CHALMERS | (B) UNIVERSITY OF GOTHENBURG

Statistical Inference Principles – Spring 2018

Assignment 3

- **1.** Let X be a random sample of size n with $X_1 \sim \mathcal{N}(\mu, 1)$. Derive the MLE of μ using the log likelihood function $l(\cdot|x) := \log L(\cdot|x)$ instead of maximizing $L(\cdot|x)$ directly.
- **2.** Let X be a random sample of size n with PDF determined from

$$f_{X_1}(x|\theta) := \theta^x (1-\theta)^{1-x},$$

where $x \in \{0, 1\}$ and $\theta \in [0, 1/2]$.

- a) Implement a method that generates samples of X.
- **b**) Find the method of moments estimator $\hat{\theta}$ of θ and implement the method.
- c) Find the MLE of θ and write an implementation. (*Hint:* Observe that $\theta \in [0, 1/2]$, so you might want to take care of the boundaries.)
- d) Simulate samples of different sizes n and compare the results of both methods. What do you observe? Is one estimator performing better than the other? What do you declare to be "better" in that context?
- **3.** Let X be a random sample of size n with $X_1 \sim \mathcal{N}(\theta, \sigma^2)$, and suppose that the prior distribution on θ is $\mathcal{N}(\mu, \tau^2)$. Assume that σ^2 , μ , and τ^2 are known.
 - **a**) Find the joint PDF of \overline{X} and θ .
 - **b)** Show that $m(\bar{x}|\sigma^2, \mu, \tau^2)$, the marginal distribution of \bar{X} , is $\mathcal{N}(\mu, \sigma^2/n + \tau^2)$.
 - c) Show that $\pi(\theta|\bar{x}, \sigma^2, \mu, \tau^2)$, the posterior distribution of θ , is normal with mean and variance

$$\mathbb{E}(\theta|\bar{x}) = \frac{\tau^2}{\tau^2 + \sigma^2/n} \bar{x} + \frac{\sigma^2/n}{\tau^2 + \sigma^2/n} \mu \quad \text{and} \quad \operatorname{Var}(\theta|\bar{x}) = \frac{\tau^2 \sigma^2/n}{\tau^2 + \sigma^2/n} \mu$$

4. Let $X := (X_i, i = 1, ..., m)$ and $Y := (Y_i, i = 1, ..., n)$ be random samples such that $(X_1, ..., X_m, Y_1, ..., Y_n)$ is a random sample with $X_1 \sim \mathcal{N}(\mu, 1)$. Let X be the augmented data and Y be the incomplete data.

- a) Compute all required quantities for the EM algorithm
- **b)** Implement the EM algorithm for X and Y of arbitrary size that returns the sequence of estimated parameters $(\hat{\mu}^{(j)}, j = 1, ...)$. Test the algorithm by generating samples of Y and different initial guesses μ_0 and evaluate the performance of the algorithm using the resulting sequences.

Deadline: Thursday, February 8, 2018, send an email before 14.30 with a list of solved problems.

Webpage: http://www.math.chalmers.se/Stat/Grundutb/GU/MSF100/ S18/

Requirement: 75% of the exercises solved, two presentations in the exercise class