

Example: The analgesic trial	 Research ▷ Evolu 	tion o	ver time						
single-arm trial with 530 patients recruited (491 selected for analysis)	⊳ Relat disea: ⊳ Inves	ion wit ie prog	th baseling ression, F n of drope	e cova Pain Co out	riates: age ontrol Ass	e, sex, essme	duration nt (PCA)	of the	pain, type of p
analgesic treatment for pain caused by chronic nonmalignant disease	GSA	Mo	onth 3	Mo	onth 6	Mo	onth 9	Mo	nth 12
treatment was to be administered for 12 months	1	55	14.3%	38	12.6%	40	17.6%	30	13.5%
we will focus on Global Satisfaction Assessment (GSA)	2	112 151	29.1% 39.2%	84 115	27.8% 38.1%	67 76	29.5% 33.5%	66 97	29.6% 43.5%
GSA scale goes from 1=very good to 5=very bad	4	52	13.5%	51	16.9%	33	14.5%	27	12.1%
GSA was rated by each subject 4 times during the trial, at months 3, 6, 9, and 12.	5	15	3.9%	14	4.6%	11	4.9%	3	1.4%
	Tot	385		302		227		223	

- If data are MCAR or MAR, you can ignore the missing data mechanism and use <u>multiple imputation</u> and <u>maximum</u> <u>likelihood</u>.
- If data are NMAR, you can't ignore the missing data mechanism; two approaches to NMAR data are selection models and pattern mixture.

staZenecs 🏂

- Suppose Y is weight in pounds; if someone has a heavy weight, they
 may be less inclined to report it. So the value of Y affects whether Y is
 missing; the data are NMAR. Two possible approaches for such data
 are selection models and pattern mixture.
- Selection models. In a selection model, you simultaneously model Y and the probability that Y is missing. Unfortunately, a number of practical difficulties are often encountered in estimating selection models.
- Pattern mixture (Rubin 1987). When data is NMAR, an alternative to selection models is multiple imputation with pattern mixture. In this approach, you perform multiple imputations under a variety of assumptions about the missing data mechanism. In ordinary multiple imputation, you assume that those people who report their weights are similar to those who don't. In a pattern-mixture model, you may assume that people who don't report their weights are an average of 20 pounds heavier. This is of course an arbitrary assumption; the idea of pattern mixture is to try out a variety of plausible assumptions and see how much they affect your results. Pattern mixture is a more natural, flexible, and interpretable approach.

Principle	Method	Boys at Age 8	Boys at Age 10
Original	Direct likelihood, ML	22.88 (0.56)	23.81 (0.49)
	Direct likelihood, REML = MANOVA	22.88 (0.58)	23.81 (0.51)
	ANOVA per time point	22.88 (0.61)	23.81 (0.53)
Direct Lik.	Direct likelihood, ML	22.88 (0.56)	23.17 (0.68)
	Direct likelihood, REML	22.88 (0.58)	23.17 (0.71)
	MANOVA	24.00 (0.48)	24.14 (0.66)
	ANOVA per time point	22.88 (0.61)	24.14 (0.74)
сс	Direct likelihood, MI.	24.00 (0.45)	24.14 (0.62)
	Direct likelihood, REML = MANOVA	24.00 (0.48)	24.14 (0.66)
	ANOVA per time point	24.00 (0.51)	24.14 (0.74)
LOCF	Direct likelihood, ML	22.88 (0.56)	22.97 (0.65)
	Direct likelihood, REML = MANOVA	22.88 (0.58)	22.97 (0.68)
	ANOVA per time point	22.88 (0.61)	22.97 (0.72)

The effi imputati missing	ciency ons is (inform	of an e $(1 + \gamma/N)$ ation.	stimato M) ⁻¹ , w	or base where	ed on <i>N</i> y is the	1 fraction	of
Е	ficienc	y of m	ultiple	imput	tation (%)	
Λ	0.1	1 0.3	0.5	0.7	7 0.9	1	
3	97	91	86	81	77	-	
5	98	94	91	88	85		
10	99	97	95	93	92		
20	10	0 99	98	97	96		

Focus on boys at ages 8 and 10		
Results		
	Boys at Age 8	Boys at Age 10
Original Data	22.88	23.81
Multiple Imputation	n 22.88	22.69

SAS PROCEDURES FOR DOING MI PROC MI creates Multiple Imputed data sets. PROC MIANALYZE combines results after analysis. SAS released these two new procedures in experimental form in Release 8.1 of the SAS system. Implement's Rubin's method for multiple imputation. Documentation for PROC MI and PROC MIANALYZE is located at: http://statweb.unc.edu/onldoc.htm

IMPORTANT PROC MIANALYZE OPTIONS AND STATEMENTS .: REVIEW OF STEPS FOR MULTIPLE IMPUTATION: Determine if your data meets the multivariate normal and MAR or MCAR missing data assumptions 2. Determine the set of variables to be used in the imputation model. Specify input data sets using statements from only one of the following three lines: 3. Use PROC MI to create several imputed data sets. DATA = COV, CORR, EST type data set output from SAS analysis procedure 4. Check convergence of the imputation process PARMS = matrix of parameter estimates, COVB = Covariance matrices 5. Analyze each imputed data set with technique of your choice. 6. Lise PROC MIANALYZE to combine the results. PARMS = matrix of parameter estimates, XPXI = (X'X)⁻¹matrices Specify statistical analysis with these statements You are now ready to interpret your results. Be sure to include information about the imputation model and the percent of the data that needed to be imputed when you report the findings. EDF = complete data degrees of freedom from analysis ALPHA = level used to construct confidence-limits: VAR covariates in model; AsiaZereca⁵

Overview

PROC MIANALYZE

- Ignore drop-out
- CC (complete-case analysis)
- Single imputation of missing values LOCF (last observation carried forward)
- Generate small samples from estimated distributions MI (multiple imputation)
- Fit model for response at all time-points
 - GEE (generalized estimating equations)
 - (MNLM (multivariate normal linear model: also referred to as MMRM, or mixed-model repeated measures))
- Model drop-out as well as response
 - SM (selection models)
 - PMM (pattern-mixture models)

AsiaZereca 🖄

AsiaZeneca²²

References

- Allison, P. (2002). *Missing data*. Thousand Oaks, CA: Sage [greenback].
- Horton, NJ & Lipsitz, SR. (2001) Multiple imputation in practice: Comparison of software packages for regression models with missing variables. *The American Statistician* 55(3): 244-254.
- Little, R.J.A. (1992) Regression with missing X's: A review. Journal of the American Statistical Association 87(420):1227-1237.
- Roderick J. A. Little and Donald B. Rubin (2002) Statistical Analysis with Missing Data, 2nd edition April 2002, Applications of Modern Missing Data Methods, by Roderick J. A. Little.
- by Joseph L. Schafer Joe Schafer's (1997) Analysis of Incomplete Multivariate Data, web site: <u>http://www.stat.psu.edu/%7Ejls</u>.
- Anderson, T.W. (1956) Maximum likelihood estimates for a multivariate normal distribution when some observations are missing.

AskaZenace

Further References

- Little, RL & Rubin, DB. (1st ed. 1990, 2nd ed. 2002). Statistical analysis with missing data. New York: Wiley.
- Rubin, DB. (1987). Multiple imputation for survey nonresponse. New York: Wilev.
- Mallinckrodt et al. (2003). Assessing and interpreting treatment effects in longitudinal clinical trials with missing data. *Biological Psychiatry* 53, 754–760.
- Gueorguieva & Krystal (2004) Move Over ANOVA. Archives of General Psychiatry 61, 310–317.
- Mallinckrodt et al. (2004). Choice of the primary analysis in longitudinal clinical trials. *Pharmaceutical Statistics* 3, 161–169.
- Molenberghs et al. (2004). Analyzing incomplete longitudinal clinical trial data (with discussion). *Biostatistics* 5, 445–464.
- Cook, Zeng & Yi (2004). Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation. *Biometrics* 60, 820-828.

AskaZenaca

