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Outline of lecture 6
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(from ICH-E9)

“The number of subjects in a clinical study should 
always be large enough to provide a reliable 
answer to the question(s) addressed.”

“The sample size is usually determined by the 
primary objective of the trial.”

“ Sample size calculation should be explicitly 
mentioned in the protocol .”

Power and sample size

Suppose we want to test if a drug is better than a placebo, 
or if a higher dose is better than a lower dose.

Sample size: How many patients should we include in our 
clinical trial, to give ourselves a good chance of detecting 
any effects of the drug?

Power: Assuming that the drug has an effect, what is the 
probability that our clinical trial will give a significant result?

Sample Size and Power

Sample size is contingent on design, analysis plan, and outcome

With the wrong sample size, you will either

Not be able to make conclusions because the study is 
“underpowered”

Waste time and money because your study is larger than it needed
to be to answer the question of interest

Sample Size and Power

With wrong sample size, you might have problems interpreting 
your result:

Did I not find a significant result because the treatment does not 
work, or because my sample size is too small?

Did the treatment REALLY work, or is the effect I saw too small to 
warrant further consideration of this treatment? 

Issue of CLINICAL versus STATISTICAL significance



Sample Size and Power

Sample size ALWAYS requires the scientist/investigator 
to make some assumptions

How much better do you expect the experimental 
therapy group to perform than the standard therapy 
groups?
How much variability do we expect in measurements?
What would be a clinically relevant improvement?

The statistician alone CANNOT tell what these numbers 
should be. It is the responsibility of the scientist/clinical 
investigators to help in defining these parameters.

Errors with Hypothesis Testing

A ccept H 0 Reject H A

E = C OK Type I error

E ≠C Type II error OK

Ho: E=C (ineffective)   H1: E≠C (effective)

Ho true

Ho false

Type I Error

Probability of Type I error = significance level or α level
Value needs to be pre-specified in the protocol and should be small
Explicit guidance from regulatory authorities, e.g.  0.05
One-sided or two-sided ?
Ho: drug ineffective  vs. HA: drug effective 

Concluding for alternative hypothesis while null-hypothesis is true (false positive)

Type II Error

Probability of Type II error = β level
Value to be chosen by the sponsor, and should be small
No explicit guidance from regulatory authorities, e.g. 0.20, or 0.10
Power = 1 - Type II error rate.  Typical values 0.80 or 0.90

Concluding for null-hypothesis while alternative hypothesis is true (false negative)

Sample Size Calculation

Following items should be specified
a primary variable
the statistical test method
the null hypothesis; the alternative hypothesis; the study design
the Type I error
the Type II error
way how to deal with treatment withdrawals 

Power calculations in practice

In the planning and development stage of an experiment, a 
sample size calculation is a critical step. In controlled 
clinical trials, sample size calculation is required to 
maintain specific statistical power (i.e. 80% power) for the 
study. Not surprisingly, there are many software packages 
(i.e. nQuery, PASS, StudySize etc) which perform sample 
size calculation for certain statistical tests. However, such 
software packages are not available for sample size 
calculations for complex designs and complex statistical 
analysis methods. 
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Power Calculations Under Linear Mixed 
Models 

In this lecture, we will reflect on the design of longitudinal studies. 
1. We will briefly discuss how power calculations can be performed based 

on linear mixed models. 
2. In practice longitudinal experiments often do not yield the amount of 

information hoped for at the design stage, due to dropout. This results in 
realized experiments with (possibly much) less power than originally 
planned. 

3. We will discuss how expected dropout can be taken into account in 
sample-size calculations. The basic idea behind this is that two designs 
with equal power under the absence of dropout are not necessarily 
equally likely to yield realized experiments with high power. 

4. The main question then is how to design experiments with minimal risk of 
huge losses in efficiency due to dropout. 

5. The above is illustrated in the context of the rat experiment. 
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Power Calculations Under Linear Mixed 
Models 

We have discussed inference for the marginal linear mixed 
model. Several testing procedures were discussed, 
including 

approximate Wald tests, 
approximate t-tests, 
approximate F -tests, 
and likelihood ratio tests (based on ML as well as REML 
estimation), for the fixed effects as well as for the variance 
components in the model.

Obviously, any of these testing procedures can be used in 
power calculations. 

. 

Power Calculations Under Linear Mixed 
Models

Unfortunately, the distribution of many of the 
corresponding test statistics is only known under the null 
hypothesis. 
In practice, this means that if such tests are to be used in 
sample-size calculations, extensive simulations would be 
required. 
One then would have to 

sample data sets under the alternative hypothesis of interest, 
analyze each of them using the selected testing procedure, 
and estimate the probability of correctly rejecting the null 
hypothesis. 
Finally, this whole procedure would have to be repeated for every 
new design under consideration 
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Power Calculations Under Linear Mixed 
Models

Assume we are interested in a general linear hypothesis of the 
forms

Then we can use the (Under H0) approximately F-
distributed statistic
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Power Calculations Under Linear Mixed 
Models

Helmert (1992) reports that under the alternative 
hypothesis HA , the distribution of F can also be 
approximated by an F-distribution, now with rank(L) and  

Σi ni - rank[X|Z] degrees of freedom and with non-centrality 
parameter:

With notation as in previous lectures
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The rat data

The hypothesis of primary interest is H 0 : no effect, which turns out to 
be non-significant using an approximate Wald statistic (p=0.0987). A 
similar result (p=0.1010) is obtained using an approximate F -test, with 
Satterthwaite approximation for the denominator degrees of freedom. 
We conclude from this that there is little evidence for any treatment 
effects. However, the power for detecting the observed differences at 
the 5% level of significance and calculated using the F -approximation 
described in the previous section is as low as 56%. 
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Note that, this rat experiment suffers from a severe degree of dropout, 
since many rats do not survive anesthesia needed to measure the 
outcome. Indeed, although 50 rats have been randomized at the start 
of the experiment, only 22 of them survived the 6 first measurements, 
so measurements on only 22 rats are available in the way anticipated 
at the design stage. For example, at the second occasion (age = 60 
days), only 46 rats were available, implying that for 4 rats, only 1 
measurement has been recorded. As can be expected, this high 
dropout rate inevitably leads to severe losses in efficiency of the 
statistical inferential procedures. Indeed, if no dropout had occurred 
(i.e., if all 50 rats would have withstood the 7 measurements), the 
power for detecting the observed differences at the 5% level of 
significance would have been 74%, rather than the 56% previously
reported for the realized experiment. 

Conclusion

In the rat example, dropout was not entirely unexpected 
since it is inherently related to the way the response of 
interest is actually measured (anesthesia cannot be 
avoided) and should therefore have been taken into 
account at the design stage. Therefore we need methods 
for the design of longitudinal experiments, when dropout is 
to be expected. We will discuss such an approach and 
apply it to the rat data. 
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Power Calculations When Dropout Is to 
Be Expected 

In order to fully understand how the dropout process can 
be taken into account at the design stage, we first 
investigate how it affects the power of a realized 
experiment. Note that the power of the above F -test not 
only depends on the true parameter values β, D, and σ2

(or, more generally, Σi ) but also on the covariates Xi and 
Zi. Usually, in designed experiments, many subjects will 
have the same covariates, such that there are only a small 
number of different sets (Xi ,Zi ).
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For the rat data, all 15 rats in the control group have Xi and 
Zi equal to 
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However, due to the dropout mechanism, the above 
matrices have been realized for only four of them. Indeed, 
for a rat that drops out early, say at the kth occasion, the 
realized design matrices equal the first k rows of the above 
planned matrices; that is, 
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Note that the number of rats that drop out at each occasion 
is a realization of the stochastic dropout process, from 
which it follows that the power of the realized experiment is 
also a realization of a random variable, the distribution of 
which depends on the planned design and on the dropout 
process. From now on, we will denote this random power 
function by P. 
Since, in the presence of dropout, the power P becomes a 
stochastic variable, it is not obvious how two different 
designs with two different associated power functions P1
and P2 should be compared in practice. Several criteria can 
be used, such as the average power, E(P1), the median 
power, median(P1), the risk of having a final analysis with 
power less than for example 70%, P (P < 70%), and so 
forth. 
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Note that all of the above criteria are based on only one 
specific aspect of the distribution of P1. A criterion which 
takes into account the full distribution selects the second 
design over the first one if P1 is stochastically smaller than 
P2 , which is defined as (Lehmann and D’Abrera 1975, p. 
66) 

P1 is stochastically snaller than  P2

P (P1 < p ) > P (P1 < p ) for all p

This means that, for any power p, the risk of ending up 
with a final analysis with power less than p is smaller for 
the second design than for the first design.
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Obviously, if the above criterion is to be used, one needs 
to assess the complete power distribution function for all 
designs which are to be compared. We propose doing this 
via sampling methods in which, for each design under 
consideration, a large number of realized values ps , 
s=1,...,S, are sampled from P and used to construct the 
empirical distribution function below where I[A] equals one 
if A is true and zero otherwise. 
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As indicated above, sampling from P actually comes down 
to sampling realized values for all Mj,k , k=1,...,nj , j=1,...,M , 
and constructing all necessary realized matrices X j

[k] and 
Z j

[k]. One then can easily calculate the implied non-
centrality parameter δ and the appropriate numbers of 
degrees of freedom for the F-statistic, from which a 
realized power follows.

It should be emphasized that the above approach is not 
restricted to any particular statistical test. The idea of 
sampling designs under specific dropout patterns is 
applicable for any testing procedure, as long as it remains 
possible to evaluate the power associated to each realized 
design. 
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Note also that the only additional information needed, in 
comparison to classical power analyses, are the vectors pj
of marginal dropout probabilities pj,k . This does not require 
full knowledge of the underlying dropout process.

We only need to make assumptions about the dropout rate 
at each occasion where observations are designed to be 
taken.

For example, we do not need to know whether the dropout 
mechanism is “completely at random” or “at random”.

Still, we have to assume that dropout is “not informative” in 
the sense that it does not depend on the response values 
which would have been recorded if no dropout had 
occurred, since otherwise our final analysis based on the 
linear mixed model would not yield valid results (see 
Section 15.8 and Chapter 21). 
Finally, the proposed method can be used in combination 
with techniques, such as those proposed by Helms (1992), 
which would allow the costs of performing the designs 
under consideration to be taken into account. This could 
yield less costly experiments with minimal risk of large 
efficiency losses due to dropout. This will not be explored 
any further here. 
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The rat data

Observed conditional dropout rates at each occasion, for 
all treatment groups simultaneously. 
Age (days):
Observed rate:
Based on the data we assume that each time a rat is 
anesthetized, there is about 12% chance that the rat will 
not survive anesthesia, independent of the treatment.
All calculations are done under the assumption that the 
true parameter values are given by earlier estimates and 
all simulated power distributions are based on 1000 draws 
from the correct distribution. 

Date
Name, department
30 

50 60 70 80 90 100
0.08 0.07 0.12 0.24 0.17 0.08
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Since, at each occasion, rats may die, it seems natural to reduce the 
number of occasions at which measurements are taken. We have 
therefore simulated the power distribution of four designs in which the 
number of rats assigned to each treatment group is the same as in the 
original experiment, but the planned number of measurements per 
subject is seven, four, three, and two, respectively. 
These are the designs A to I in the table below. Note that design A is 
the design used in the original rat experiment. The simulated power 
distributions are shown in the figure.

Occasions Number of subjects Power if 
Design Age (days) (M ,M ,M ) no dropout

A 50-60-70-80-90-100-110 (15, 18, 17) 0.74 
B 50-70-90-110 (15, 18, 17) 0.63 
C 50-80-110 (15, 18, 17) 0.59 
D 50-110 (15, 18, 17) 0.53 
E 50-70-90-110 (22, 22, 22) 0.74 
F 50-80-110 (24, 24, 24) 0.74 
G 50-110 (27, 27, 27) 0.75
H 50-60-110 (26, 26, 26) 0.74 
I 50-100-110 (20, 20, 20) 0.73 
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Rat Data. Summary of the designs compared in the 
simulation study when varying group sizes

A: Original design
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Comparison of the simulated power distributions for designs with
seven, four, three, or two measurements per rat, with equal number of 
rats in each design (designs A, B, C, and D, respectively), under the 
assumption of constant dropout rate equal to 12%. The vertical dashed 
line corresponds to the power which was realized in the original rat 
experiment (56%). 

Design A

Design B

Design C

Design D

56%
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First, note that the solid line is an estimate for the power 
function of the originally designed rat experiment under the 
assumption of constant dropout probability equal to 12%. 
It shows that there was more than 80% chance for the final 
analysis to have realized power less than the 56% which 
was observed in the actual experiment. 
Comparing the four designs under consideration, we 
observe that the risk of high power losses increases as the 
planned number of measurements per subject decreases.
On the other hand, it should be emphasized that the four 

designs are, strictly speaking, not comparable in the sense 
that, in the absence of dropout, they have very different 
powers ranging from 74% for design A to only 53% for 
design D.

Date
Name, department
35 

Designs E, F, and G are the same as designs B, C, and D, but with 
sample sizes such that their power is approximately the same as the 
power of design A, in the absence of dropout. 
The simulated power distributions are shown in Figure 23.2 in the 
book. The figure suggests that P > A > E > F > G , from which it 
follows that, in practice, the design in which subjects are measured 
only at the beginning and at the end of the study is to be preferred, 
under the assumed dropout process. 
The above can be explained by the fact that the probability for 
surviving up to the age of 110 days is almost twice as high for design 
G (88%) as for the original design (46%). 
Note also that the parameters of interest [β1 , β2 , and β3] are slopes in 
a linear model such that two measurements are sufficient for the
parameters to be estimable. On the other hand, design G does not
allow testing for possible nonlinearities in the average evolutions.

Date
Name, department
36 

Note that the above results fully rely on the assumed linear mixed 
model. For example, the simulation results show that design G, with 
only two observations per subject, is to be preferred over designs A, E, 
and F, with more than two observations scheduled for each subject.
Obviously, the assumption of linearity is crucial here, and design G will 
not allow testing for nonlinearities. Hence, when interest would be in 
providing support for the used model, more simulations would be 
needed comparing the behavior of different designs under different 
models for the outcome under consideration, and design G should no 
longer be taken into account. 
As for any sample-size calculation, it would be advisable to perform 
some informal sensitivity analysis to investigate the impact of model 
assumptions and imputed parameter values on the final results.

Comments



Example: Estimating the sample size needed 
in a trial for chronic pulmonary diseases 

Chronic pulmonary diseases (such as Chronic Obstructive Pulmonary 
Disease – COPD) concern the development of emphysema. It is a 
slow progression over many years and the assessment of drug efficacy 
requires the observation of large numbers  of patients for a long 
period of time. Recently, lung densitometry (measuring the lung 
density through CT scan) considered for assessing the lung tissue loss 
over time in patients with emphysema. 
A clinical trial with lung densitometry as an endpoint is typically 
designed as a longitudinal study with repeated measurements at 
fixed time intervals. Since lung density measurements are closely 
correlated with lung volume (inspiration level), it is important to include 
lung volume measurements in statistical analyses as a longitudinal 
covariate. Lung volume is normally measured at the same time as the 
lung density is measured. 
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The clinical efficacy can be assessed by comparing the progression of 
lung density loss between two treatment groups using a random 
coefficient model – a longitudinal linear mixed model with a random 
intercept and slope. In planning the clinical trial with such complex 
statistical analyses, the calculation of the sample size required to 
achieve a given power to detect a specified treatment difference is an 
important, often complex issue. 
In this example, an empirical approach is used to calculate the sample 
size by simulating trajectories of lung density and lung volume using 
SAS. We present step-by-step details for sample size calculation 
through simulation, and discuss the pros and cons of this approach. 
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(1)

Here Yij is the efficacy endpoint (i.e. lung density) measurement for subject 
i = 1, 2,…, n, at fixed time point j = 1, 2, …, K. 
TRT is an indicator of subject i’s treatment group (i.e. TRT=1 for active 
drug; TRT=0 for placebo). 
COVij is a longitudinal covariate (i.e. logarithm of lung volume) for subject i 
= 1, 2,…, n, at fixed time point j = 1, 2, …, K. 
Here b0 and b2 are subject-specific random effects for the intercept and 
slope, respectively, which are from a normal distribution with mean 0 and 
variance σ0

2 and σ0
2, respectively. 

εij is the random error from a normal distribution with mean 0 and variance 
σ2 . 
The regression parameters β0, β1, β2, β3, and β4 are the fixed effects for 
intercept, treatment, time, covariate and interaction of treatment and time 
respectively. 
Here we assume that the benefits can be assessed quantitatively by 
comparing the slopes of lung density trajectories for the two treatment 
groups. This quantity is captured by β4.
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Sample Size Estimation Using Simulations

In the model, β4 is typically our interest, which is the 
difference in slope of time between two treatment groups 
(active vs. placebo). There is no direct mathematical 
formula to calculate the sample size for a given statistical 
power (i.e. 80%) to test the null hypothesis: β4=0 with a 
specified type I error (i.e. α=0.05). One approach to 
calculate the sample size for a given power is through the 
simulation.
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Assume we know the parameters (β0, β1, β2, β3, and β4 , 
and σ0

2 and σ0
2) from either history data, previous clinical 

trials or meaningful clinical differences we want to test, the 
study design in terms of number of time points (K) and 
fixed time intervals (TIME), and the longitudinal covariate 
COVij. For a fixed equal sample size n for each treatment, 
the trajectories of efficacy measurement Yij (i.e. lung 
density) for the n subjects can be simulated through the 
model for each treatment group. 
Then, perform a statistical test on β4 =0 by using the SAS 
Proc MIXED on the simulated data set, and record whether 
the p-value < 0.05.

Date41 

The sample code to perform the test is as follow:
proc mixed data = data; 
class id trt; 
model y = trt time trt*time cov / solution; 
random intercept time/ subject = id type = un; 
run; 

For the fixed sample size n per treatment group, simulate 
M (i.e. M=1000) times and the proportion of significance 
test on β4 =0 among the total M simulations is the statistical 
power for the sample size n per treatment group. Then, 
adjust the sample size n to achieve desirable statistical 
power.
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Simulating the response
In order to simulate the trajectories of Yij, it is necessary to 
simulate the trajectories of longitudinal covariate COVij. 
Similarly, assume COVij is from a linear model regressing 
against time with a random intercept

Where γ0 and γ1 are the fixed intercept and slope 
respectively; r0 and εij are from a normal distribution with 
mean 0 and variance δ1

2 and δ2
2, respectively. If we know 

the parameters (γ0,γ1 , δ1
2 and δ2

2 ) from history data or 
previous clinical trials for the study population, it will be 
simple to simulate the trajectories of the longitudinal 
covariate COVij by using SAS random generating functions
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(2)

In detail, a sample size can be determined for the models 
above through the following steps: 

1. Obtain the pre-specified parameters through either history 
data, previous clinical trials or meaningful clinical 
difference to be tested from clinicians 

2. Specify a desired statistical power (i.e. 80%) and a type-1 
error rate (i.e. 5%) 

3. Simulate trajectories of efficacy measurement (i.e. lung 
density) and longitudinal covariate (i.e. logarithm of lung 
volume) for a fixed sample size (n) of subjects within each 
treatment arm 

A. Trajectories of longitudinal covariate (i.e. logarithm of lung 
volume) are simulated through model (2) 
B. Trajectories of efficacy measurement (i.e. lung density) are 
simulated through model (1) 
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4. Perform the statistical test on β4=0 based on the 
simulated data set. Record whether a p-value < 0.05 was 
obtained 

5. Repeat steps 3 and 4 M (i.e. M=1000) times and calculate 
the statistical power for the fixed sample size 

6. Repeat steps 3 - 5 for various values of n. Stop when 
desired statistical power is obtained 
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Results: Example of a Simulation

Assume there are two treatment groups (active vs. placebo) in a study 
design. The efficacy endpoint along with the longitudinal covariate will 
be measured at K=4 time points at baseline, 1 year, 2 years and 3 
years. All corresponding parameters specified in model (1) and (2) 
could be obtained either through history data, previous clinical trials or 
meaningful clinical difference to be tested from clinicians. For purpose 
of simulation, they are randomly selected and specified as below:
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The summary of statistical power for a given sample size 
per treatment based on M = 1000 simulated data sets is 
listed below:

Therefore, a sample size 45 per treatment arm has an 
estimated statistical 80% power to detect the treatment 
slope difference of 0.7 in a random coefficient model for 
the study design above.
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Conclusions and Discussion

As described above, it is possible to perform sample size calculations 
for a random coefficient model using simulation techniques and SAS. It 
is also straightforward to extend the simulation frame to other linear 
mixed models (LMM) or generalized linear mixed models (GLMM). 
Other extensions to settings involving multiple treatment groups (i.e. 
treatment groups greater than 2), unequal sample size among 
treatment groups (i.e. 2:1 for active vs. placebo) can be implemented. 
For an active-controlled trial, it is usually interest to test non-inferiority 
of test drug compared to active-control. The simulation frame can be 
applied for such non-inferiority test by calculating the confidence 
interval for the parameter tested in the statistical model and comparing 
the lower limit or upper limit of the confidence interval to the pre-
specified equivalence margin in the Step 4. 
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Other study design parameters such as number of repeated measurements (K) 
of efficacy endpoint and the duration of the fixed time intervals (time) also 
affect the sample size estimation. Greater number of repeated measurements 
of efficacy endpoint for the fixed study duration will increase the statistical 
power. However, it might increase the difficulty and cost of the study 
depending on the efficacy endpoint. The number of repeated measurement of 
efficacy endpoint and duration of the fixed time intervals should be determined 
within the clinical research team upon the constraints such as the difficulty of 
efficacy endpoint measurement, cost and duration of the clinical trial. 

In practice, it is rarely the case that all subjects have the complete data for all 
visits in the study because of missing certain study visits, drop out or other 
reasons. Since our simulation framework assumes there are no missing 
observations, we recommend that the implemented sample size for the 
designed trial include more subjects than the number estimated from the 
simulation. In most cases an increase of 5% or 10% should suffice, but 
depending on the characteristics of the designed trial such as the study 
population, difficulty of study procedure, difficulty of study measurement etc to 
cause the subject’s drop out or missing of study measurements. The 
appropriate percentage could vary.
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Post-Hoc Power (also known as 
observed power or retrospective power)

You have collected the data, ran an appropriate statistical analysis, 
and did not observe statistical significance as indicated by a relatively 
“large” p-value. So you decide to compute post-hoc power to see how 
powerful the test was, which, by itself is essentially an empty,
meaningless result. Of course the statistical test wasn't powerful 
enough -- that's why the p-value isn't significant. Post-hoc power is 
merely a one-to-one transformation of the p-value (based on the F-
statistic and degrees of freedom as illustrated above). In this situation 
power was computed based only on what this particular sample data 
showed: the observed difference in means, the computed standard 
error, and the actual sample sizes of the groups all contributed to the 
observed “power” exactly as they did to the p-value.

Post hoc power also assumes the observed results 
establish the minimum effect size that you would like to 
detect; that is, the minimum observed difference in means 
is now dictated by the data and is not based on your 
knowledge of the subject matter as to what difference 
would be meaningful in relation to the objectives of the 
study. Observed results may help you interpret the sources 
of variability better, but if you now compute power with 
different group sizes or if you want to detect a different 
minimum effect size, the question immediately becomes 
prospective. What were formerly sample statistics are 
elevated to the status of population parameters. So, power 
calculations can only be considered as a prospective or an 
"a priori" concept. Power calculations should be directed 
towards planning a study, not an after-theexperiment 
review of the results.

None of the SAS statistical procedures (e.g., PROCs REG, 
TTEST, GLM, or MIXED and others) provide retrospective 
(post hoc) power calculations. (However, through saving 
results from PROC MIXED with the ODS and following 
through with a few basic SAS functions, it is quite simple to 
compute them in a DATA step or with the inputs to PROC 
POWER or PROC GLMPOWER.) SAS developers know 
these computations produce misleading and biased results 
and thus won’t automatically do it for you (although they 
are commonly found in the output from other statistical 
procedures and all-too-often are requested by some 
journals and their reviewers). See Hoenig and Heisey, 
2001, for reasons behind this fallacious thinking.
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Any Questions?


