Statistical Inference Principles – Spring 2018

Assignment 1

1. Let $(X_i, i = 1, ..., n)$ be a random sample and X_1 has finite mean μ and variance σ^2 . Define the two random variables

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
 and $S^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

- a) Show that \bar{X} and S^2 are unbiased estimators for the mean and the variance of X.
- **b)** Let M_X denote the moment generating function (MGF) of X given by

$$M_X(t) := \mathbb{E}[\exp(tX)], \quad t \in \mathbb{R}.$$

Show that the MGF $M_{\bar{X}}$ of \bar{X} is given by

$$M_{\bar{X}}(t) = \left(M_X(n^{-1}t)\right)^n.$$

- 2. Let \bar{X}_n be the sample mean. The goal of the task is to show in theory and simulation how the size of the sample influences the quality of the estimator in mean square.
 - a) Show that $\operatorname{Var}[\bar{X}_n] = n^{-1} \operatorname{Var}[X_1]$.
 - **b)** Write a program that returns for given mean μ , variance σ^2 , and distribution, the approximate mean squared errors of the sample mean and sample variance for different sample sizes n. Plot your results (e.g., with a loglog plot) and find a rate of convergence. Compare different distributions and relate your findings to the results in a).
- **3.** Let $(X_i, i = 1, ..., n)$ be a random sample from a Bernoulli(p) distribution, $p \in (0, 1)$, i.e., the PMF satisfies f(1) = p and f(0) = 1 p.
 - a) Show that the family of Bernoulli(p) PMFs for $p \in (0,1)$ is an exponential family.
 - **b)** Show first that $T_1(X_1, \ldots, X_n) := \sum_{j=1}^n t_1(X_j)$ is binomial(n, p) distributed. Furthermore, show that the family of binomial(n, p) PMFs is an exponential family.

- **4.** a) Let X be a random sample of odd size n and $X_1 \sim \mathcal{U}([0,1])$. Show that the sample median of X is an unbiased estimator of $\mathbb{E}[X_1]$.
 - **b)** Let X be a random sample of size 3 and X_1 Bernoulli(p)-distributed, i.e., $P(X_1 = 1) = p$ and $P(X_1 = 0) = 1 p$. Find p such that the sample median becomes an unbiased estimator of $\mathbb{E}[X_1]$.

Deadline: Thursday, January 25, 2018, send an email before 14.30 with list of solved problems

Webpage: http://www.math.chalmers.se/Stat/Grundutb/GU/MSF100/ S18/

Requirement: 75% of the exercises solved, two presentations in the exercise class