MSF 100 \& MVE 326 Statistical Inference Principles

Please make sure before you start:

- The exam is on March 17, 2018, 8:30-12:30.
- The examiner is Annika Lang, Mathematical Sciences, Chalmers, phone: 0317725356 .
- Andreas Petersson (0317725325) visits the exam at 9:30 and 11:00.
- You are allowed to use during the exam 4 pages (2 sheets, double-sided) of hand-written notes and a simple calculator.
- The maximum number of points that can be achieved is 60 . You need 30 points to pass the exam (for GU: 30 points for G and 45 points for VG, for Chalmers 30 points for 3 , 40 points for 4 , and 50 points for 5).
- Read all problems carefully before you start to work on the exam.
- Write your solutions in detail and readable. If you use theorems, definitions, etc., from the lecture, cite the precise results. Missing details in your arguments lead to point deductions.

Problem 1

Let X be a random sample of size n with X_{1} distributed with PMF $f_{X_{1}}$ given by

$$
f_{X_{1}}(x \mid \theta):=\theta^{x}(1-\theta)^{1-x}
$$

for $x \in\{0,1\}$ and $\theta \in[0,1 / 2]$.
(a) Show that the family $\left(f_{X_{1}}(\cdot \mid \theta), \theta \in[0,1 / 2]\right)$ is an exponential family.
(b) Find a sufficient statistic for θ and show that it is sufficient.
(c) Derive a minimal sufficient statistic for θ and show that it is minimal.
(d) Derive a point estimator $\tilde{\theta}$ for θ with the method of moments.
(e) Compute the likelihood function of X and derive the maximum likelihood estimator $\hat{\theta}$.
(f) Compute the mean squared error of the method of moments estimator $\tilde{\theta}$.
(g) Show that the family $\left(f_{X_{1}}(\cdot \mid \theta), \theta \in[0,1 / 2]\right)$ has a monotone likelihood ratio.

Problem 2

(a) Let f be a symmetric unimodal probability density function. Show that for a fixed value of $1-\alpha$, of all intervals $[a, b]$ that satisfy $\int_{a}^{b} f(x) d x=$ $1-\alpha$, a shortest is obtained by choosing a and b such that

$$
\int_{-\infty}^{a} f(x) d x=\int_{b}^{\infty} f(x) d x=\frac{\alpha}{2} .
$$

(b) Give a counterexample to show that the obtained shortest interval is not necessarily unique.
(c) Let X be a random sample of size n with $X_{1} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. For fixed $\alpha \in$ $(0,1)$ compute a shortest $1-\alpha$ confidence interval for the parameter μ.

Problem 3

Test

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta=\theta_{1}
$$

with probability mass functions $f_{X}\left(\cdot \mid \theta_{i}\right), i=0,1$, and rejection region R which satisfies that

- there exists $k \geq 0$ such that $x \in R$ if $f_{X}\left(x \mid \theta_{1}\right)>k f_{X}\left(x \mid \theta_{0}\right)$ and $x \in R^{c}$ if $f_{X}\left(x \mid \theta_{1}\right)<k f_{X}\left(x \mid \theta_{0}\right)$,
- $\alpha=P(X \in R)$.
(a) Show that any test that satisfies both assumptions is a uniformly most powerful level α test.
(b) Show further that if there exists a test that satisfies both assumptions for some $k>0$, then every uniformly most powerful level α test is a size α test and every uniformly most powerful level α test satisfies the first assumption except perhaps on a set A satisfying $P\left(X \in A \mid \theta_{0}\right)=$ $P\left(X \in A \mid \theta_{1}\right)=0$.

Problem 4

(a) Give the definition of a consistent sequence of estimators of a parameter θ.
(b) Show that $\left(W_{n}, n \in \mathbb{N}\right)$ is a consistent sequence of estimators of θ if for all $\theta \in \Theta$
(a) $\lim _{n \rightarrow \infty} \operatorname{Var}\left[W_{n}\right]=0$ and
(b) $\lim _{n \rightarrow \infty} \operatorname{Bias}\left[W_{n}, \theta\right]=0$.

