UNIVERSITY OF GOTHENBURG

Annika Lang

Statistical Inference Principles – Spring 2018

CHALMERS

Assignment 5

1. Assume that the family of PDFs $\{g_T(\cdot|\theta), \theta \in \Theta\}$ of T has a nondecreasing monotone likelihood ratio. Show that for any $c \in \mathbb{R}$ if $\theta_1 \leq \theta_2$ then

$$P(T > c|\theta_1) \le P(T > c|\theta_2).$$

2. Let X be a random sample of size n with $X_1 \sim \mathcal{N}(\mu, \sigma^2)$ and assume that σ^2 is known. Consider

 $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$

for some fixed $\mu_0 \in \mathbb{R}$. Derive the LRT statistic for this hypothesis by giving the rejection region.

3. Let us consider the hypothesis

 $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$,

where $\Theta_0 := \bigcap_{\gamma \in \Gamma} \Theta_{\gamma}$ and Γ is some index set.

Let further λ_{γ} denote the LRT statistic for

 $H_{0,\gamma}: \theta \in \Theta_{\gamma}$ versus $H_{1,\gamma}: \theta \in \Theta_{\gamma}^{c}$.

Define $T(x):=\inf_{\gamma\in\Gamma}\lambda_\gamma(x)$ and form the union-intersection test with rejection region

$$R := \{ x \in \mathcal{X}, \lambda_{\gamma}(x) < c \text{ for some } \gamma \in \Gamma \} = \{ x \in \mathcal{X}, T(x) < c \}$$

for some fixed $c \in \mathbb{R}$. Also consider the usual LRT with rejection region $\{x \in \mathcal{X}, \lambda(x) < c\}$ of H_0 vs. H_1 .

- **a**) Show that $T(x) \ge \lambda(x)$ for all $x \in \mathcal{X}$.
- **b**) Denote by β_T the power function based on T(X) and by β_{λ} the power function obtained from the LRT based on λ . Show that $\beta_T(\theta) \leq \beta_{\lambda}(\theta)$ for all $\theta \in \Theta$.
- c) Show that if the LRT for H_0 vs. H_1 is a level α test, then the test based on T(X) is also a level α test.

- 4. a) Show that the family of normal distributions $\mathcal{N}(\mu, \sigma^2)$ with σ^2 known has a monotone likelihood ratio.
 - **b)** Suppose that the one-parameter exponential family $\{g(\cdot|\theta), \theta \in \Theta\}$ for the random variable T is given by $g(t|\theta) = h(t)c(\theta) \exp(w(\theta)t)$. Show that this family has a monotone likelihood ratio if w is an increasing function of θ . Give an example of such a family.

Deadline: Thursday, February 22, 2018, send an email before 14.30 with a list of solved problems.

Webpage: http://www.math.chalmers.se/Stat/Grundutb/GU/MSF100/ S18/

Requirement: 75% of the exercises solved, two presentations in the exercise class