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Part I: Kaplan-Meier estimation

1. INTRODUCTION TO SURVIVAL TIME DATA 
(also known as time-to-event data)

2. ESTIMATING THE SURVIVAL FUNCTION

3. (THE LOG RANK TEST)



Survival Analysis



Elements of Survival Experiments

• Event Definition (death, adverse events, …)

• Starting time

• Length of follow-up (equal length of follow-up, 
common stop time)

• Failure time (observed time of event since start of 
trial)

• Unobserved event time (censoring, no event recorded 
in the follow-up, early termination, etc)

time

End of follow up time

eventstart Early termination



When to use survival analysis

• Examples

– Time to death or clinical endpoint

– Time in remission after treatment for cancer

– Recidivism rate after alcohol treatment

• When one believes that 1+ explanatory 
variable(s) explains the differences in time 
to an event

• Especially when follow-up is incomplete or 
variable



Survival Analysis in RCT

• For survival analysis, the best observation 

plan is prospective. In clinical investigation, 

that is a randomized clinical trial (RCT).

• Random treatment assignments.

• Well-defined starting points.

• Substantial follow-up time.

• Exact time records of the interesting events.



Survival Analysis in

Observational Studies

• Survival analysis can be used in observational 
studies (cohort, case control etc) as long as you 
recognize its limitations.

• Lack of causal interpretation.

• Unbalanced subject characteristics.

• Determination of the starting points.

• Lost of follow-up.

• Ascertainment of event times.



Standard Notation for Survival Data

• Ti -- Survival (failure) time

• Ci -- Censoring time 

• Xi =min (Ti ,Ci) -- Observed time

• Δi =I (Ti ≤Ci) -- Failure indicator: If 

the ith subject had an event before 

been censored, Δi=1, otherwise Δi=0.

• Zi(t) – covariate vector at time t.

• Data: {Xi , Δi , Zi(·) }, where i=1,2,…n.



Describing Survival Experiments

• Central idea: the event times are realizations 

of an unobserved stochastic process, that can 

be described by a probability distribution.

• Description of a probability distribution:

1. Cumulative distribution function, F(t)

2. Survival function, S(t)

3. Probability density function, f(t)

4. Hazard function, h(t)

5. Cumulative hazard function, H(t)



Relationships Among Different 

Representations

• Given any one, we can recover the others.
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Descriptive statistics

• Average survival

– Can we calculate this with censored data?

• Average hazard rate

– Total # of failures divided by observed 
survival time (units are therefore 1/t or 1/pt-
yrs)

– An incidence rate, with a higher value 
indicating lower survival probability

• Provide an overall statistic only



Estimating the survival function

There are two slightly different 

methods to create a survival curve. 

• With the actuarial method, the x 

axis is divided up into regular 

intervals, perhaps months or years, 

and survival is calculated for each 

interval. 

• With the Kaplan-Meier method, 

survival is recalculated every time a 

patient dies. This method is 

preferred, unless the number of 

patients is huge. 

The term life-table analysis is used 

inconsistently, but usually includes 

both methods.



Life Tables (no censoring)

In survival analysis, the object of primary interest 

is the survival function S(t).Therefore we need to 

develop methods for estimating it in a good 

manner. The most obvious estimate is the 

empirical survival function: 
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Example:  a rat survival study

• In an experiment, 20 rats exposed to a particular 
type of radiation were followed over time.

• The start time of follow-up was the same for each 
rat. This is an important difference from clinical 
studies where patients are recruited into the study 
over time and at the date of the analysis had been 
followed for different lengths of time. 

• In this simple experiment all individuals have the 
same potential follow-up time. The potential follow-
up time for each of the 20 rats is 5 days. 



Survival Function for Ratsa
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Proportion of rats 

dying on each of 5 

days
Survival Curve for Rat Study



Confidence Intervals for 

Survival Probabilities

• From above we see that the "cumulative“ probability of 
surviving three days in the rat study is 0.25.

• We may want to report this probability along with its 
standard error. This sample proportion of 0.25 is based 
on 20 rats that started the study. If we assume that 

– (i) each rat has the same unknown probability of 
surviving three days, S(3), and 

– (ii) assume that the probability of one rat dying is not 
influenced by whether or not another rat dies,

then we can use results associated with the binomial 
probability distribution to obtain the variance of this 
proportion



•This can be used to test hypotheses about the theoretical     

probability of surviving three days as well as to construct    

confidence intervals.

•For example, the 95% confidence interval for is given by

0.25 +/- 1.96 x 0.094    or   ( 0.060,0.440)

We are 95% confident that the probability of 

surviving 3 days, meaning THREE OR MORE DAYS, 

lies between 0.060 and 0.440.
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In general
This situation is not realistic. In a RCT we have 

that 

1. Patients are recruited at different time 

periods

2. Some observations are censored

3. Patients can differ wrt many covariates

4. We should avoid discretising continuous 

data if possible



Kaplan-Meier survival curves

• Also known as product-limit formula

• Accounts for censoring

• Generates the characteristic “stair step” 

survival curves

• Does not account for confounding or 

effect modification by other covariates

– Is that a problem?



stands for the proportion of patients who survive day i 

among those who survive day i-1. Therefore it can be 

estimated according to

We proceed as in the case without censoring

Censored Observations (Kaplan-Meier)
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K-M Estimate: General Formula

•Rank the survival times as t(1)≤t(2)≤…≤t(n).

•Formula

•ni patients at risk

•di failures

In SAS: PROC LIFETEST
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Using SAS
data survival;

input INDIVIDUAl STARTDAY LASTDAY RELIEFTIME STATUS CENS;

cards;

1 1 28 27 0 1

2 1 28 27 0 1

3 1 6 5 1 0

4 1 9 8 1 0

5 1 24 23 1 0

6 2 18 16 1 0

7 5 8 3 1 0

8 5 24 19 1 0

9 6 28 22 0 1

10 9 28 19 0 1

11 10 15 5 1 0

12 10 22 12 1 0

13 10 28 18 0 1

14 18 28 10 0 1

15 20 28 8 0 1

16 22 28 6 0 1

17 22 28 6 0 1

18 23 28 5 0 1

19 24 27 3 1 0

20 27 28 1 1 0

;

run;

proc lifetest data=survival 

plots=(s);

TIME relieftime*cens(1);

run;



The LIFETEST Procedure
Product-Limit Survival Estimates

RELIEFTIME Survival Failure Survival Standard Error

Number

Failed

Number

Left

0.0000 1.0000 0 0 0 20

1.0000 0.9500 0.0500 0.0487 1 19

3.0000 . . . 2 18

3.0000 0.8500 0.1500 0.0798 3 17

5.0000 . . . 4 16

5.0000 0.7500 0.2500 0.0968 5 15

5.0000 * . . . 5 14

6.0000 * . . . 5 13

6.0000 * . . . 5 12

8.0000 0.6875 0.3125 0.1070 6 11

8.0000 * . . . 6 10

10.0000 * . . . 6 9

12.0000 0.6111 0.3889 0.1193 7 8

16.0000 0.5347 0.4653 0.1265 8 7

18.0000 * . . . 8 6

19.0000 0.4456 0.5544 0.1332 9 5

19.0000 * . . . 9 4

22.0000 * . . . 9 3

23.0000 0.2971 0.7029 0.1503 10 2

27.0000 * . . . 10 1

27.0000 * . . . 10 0



The LIFETEST Procedure



Comparing Survival Functions

• Question: Did the treatment make a difference in 

the survival experience of the two groups?

• Hypothesis: H0: S1(t)=S2(t) for all t ≥ 0.

• Two tests often used :

1. Log-rank test (Mantel-Haenszel Test);

2. Cox regression



Using SAS
data survival;

input INDIVIDUAl TIME CENS GROUP $;

cards;

20 2 0 DRUG

7 4 0 DRUG

19 4 0 DRUG

3 6 0 CONTROL

11 6 0 DRUG

18 6 1 DRUG

15 7 1 CONTROL

17 7 1 CONTROL

4 9 0 DRUG

16 9 1 CONTROL

14 11 1 DRUG

12 13 0 CONTROL

6 17 0 DRUG

13 19 1 DRUG

8 20 0 DRUG

10 20 1 CONTROL

9 23 1 CONTROL

5 24 0 CONTROL

1 28 1 CONTROL

2 28 1 CONTROL

;

run;

proc lifetest data=survival 

plots=(s);

TIME time*cens(1);

strata GROUP;

run;



The LIFETEST Procedure

Stratum 1: GROUP = CONTROL

Product-Limit Survival Estimates

TIME Survival Failure Survival Standard Error

Number

Failed

Number

Left

0.0000 1.0000 0 0 0 10

6.0000 0.9000 0.1000 0.0949 1 9

7.0000 * . . . 1 8

7.0000 * . . . 1 7

9.0000 * . . . 1 6

13.0000 0.7500 0.2500 0.1581 2 5

20.0000 * . . . 2 4

23.0000 * . . . 2 3

24.0000 0.5000 0.5000 0.2297 3 2

28.0000 * . . . 3 1

28.0000 * . . . 3 0



Product-Limit Survival Estimates

TIME Survival Failure Survival Standard Error

Number

Failed

Number

Left

0.0000 1.0000 0 0 0 10

2.0000 0.9000 0.1000 0.0949 1 9

4.0000 . . . 2 8

4.0000 0.7000 0.3000 0.1449 3 7

6.0000 0.6000 0.4000 0.1549 4 6

6.0000 * . . . 4 5

9.0000 0.4800 0.5200 0.1640 5 4

11.0000 * . . . 5 3

17.0000 0.3200 0.6800 0.1703 6 2

19.0000 * . . . 6 1

20.0000 0 1.0000 . 7 0

The LIFETEST Procedure

Stratum 2: GROUP = DRUG



The LIFETEST Procedure



Test of Equality over Strata

Test Chi-Square DF

Pr >

Chi-Square

Log-Rank 5.8681 1 0.0154

Wilcoxon 4.6579 1 0.0309

-2Log(LR) 4.4006 1 0.0359



Limitation of Kaplan-Meier 

curves

• What happens when you have several covariates that 
you believe contribute to time-to-event?

• Example
– Smoking, hyperlipidemia, diabetes, hypertension,  contribute to 

time to myocardial infarct

• Can use stratified K-M curves – but the combinatorial 
complexity of more than two or three covariates prevents 
practical use

• Need another approach – multivariate Cox proportional 
hazards model is most commonly used 
– (think multivariate regression or logistic regression)



• Introduction to the proportional hazard 

model (PH) 

• Comparing two groups

• A numerical example

Part II: Cox Regression



Cox Regression

• In 1972 Cox suggested a model for survival data 
that would make it possible to take covariates into 
account. Up to then it was customary to discretise 
continuos variables and build subgroups.

• Cox idea was to model the hazard rate function

where h(t) is to be understood as an intensity i.e. a 

probability by time unit. Multiplied by time we get a 

probability. Think of the analogy with speed as 

distance by time unit. Multiplied by time we get 

distance.
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The model 

where each parameter is a measure of the importance of 

the corresponding variable. 
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Two individuals with different covariate values will have 

hazard rate functions which differ by a multiplicative 

term. The hazards are propotional; therefore called 

proportional hazard model

Note that the hazard ratio is constant in t.
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Cox Regression Model

• Semiparametric model (due to the fact that h0 is 

not explicitly modeled)

• No specific distributional assumptions (but 

includes several important parametric models as 

special cases).

• Can handle both continuous and categorical 

predictor variables (think: logistic, linear 

regression)

• Parameters are estimated based on partial 

likelihood (not full ML-estimation).



Cox proportional hazards model, 

continued

• Maximum partial likelihood estimates are not fully efficient, 

but share other general properties of ML-estimates

– Asymptotic sampling varainces can be estimated

– Likelihood ratio tests, Wald and score tests can be 

constructed for testing of the β-parameters

• The β-parameters can be interpreted in terms of  hazard ratio, 
a relative risk measure

• Easy implementation (SAS procedure PHREG).

• Parametric approaches are an alternative, but they require 
stronger assumptions about h(t). 



Example

Assume we have a situation with one 

covariate that takes two different values, 0 

and 1. This is the case when we wish to 

compare two treatments

h1(t)

h2(t)
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A numerical Example
TIME TO RELIEF OF ITCH SYMPTOMS FOR PATIENTS USING 

A STANDARD AND EXPERIMENTAL CREAM



Using SAS

data survival;

input PATIENT DRUG START STOP RELIEF STATUS;

cards;

1 1 1 16 15 1

2 1 1 18 17 1

3 2 1 20 19 1

4 1 4 18 14 1

5 1 4 20 16 1

6 1 4 22 18 1

7 2 4 24 20 1

8 1 8 25 17 1

9 1 8 29 21 1

10 2 8 38 20 1

11 2 8 30 22 1

12 1 11 30 19 1

13 2 11 30 19 1

14 2 11 31 20 0

15 1 15 31 16 0

1 2 15 31 16 0

17 2 15 31 16 0

18 1 18 31 13 0

19 2 18 31 13 0

20 2 18 31 13 0

;

run;

PROC TTEST DATA=SURVIVAL;

CLASS DRUG;

VAR RELIEF;

RUN;

PROC PHREG DATA=SURVIVAL;   

MODEL RELIEF * STATUS(0) = DRUG; 

run;



TTEST OF EQUALITY OF MEANS

DRUG Method N Mean Std Dev Std Err Minimum Maximum

1 10 16.6000 2.3664 0.7483 13.0000 21.0000

2 10 17.8000 3.1198 0.9866 13.0000 22.0000

Diff (1-2) Pooled -1.2000 2.7689 1.2383

Diff (1-2) Satterthwaite -1.2000 1.2383



DRUG Method Mean 95% CL Mean Std Dev 95% CL Std Dev

1 16.6000 14.9072 18.2928 2.3664 1.6277 4.3202

2 17.8000 15.5682 20.0318 3.1198 2.1459 5.6956

Diff (1-2) Pooled -1.2000 -3.8015 1.4015 2.7689 2.0922 4.0947

Diff (1-2) Satterthwaite -1.2000 -3.8151 1.4151

The mean difference in the time to “cure” of 1.2 days 

is not statistically significant between the two groups.



Summary of the Number of Event and Censored

Values

Total Event Censored

Percent

Censored

20 13 7 35.00



Model Fit Statistics

Criterion

Without

Covariates

With

Covariates

-2 LOG L 50.914 46.111

AIC 50.914 48.111

SBC 50.914 48.676



Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 4.8032 1 0.0284

Score 5.0192 1 0.0251

Wald 4.4647 1 0.0346



Analysis of Maximum Likelihood Estimates

Parameter DF

Parameter

Estimate

Standard

Error Chi-Square Pr > ChiSq

Hazard

Ratio

DRUG 1 -1.33960 0.63398 4.4647 0.0346 0.262



• The estimate of the DRUG variable is -1.3396 with a p-
value of 0.0346.

• The negative sign indicates a negative association 
between the hazard of being cured and the DRUG 
variable. 

• DRUG is coded 1 for the new drug and coded 2 for the 
standard drug. Therefore the hazard of being cured is 
lower in the group given the standard drug. 

• This is an awkward but accurate way of saying that the 
new drug tends to produce a cure more quickly than the 
standard drug.

• The mean time to cure is lower in the group given the 
new drug. There is an inverse relationship between the 
average time to an event and the hazard of that event. 

Interpretation



• At each time point the cure rate of the standard 

drug is about 25% of that of the new drug. Put 

more positively, we might state that the cure rate 

is 3.8 times better in the group given the 

experimental cream compared to the group 

given the standard cream.

The ratio of the hazards is given by 
ˆ 2

ˆ(2 1) 1.33962
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Generalizations of Cox 

regression
1. Time dependent covariates

2. Stratification

3. General link function

4. Likelihood ratio tests

5. Sample size determination

6. Goodness of fit

7. SAS
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