUBJECT)

• md4<- lme(AD~TIME+TIME*TIME+AGE+ADO, data=Growth, random=~ TIME|SUBJECT)

41Author | 00 Month Year Set area descriptor | Sub level 1
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Without random effects: all variability is in the error term

mod3= nls(AD~(ADO*exp(k*TIME+b*AGE+h*SUBJECT)), 

start = list(k=0.2,b=0.1,h=0.1), data=G)
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Bayesian Inference



Simplified scientific Process

1. A hypothesis about the efficacy of a drug needs to be tested

2. We perform a clinical trial and obtain some data 

3. Are our data in agreement with our hypothesis?

4. If the answer to the above question is no, we reject the hypothesis. 
Otherwise we cannot reject it!



Classical Paradigm
vs

The Bayesian paradigm

• The classical paradigm is based on the consideration of

P[ Data | Hypothesis ] (1)

• How likely is the data if the hypothesis was to be true?



Classical vs Bayesian (cont’d)

• The Bayesian paradigm is based on the consideration of 

P[ Hypothesis | Data] (2)

• How much support or belief (likelihood?) is there in the hypothesis 
given the data?



Bayes’ Formula

Where

H = Hypothesis (Theory) 

and 

D = Data

Simple formula with many interesting implications.

D] P[

] H P[ H] | D P[
  D] | H P[ =

States that

(3)



Implications of Bayes’ Formula

1. (1) and (2) are not equivalent.

2. To work out (2) we have to estimate P[ H ] i.e. we need
to put a probability on our belief in the hypothesis we
are testing. 

3. We cannot make P[ H ] disappear. (Similar to the 
uncertainty principle in quantum mechanics?)



Example: p-values

• Some toxin is associated with certain symptoms. 
denotes the toxin level in patients having the 
symptoms and 0 the toxin level in healthy 
individuals. We want to test if there is a difference. 
A test can be based on a sample of size n through 



Under the null hypothesis

H0:  = 0, 

z is an observation from a t-distribution with n-1 
degrees of freedom.

If, moreover, the p-value is less than 0.05 it is then 
customary to consider the result as significant, i.e. 
we reject the null hypothesis.

We return to this in  moment!



Preliminaries

• Consider two Hypothesis H0 and H1

D] P[

] H P[ ]H | D P[
  D] | H P[ 00

0 =

D] P[

] H P[ ]H | D P[
  D] | H P[ 11

1 =



• We consider the odds ratio between the two

]H | D P[

]H | D P[

] H P[

] H P[
  

D] | H P[

D] | H P[

1

0

1

0

1

0 =

Posterior ratio    =    prior odds x likelihood ratio

New = old Bayes factor



Result
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Back to the t-test

P. M. Lee Bayesian Statistics: An Introduction 

2nd Ed. London: Arnold, p. 131 (1997)

shows that in the case of the t-est and under quite 

general conditions:

2

2

BF
z

e
−





Consequences

• Assume that there is no agreement on the effect of 
the toxin so we take P(H0)=0.5. Then:

1
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• Assume further that the value of z in the 
experiment turns out to be 2. Since this leads to a 
p-value of 0.044 we conclude that the result is 
significant at the 0.05 level. Setting z=2 in the 
formula above leads to:

12.0e1  D] | P[H

1

2

2-

0

2

=
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
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
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Z=2

P
[ 

H
0
| D

]

P[ H0]

P
[ 

H
0
| D

]

P[ H0]

Z=4



Conclusions

• By introducing the element of degree of belief about a theory, we 
arrive at conclusions that do not agree with those obtained using the 
frequentist approach, i.e. prior knowledge matters

• Prior knowledge is part of the Bayesian approach.



Bayesian Analysis in Clinical Trials



Bayesian Framework

• The Advantages:
• Formal system for incorporating existing information

• Natural approach to inference

• Generally more efficient

• Well suited for decision making

• The Challenges:
• Determining appropriate prior probabilities

• Computational complexity

• Lack of familiarity

• Lack of software tools
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