Assignment 6

1. a) Calculate a valid p-value for the following observation: For testing $H_{0}: \theta \leq 1 / 2$ versus $H_{1}: \theta>1 / 2,7$ successes are observed out of 10 Bernoulli trials.
b) Consider testing $H_{0}: \theta \in \bigcup_{j=1}^{k} \Theta_{j}$ versus $H_{1}: \theta \in \bigcap_{j=1}^{k} \Theta_{j}^{c}$, where k is finite. For each $j=1, \ldots, k$, let $p_{j}(X)$ denote a valid p-value for testing $H_{0, j}: \theta \in \Theta_{j}$ versus $H_{1, j}: \theta \in \Theta_{j}^{c}$. Let $p(x):=\max _{1 \leq j \leq k} p_{j}(x)$ for all $x \in \mathcal{X}$. Show first that $p(X)$ is a valid p-value for testing H_{0} versus H_{1}. Furthermore, show that the level α test defined by $p(X)$ is the same as a level α intersection-union test defined in terms of individual tests based on the p-values $p_{j}(X), j=1, \ldots, k$.
2. If T is a continuous random variable with $\operatorname{cdf} F_{T}(\cdot \mid \theta)$ and $\alpha_{1}+\alpha_{2}=\alpha$, show that a level α acceptance region of the hypothesis $H_{0}: \theta=\theta_{0}$ is $\left\{t \in \mathcal{T}, \alpha_{1} \leq F_{T}\left(t \mid \theta_{0}\right) \leq\right.$ $\left.1-\alpha_{2}\right\}$, with associated $1-\alpha$ confidence set $\left\{\theta \in \Theta, \alpha_{1} \leq F_{T}(t \mid \theta) \leq 1-\alpha_{2}\right\}$.
3. a) Let X be a random sample of size n with $X_{1} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, where σ^{2} is assumed to be known. For each of the following hypotheses, write out the acceptance region of a level α test and the $1-\alpha$ confidence interval that results from inverting the test:
(i) $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$,
(ii) $H_{0}: \mu \geq \mu_{0}$ versus $H_{1}: \mu<\mu_{0}$,
(iii) $H_{0}: \mu \leq \mu_{0}$ versus $H_{1}: \mu>\mu_{0}$.
b) Implement the interval estimator that corresponds to a).(i) for $\alpha=0.05,0.01$, 0.005 and test the amount of correct decisions for all three choices of α, where you are free to choose your favorite μ_{0} and σ^{2}.
4. Let f be a symmetric unimodal PDF. Show that for a fixed value of $1-\alpha$, of all intervals $[a, b]$ that satisfy $\int_{a}^{b} f(x) \mathrm{d} x=1-\alpha$, the shortest is obtained by choosing a and b such that

$$
\int_{-\infty}^{a} f(x) \mathrm{d} x=\int_{b}^{\infty} f(x) \mathrm{d} x=\frac{\alpha}{2}
$$

Deadline: Thursday, March 1, 2018, send an email before 14.30 with a list of solved problems.
Webpage: http://www.math.chalmers.se/Stat/Grundutb/GU/MSF100/ S18/
Requirement: 75% of the exercises solved, two presentations in the exercise class

