UNIVERSITY OF GOTHENBURG

Annika Lang

Statistical Inference Principles – Spring 2018

Assignment 6

- 1. a) Calculate a valid *p*-value for the following observation: For testing $H_0: \theta \le 1/2$ versus $H_1: \theta > 1/2$, 7 successes are observed out of 10 Bernoulli trials.
 - **b**) Consider testing $H_0: \theta \in \bigcup_{j=1}^k \Theta_j$ versus $H_1: \theta \in \bigcap_{j=1}^k \Theta_j^c$, where k is finite. For each $j = 1, \ldots, k$, let $p_j(X)$ denote a valid p-value for testing $H_{0,j}: \theta \in \Theta_j$ versus $H_{1,j}: \theta \in \Theta_j^c$. Let $p(x) := \max_{1 \le j \le k} p_j(x)$ for all $x \in \mathcal{X}$. Show first that p(X) is a valid p-value for testing H_0 versus H_1 . Furthermore, show that the level α test defined by p(X) is the same as a level α intersection-union test defined in terms of individual tests based on the p-values $p_j(X), j = 1, \ldots, k$.
- 2. If T is a continuous random variable with cdf $F_T(\cdot|\theta)$ and $\alpha_1 + \alpha_2 = \alpha$, show that a level α acceptance region of the hypothesis $H_0: \theta = \theta_0$ is $\{t \in \mathcal{T}, \alpha_1 \leq F_T(t|\theta_0) \leq 1 \alpha_2\}$, with associated 1α confidence set $\{\theta \in \Theta, \alpha_1 \leq F_T(t|\theta) \leq 1 \alpha_2\}$.
- a) Let X be a random sample of size n with X₁ ~ N(μ, σ²), where σ² is assumed to be known. For each of the following hypotheses, write out the acceptance region of a level α test and the 1 − α confidence interval that results from inverting the test:
 - (i) $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$,
 - (ii) $H_0: \mu \ge \mu_0$ versus $H_1: \mu < \mu_0$,
 - (iii) $H_0: \mu \le \mu_0$ versus $H_1: \mu > \mu_0$.
 - **b)** Implement the interval estimator that corresponds to a).(i) for $\alpha = 0.05, 0.01, 0.005$ and test the amount of correct decisions for all three choices of α , where you are free to choose your favorite μ_0 and σ^2 .
- 4. Let f be a symmetric unimodal PDF. Show that for a fixed value of 1α , of all intervals [a, b] that satisfy $\int_a^b f(x) dx = 1 \alpha$, the shortest is obtained by choosing a and b such that

$$\int_{-\infty}^{a} f(x) \, \mathrm{d}x = \int_{b}^{\infty} f(x) \, \mathrm{d}x = \frac{\alpha}{2}.$$

Deadline: Thursday, March 1, 2018, send an email before 14.30 with a list of solved problems.

Webpage: http://www.math.chalmers.se/Stat/Grundutb/GU/MSF100/ S18/

Requirement: 75% of the exercises solved, two presentations in the exercise class