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1 Random events and variables

1.1 Probability space

A random experiment is modeled in terms of a probability space (Q, F,P)

e the sample space () is the set of all possible outcomes of the experiment,
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e the o-field (or sigma-algebra) F is a collection of measurable subsets A C € (which are called

random events) satisfying

1. D e F,
2.if A, € F,0=1,2,..., then U2, A; € F, countable unions,
3. if A € F, then A¢ € F, complementary event,
e the probability measure P is a function on F satisfying three probability axioms
1. if A € F, then P(A4) >0,
2. P(Q) =1,
3. if A; € F,0=1,2,... are all disjoint, then P(U2, A;) = > 00 P(A4;).

=1



De Morgan’s laws
(& c
(ﬂAi) -4, (UAi) =N 4.
Properties derived from the axioms

P(0)
P(A°) =1-P(4),
P(AU B) = P(A) + P(B) — P(AN B).

0,
1

Inclusion-exclusion rule
P(AJU...UA,) =Y P(A) =Y PANA)+ Y P(ANANAL)— ...
i i<j i<j<k
+ (=D"MP(A; N...NA,).

Continuity of the probability measure
e ifAyC Ay C...and A= U(i)ilAi = lim; A,L', then ]P)(A) = lim;_, P(Az),
e if By DBy D...and B =N, B; =lim;_, B;, then P(B) = lim;_, o, P(B;).

1.2 Conditional probability and independence
If P(B) > 0, then the conditional probability of A given B is

P(AN B)

P(AIB) = —5 5

The law of total probability and the Bayes formula. Let By,..., B, be a partition of 2, then

P(A) = Z P(A|B;)P(B;),
" BAIBYEB)

P(B;|A) = S P(A[B)P(B;)

Definition 1.1 Events Aq,..., 4,, are independent, if for any subset of events (A;,,...,A4;,)
P(Ah n...N Aik) = P(A“) .. P(Azk)

Example 1.2 Pairwise independence does not imply independence of three events. Toss two coins and
consider three events

e A ={heads on the first coin},
e B ={tails on the first coin},
e C ={one head and one tail}.
Clearly, P(A|C) = P(A) and P(B|C) = P(B) but P(AN B|C) = 0.

1.3 Random variables

A real random variable is a measurable function X : Q2 — R so that different outcomes w € 2 can give
different values X (w). Measurability of X (w):

{w: X(w) <z} € F for any real number z.

Probability distribution Px (B) = P(X € B) defines a new probability space (R, B,Px), where B = o(all
open intervals) is the Borel sigma-algebra.



Definition 1.3 Distribution function (cumulative distribution function)
F(x) = Fx(z) =Px{(—o00,z|} =P(X < z).
In terms of the distribution function we get

Pla < X <b) = F(b) — F(a),
P(X <z)=F(z—),
P(X =2z) = F(z) — F(z—).

Any monotone right-continuous function with

lim F(z)=0and lim F(z)=1

T——00 =00

can be a distribution function.

Definition 1.4 The random variable X is called discrete, if for some countable set of possible values
P(X € {z1,29,...}) =1

Its distribution is described by the probability mass function f(z) = P(X = z).
The random variable X is called (absolutely) continuous, if its distribution has a probability density
function f(x):

F(z) = /I fly)dy, for all x,
so that f(z) = F'(x) almost everywhere.
Example 1.5 The indicator of a random event 14 = 1y,ca} with p = P(A) has a Bernoulli distribution
Pla=1)=p, Pla=0)=1-p.

For several events S,, = Z:;l 14, counts the number of events that occurred. If independent events
A1, Ay, ... have the same probability p = P(4;), then S,, has a binomial distribution Bin(n, p)

n

P(S, =k) = (k>pk(1 -p)"* k=0,1,....n

Example 1.6 (Cantor distribution) Consider (2, F,P) with Q = [0, 1], F = By 1}, and

]P’([O7 1]) =1
B([0, 1/3]) = P((2/3,1]) = 2"
P([0, 1/9]) = P(12/9,1/3)) = B([2/3,7/9]) = B([8/9,1]) = 22

and so on. Put X (w) = w, its distribution, called the Cantor distribution, is neither discrete nor contin-
uous. Its distribution function, called the Cantor function, is continuous but not absolutely continuous.

1.4 Random vectors

Definition 1.7 The joint distribution of a random vector X = (X, ..., X,,) is the function
Fx(z1,...,z,) =P{X1 <z} n...n{X, <z,}).

Marginal distributions

Fx, (z) = Fx(z,00,...,00),
FX2(I) = Fx(OO,’I,OO,...,OO),
Fx, (x) = Fx(c0,...,00,x).



The existence of the joint probability density function f(x1,...,2,) means that the distribution function

Z1 Tn
FX(xla"'axn):/ / f(ylv"'7yn)dy1~~~dyn; for all (‘rla"'axn)a

is absolutely continuous, so that f(z1,...,2,) = W almost everywhere.

Definition 1.8 Random variables (X7, ..., X,) are called independent if for any (z1,...,z,)
P(X) <xp,...,Xp, <zp) =P(X; <a1)...P(X,, <xp).

In the jointly continuous case this equivalent to

flar, .o xn) = fx,(z1) ... fx, (zn).
Example 1.9 In general, the joint distribution can not be recovered form the marginal distributions. If

Fxy (2, y) = 2yl{(z,y)e[0,12}

then vectors (X,Y") and (X, X) have the same marginal distributions.
Example 1.10 Consider

l—e®—ze¥ if0<z <y,
Flz,y)=¢ 1—eV—ye ¥ if0<y<uz,
0 otherwise.

Show that F(z,y) is the joint distribution function of some pair (X,Y"). Find the marginal distribution
functions and densities.

Solution. Three properties should be satisfied for F(x,y) to be the joint distribution function of some
pair (X,Y):

1. F(x,y) is non-decreasing on both variables,

2. F(z,y) > 0asz — —oco and y — —o0,

3. F(z,y) > 1asz — oo and y — oo.
Observe that 2 F(e.y)

F(z,y —y
= - = 1
f(x7y) 8%81} € {0<z<y}

is always non-negative. Thus the first property follows from the integral representation:

Fla,y) = [ oo [ : Fu, v)dudo,

which, for 0 < z <y, is verifies as

/ / f(u,v)dudv = / (/ e_“dv) du=1—e""—ze ¥,
—oo J —0o 0 u

and for 0 <y <z as

T Yy Yy Yy
/ / fu,v)dudv = / (/ e*”dv) du=1—eY—ye V.
—o0 J —0o0 0 u

The second and third properties are straightforward. We have shown also that f(x,y) is the joint density.
For z > 0 and y > 0 we obtain the marginal distributions as limits

Fx(z) = Jim Flr,y)=1-¢7"  fx(z)=e",
Fy(y) = lim F(z,y) =1-e —ye ¥ fy(y) =ye "

X ~ Exp(1l) and Y ~ Gamma(2, 1).
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Figure 1: Filtration for four consecutive coin tossings.

1.5 Filtration
Definition 1.11 A sequence of sigma-fields {F,,}22; such that

FiCF C...CF,C..., F,CFiloraln
is called a filtration.

To illustrate this definition use an infinite sequence of Bernoulli trials. Let S, be the number of heads
in n independent tossings of a fair coin. Figure 1 shows imbedded partitions F; C Fo C F3 C F4 C F5
of the sample space generated by S1, 52, 53,54, S5.

The events representing our knowledge of the first three tossings is given by F3. From the perspective
of F3 we can not say exactly the value of Sy. Clearly, there is dependence between S3 and S;. The joint
distribution of S5 and Sjy:

Sy=0 S;=1 S,=2 S;,=3 5,=4 | Total
S3=0 1/16 1/16 0 0 0 1/8
S3=1 0 3/16 3/16 0 0 3/8
S5=2| 0 0  3/16 3/16 0 | 3/8
S5=3| 0 0 0 116 1/16 | 1/8
Total 1/16 1/4 3/8 1/4 1/16 1

The conditional expectation
E(S4‘S3) =53+0.5

is a discrete random variable with values 0.5, 1.5,2.5,3.5 and probabilities 1/8,3/8,3/8,1/8.

For finite n the picture is straightforward. For n = oo it is a non-trivial task to define an overall
(Q, F,P) with © = (0,1]. One can use the Lebesgue measure P(dz) = dx and the sigma-field F of
Lebesgue measurable subsets of (0, 1]. Not all subsets of (0, 1] are Lebesgue measurable.

2 Expectation and conditional expectation

2.1 Expectation
The expected value of X is

E(X) = /Q X (w)P(dw).

A discrete r.v. X with a finite number of possible values is a simple r.v. in that

X = iI11A7
=1



for some partition Ay, ..., A, of Q. In this case the meaning of the expectation is obvious
n
E(X) =Y aP(A).
i=1

For any non-negative r.v. X there are simple r.v. such that X, (w)  X(w) for all w € Q, and the
expectation is defined as a possibly infinite limit E(X) = lim,,—, o, E(X,,).

Any r.v. X can be written as a difference of two non-negative r.v. X™ =X V0and X~ = -X AOQ.
If at least one of E(X*) and E(X ™) is finite, then E(X) = E(X*) — E(X ™), otherwise E(X) does not

exist.

Example 2.1 A discrete r.v. with the probability mass function f(k) = m for k=—-1,£2,43,...

has no expectation.

For a discrete r.v. X with mass function f and any function g
E(9(X)) =) g(x)f(x).
x
For a continuous r.v. X with density f and any measurable function g

2(600) = [ glo) @)
In general

E(X) = /QX(w)]P’(dw) = /00 2Px (dx) = /OO xdF(x) = /oo (1-F(x))dx.

— 00 —0o0 — 00

Example 2.2 Turn to the example of (Q,F,P) with Q = [0,1], 7 = By}, and a random variable
X (w) = w having the Cantor distribution. A sequence of simple r.v. monotonely converging to X is
Xp(w)=k3""forwe[(k—1)3"™k37"),k=1,...,3" and X,,(1) = 1.

Xl(w) :O7 E(Xl) :O7
Xo(w) = (1/3)1{w€[1/3,2/3)} + (2/3)1{w€[2/3,1]}7 E(X2) = (2/3) % (1/2) = 1/3,
E(Xs) = (2/9) # (1/4) 1 (2/3) » (1/4) + (8/9) » (1/4) = 4/9,

and so on, gives E(X,,) " 1/2 = E(X).
Lemma 2.3 Cauchy-Schwartz inequality. For r.v. X and Y we have
(E(XY))* < E(X*)E(Y?)
with equality if only if aX +bY =1 a.s. for some non-trivial pair of constants (a,b).
Definition 2.4 Variance, standard deviation, covariance and correlation

Var(X) = E(X —EX)® = E(X?) — (EX)?, ox = v/Var(X),
Cov(X,Y) = E(X —EX)(Y —EY) = E(XY) — (EX)(EY),

Cov(X,Y)
p(X)Y)= ————~.
OxX0y
The covariance matrix of a random vector (X, ..., X,,) with means g = (p1,..., tn)

V=E(X - p) (X - p) = [|Cov(X;, X;)||

is symmetric and nonnegative-definite. For any vector a = (a1,...,a,) the r.v. a1 X7 + ... + a, X,, has
mean au® and variance

Var(a1 X1+ ...+ anXp) = IE(aXt — aut) (Xat — uat) = aVa'.

If (X1,...,X,) are independent, then they are uncorrelated: Cov(X;, X;) = 0.



2.2 Conditional expectation and prediction

Definition 2.5 For a pair of discrete random variables (X,Y") the conditional expectation E(Y]X) is
defined as ¥(X), where

= Zy]P’(Y =y|X =x).

Definition 2.6 Consider a pair of random variables (X, Y") with joint density f(x,y), marginal densities

/fxyd% fola /fxy

zly) = ; f2(ylz) = .
MW ="y RO
The conditional expectation E(Y|X) is defined as ¢(X), where

and conditional densities

vy = [ " Y h(le)dy

Properties of conditional expectations:

(i) linearity: E(aY 4+ 0Z|X) = aE(Y|X) + bE(Z|X) for any constants (a, b),

(ii) pull-through property: E(Yg(X)|X) = g(X)E(Y|X) for any measurable function g(x),
(iii) EY1lg) = E(w(X)1lg) for G = {w: X(w) € B}, where B € R,

(iv) tower property: E(E(Y|X, Z)|X) = E(Y|X),

(v) total expectation: E(E(Y|X)) =E(Y),

(vi) total variance: Var(Y) = Var(E(Y|X)) + E(Var(Y|X)).

Proof of (ii) in the discrete case:
E(Yg(X)|X) = yg(@)P(Y =y, X = z) Zg 2)yP(Y = y|X = z)
=D 9(@)d(2)P(X = z) = g(X)E(Y|X).
Definition 2.7 General definition. Let Y be a r.v. on (Q, F,P) and let G be a sub-c-algebra of F. If
there exists a G-measurable r.v. Z such that
E(Y — Z)1g) =0for all G € G,

then Z is called the conditional expectation of Y given G and is written Z = E(Y|G).
Properties of conditional expectations:

(vii) if E(Y'|G) exists, then it is a.s. unique,

(viii) if E|Y| < oo, then E(Y|G) exists due to the Radon-Nikodym theorem,

(ix) if G = o(X), then E(Y|X) := E(Y|G) and E(Y|X) = ¢(X) for some measurable function .

Proof of (viii). Consider the probability space (2,G,P) and define a finite signed measure P;(G) =
E(Ylg) = fG P(dw) which is absolutely continuous with respect to P. Thus Py (G) = fG Z(w)P(dw
with Z = 0P/ 31[” bemg the Radon-Nikodym derivative.

Definition 2.8 Let X and Y be random variables on (€, F,P) such that E(Y?) < oo. The best predictor
of Y given the knowledge of X is the function Y = h(X) that minimizes E((Y — Y)?).

Let L?(Q), F,P) be the set of random variables Z on (£2, F,P) such that E(Z?) < co. Define a scalar
product on the linear space L?(Q2, F,P) by (U, V) = E(UV) leading to the norm

12|l = (2, 2)"/? = (B(2%))"/2.



Let H be the subspace of L?(Q, F,P) of all functions of X having finite second moment
H = {hX):E(h(X)?) < co}.
Geometrically, the best predictor of Y given X is the projection Y of Y on H so that
E((Y —=Y)Z) =0, forall Z € H. (1)

Theorem 2.9 Let X and Y be random variables on (0, F,P) such that E(Y?) < co. The best predictor
of Y given X is the conditional expectation Y = E(Y|X).

Proof. Put ¥ = E(Y|X). We have due to the Jensen inequality Y2 < E(Y?2|X) and therefore
E(?) < E(E(Y?|X)) = B(Y?) < x,
implying Y € H. To verify (1) we observe that
E(Y -Y)Z) =EE(Y -Y)Z|Z)) =EE(Y|X)Z -YZ) =0.

To prove uniqueness assume that there is another predictor Y with E(Y - Y)?) = E(Y — Y)?) = d2.
Then E((Y — ¥£¥)2) > d? and according to the parallelogram rule

Y+Y”2

v
P+ -7

2(Ily = V2 + 11y = V)2) = )y -

we have

17 = V12 <2y = VI + |y = Y)?) - 4d* =o.

2.3 Multinomial distribution

De Moivre trials: each trial has r possible outcomes with probabilities (p1,...,p,). Consider n such
independent trials and let (Xi,...,X,) be the counts of different outcomes. Multinomial distribution
Mn(n7p17"'ap7“) |
_ _ _ n: k1 k.
P(Xl —kla--~7Xr —kr) = kllkr'pl Py

Marginal distributions X; ~ Bin(n,p;), also
(X1 + X2, X3..., X)) ~ Mn(n,p1 +p2,p3,- - Pr)-

Conditionally on X3

D2 Dr
Xo,...,. X, )~ M - X
( 2, ) 7‘) Il(’fl 1a1_p17 al_pl)v
so that (X;|X;) ~ Bin(n — X}, 13—"%) and E(X;|X;) = (n — Xj)l_p;j. It follows

E(X;X;) = E(E(X; X;|X;))
Di

=E(X;E(X;|X;)) = E(nX; — X}) -y

J
Di

]. _pj

= (n2pj —np;(1—p;)+ an?) =n(n — 1)p;p;

and Cov(X;, X;) = —np;p; so that

PiDj

p(Xi, Xj) = — A=p)(1—p;)



2.4 Multivariate normal distribution
Bivariate normal distribution with parameters (u1, ps2, 01,02, p)

L[ e ¢ (s
2mo1094/1 — p? 2(1 - p?) '

flz,y) =

Marginal distributions

1 _eonp)? 1 _wmng)?
file)= —=—¢ 1, faly) = e 7

V2mwog ’
and conditional distributions
f(z,y) 1 (z—pm — p,%(y*llz))2
fizly) = = 7 KPS~ 2 2 ’
f2(y) V271 (1 — p?) 207 (1 — p?)

(
 flzy) 1 ox _(y_ﬂZ—%(I—ul))2
f2(ylz) ( P{ 202(1 = p2) }

01
B Ji(x) - o94/27(1 — p?)

Exercise: check the total variance formula for this example.

A multivariate normal distribution with mean vector p = (p1, ..., i) and covariance matrix V has
density
F) = eV )
(2m)ndetV
For any vector (aq,...,a,) ther.v. a1 X7 + ...+ a, X, is normally distributed. Application in statistics:
in the IID case: g = (u,...,u) and V = diag{c?,..., 0%} the sample mean and sample variance
X_X1++Xn 82_(X1—X)2+...+(Xn—X)2

n n—1

are independent and @ has a t-distribution with n — 1 degrees of freedom.
If Y and Z are independent r.v. with standard normal distribution, their ratio X = Y/Z has a
Cauchy distribution with density

1

f(z) = m,

—00 < x < OoQ.

In the Cauchy distribution case the mean is undefined and X 2 x. Cauchy and normal distributions
are examples of stable distributions. The Cauchy distribution provides with a counterexample for the
law of large numbers.

2.5 Sampling from a distribution

Computers generate pseudo-random numbers Uy, U, ... which we consider as IID r.v. with Uy ;; distri-
bution.

Inverse transform sampling: if I is a cdf and U ~ Ujgyj, then X = F_;(U) has cdf F. It fol-
lows from
{Fa(U) <z} ={U < F(x)}.

Example 2.10 Examples of the inverse transform sampling.
(i) Bernoulli distribution X = 1;py<py,
(ii) Binomial sampling: S, = X1 + ... 4+ Xy, Xx = Ly, <p},
(iii) Exponential distribution X = —In(U)/A,
(iv) Gamma sampling: S, = X1 + ...+ X,,, X = —In(Ux)/ .

10



Lemma 2.11 Rejection sampling. Suppose that we know how to sample from density g(x) but we want
to sample from density f(x) such that f(x) < ag(x) for some a > 0. Algorithm
step 1: sample x from g(x) and u from Upg 1y,

step 2: if u < afg((x)) , accept x as a realization of sampling from f(x),

step 3: if not, reject the value of x and repeat the sampling step.

Proof. Let Z and U be independent, Z has density g(z) and U ~ Ujg ). Then

e P(U< a(
(25l < 2 055) - [ PEU< fi(ff / iy
= p(v < 10

2.6 Probability generating, moment generating, and characteristic functions

Definition 2.12 If X takes values £ = 0,1,2,... with probabilities p; and Z;o:o pr = 1, then the
distribution of X is fully described by its probability generating function

G(s) = E(s*) = Zpksk.
k=0

Properties of pgf:
() bo = G(O)v P = deC;SS) |s:03
(i) E(X) = ¢'(1), E(X(X-1))=6"Q1).
(iiii) if X and Y are independent, then Gx vy (s) = Gx(s)Gy(s),

Example 2.13 Examples of probability generating functions
(i) Bernoulli distribution G(s) = ¢ + ps,
(ii) Binomial distribution G(s) = (¢ + ps)™,
(iii) Poisson distribution G(s) = e s=1),

Definition 2.14 Moment generating function of X is M (0) = E(e’X). In the continuous case M () =
[ €% f(x)dz. Moments E(X) = M'(0), E(X*) = M®*)(0).
Example 2.15 Examples of moment gen%razting functions

(i) Normal distribution M (§) = efr+z070"

(ii) Exponential distribution M (6) = ﬁ for 6§ < A,

(ii) Gamma(a, A) distribution has density f(z) = %zo‘*le’h and M(0) = (ﬁ) for 6 < A, it
follows that the sum of k exponentials with parameter A has a Gamma(k, \) distribution,

(iii) Cauchy distribution M (0) = 1, M (t) = oo for t # 0.

Definition 2.16 The characteristic function of X is complex valued ¢() = E(e?X). The joint charac-
teristic function for X = (X1,..., X,) is ¢(0) = E(¢'0X").

Example 2.17 Examples of characteristi(zz fzunctions
10%c

(i) Normal distribution ¢(8) = e?*~=
«

(ii) Gamma distribution ¢(8) = (ﬁ) ,

(iii) Cauchy distribution ¢(0) = e~1°l,

(iv) Multinomial distribution ¢(8) = (25:1 pje i9j) .

(

v) Multivariate normal distribution ¢() = e+ ~26V6",

Example 2.18 Given a vector X = (Xy,...,X,) with a multivariate normal distribution any linear
combination aX® = a1 X; + ... + a, X, is normally distributed since

E(c’X') = g(0a) = 377" =ap', o?=aVa'.

11



2.7 Inequalities
Jensen’s inequality. Given a convex function J(z) and a random variable X we have
J(E(X)) < B(J(X)).
Proof. Put = E(X). Due to convexity there is A such that J(x) > J(u) + Az — w) for all z. Thus
E(J(X)) = E(J (1) + AX — ) = J(n).

Lyapunov’s inequality. If 0 < s < r, then

(Elx*)"* < (BIX7)"".

Markov’s inequality. For any random variable X and a > 0
E|X
P(|X|>a) < L
a

Proof:
E[X| > E(IX|1x|>a}) = aE(lqix|>a}) = aP(|X]| > a).

Chebyshev’s inequality. Given a random variable X with mean p and variance o2 for any € > 0 we

have

0_2

P(IX —pl =€) < =
Proof: )
E((X = p)7)
€2 '
Cauchy-Schwartz’s inequality. The following inequality becomes an equality if only if a X +0Y =1
a.s. for a pair of constants (a, b) # (0, 0):

P(X —pl 2 ) = P(X — p)* 2 ) <

(E(XY))® < E(X)E(Y?).
Hélder’s inequality. If p,¢ > 1 and p~! +¢ ! =1, then
EIXY| < (EIX?))"" (B]y)"".
Minkowski’s inequality. Triangle inequality. If p > 1, then

E|X +Y?)" < (BIX?)"7 + (B]Y?))"/?.

2

Kolmogorov’s inequality. Let {X,,} be iid with zero means and variances o2

. Then for any ¢ > 0

2 2
P(max [Xy+...+ X;| > ) < L F 0
1<i<n €

3 Convergence of random variables

3.1 Borel-Cantelli lemmas

Given a sequence of random events Ay, As, ... define new events
sup A, = | An, infA, =()A4,,
" n L’nJ n " n O n
o0 oo o0 o0
limsup A4,, = ﬂ U A, liminf A,, = U ﬂ A
n—roo n=1m=n n—0o0 n=1m=n

Observe that

oo o0

limsup A, = m U Ay = {Vn Im > n such that A,, occurs} = {events A,, occur infinitely often},
nTreo n=1m=n
liminf A7 = U ﬂ Ay = {3n such that AS, occur Ym > n} = {events A,, occur finitely often}.
n— oo

n=1m=n

12



Theorem 3.1 Borel-Cantelli lemmas. Let {A,, i.0.} := {infinitely many of events Ay, As, ... occur}.
1. If 5 P(Ay) < oo, then P(A, i.0.) =0,
2. If Y07 | P(A,) = o< and events Ay, As, ... are independent, then P(A,, i.0.) = 1.

Proof. (1) Put A = {A, i.0.}. We have A € Uy, > A, and so P(A) <> . P(A,,) = 0 as n — oo.
(2) By independence -

N

P(() 45) = Jim P(() 45) = [T (1 -P(4,)) <exp( Y P4 )

m>n m=n m>n m>n

It follows P(A°) = lim, P(Ny,>nA%,) = 0 which gives P(A) =

If events Ap, Ag, ... are independent, then either P(A,, i.0.) = 0 or P(A,, i.0.) = 1. This is an example
of a general zero-one law.

Definition 3.2 Let X7, X5, ... be a sequence of random variables defined on the same probability space
and H,, = 0(Xnit1, Xny2,-..). Then H,, D Hy1 D ..., and we define the tail o-algebra as T = N, H,,.

Event H is in the tail o-algebra if and only if changing the values of Xj,..., Xy does not affect the
occurrence of H for any finite .

Theorem 3.3 Kolmogorov’s zero-one law. Let X1, Xo,... be independent random variables defined on
the same probability space. For all events H € T from the tail o-algebra we have either P(H) = 0 or
P(H) =1.

Proof. A standard result of measure theory asserts that for any H € #H; there exists a sequence of events
Cp =o0(Xy,...,X,) such that P(HAC,) — 0 as n — oo. If H € T, then by independence

P(HNC,) =P(H)P(C,) — P(H)?
implying P(H) = P(H)?.
Example 3.4 Examples of events belonging to the tail o-algebra T

{X, >01i0.}, {limsupX, = oo}, {Z X,, converges}.
n—roo n

These events are not affected by Xi,..., Xy for any fixed N.

Example 3.5 An example of an event A ¢ T not belonging to the tail o-algebra: suppose X,, may take
only two values 1 and —1, and consider

A=1{S, =01i.0.}, where S, = X; + ...+ X,,.
Whether A occurs or not depends on the value of X;. Indeed, if Xo = X4y = ... =1 and X3 = X5 =

.= —1, then A occurs if X; = —1 and does not occur if X; = 1.

3.2 Modes of convergence

Theorem 3.6 If X1, X5, ... are random variables defined on the same probability space, then so are

inf X,,, supX,, liminfX,, limsupX,.
n n n n

Proof. For any real x

{w:ianngm}:U{w:Xngx}e}", {w:suangx}:ﬂ{w:Xngx}G]:.

n

It remains to observe that

hrnlnf X, =sup inf X,,, lim supX = inf sup X,,

n m>n n m>n

13



Definition 3.7 Let X, X7, X5, ... be random variables on some probability space (2, F,P). Define four
modes of convergence of random variables
(i) almost sure convergence X,, 3 X, if P(w : lim X,, = X) =1,

(ii) convergence in r-th mean X, L X fora given r > 1, if E|X7| < oo for all n and
E(| X, — X|") — 0,

(iii) convergence in probability X, 5 X, it P(|X,, — X| > €) — 0 for all positive e,

(iv) convergence in distribution X, 4 x (does not require a common probability space), if
P(X, <z) — P(X < z) for all  such that P(X =x) = 0.

Theorem 3.8 Let ¢ > r > 1. The following implications hold
Xn ﬂ' X :>(ii)

Xn B x =0 Xn Lx = (iii)

X, B X =4 X, 5 X

Proof. The implication (i) is due to the Lyapunov inequality, while (iii) follows from the Markov in-
equality. For (ii) put A,(e) = {|X,, — X| > €} and observe that the a.s. convergence is equivalent to
P(Up>m{|Xn — X| > €}) = 0, m — oo for any € > 0. To prove (iv) use

PX,<z)=PX,<z,X<z+6)+PX, <z, X >x+¢) <P(X <z+¢)+P(|X —X,|>¢),
PX<z—€)=PX, <z, X<z—6)+PX,>z,X <zx—¢€) <P(X, <2)+P(X — X,| >¢).

Theorem 3.9 Reverse implications:
(i) X, LN X, B for a constant limit,
(i1) X 5X=X, =N X, if P(|X,| <a) =1 for all n and some positive constant a,
(iii) Xp 2 X = X, 23 X if P(| X, — X| > €) = 0 so fast that

ZP(|XH—X|>6)<oof0ranye>0. (2)

(iv) X, SXx= X, % X along a subsequence.
Proof. To prove (i) use
P(| X, —c| >¢€) =P(X, <c—¢€)+P(X, >c+e).
To prove (ii) use P(|X| <a) =1 and
| Xn — X" < €1y x,—x1<ey + (20)" 1{1x, X |>e}-

The implication (iii) follows from the first Borel-Cantelli lemma. Indeed, put B, = {|X, — X| >
m~11i0.}. Due to the Borel-Cantelli lemma, condition (2) implies P(B,,) = 0 for any natural m.
Remains to observe that {w : lim X,, # X} = sup,,, By,. The implication (iv) follows from (iii).

Example 3.10 Let Q = [0,2] and put A,, = [an, @n+1], where a,, is the fractional part of 1+1/2+...+
1/n.

e The random variables 14, converge to zero in mean (and therefore in probability) but not a.s.
e The random variables nl,4, converge to zero in probability but not in mean and not a.s.
e P(A4, i.0.)=0.5and ) P(A,) = oo.
Example 3.11 Let Q = [0,1] and put B,, = [0,1/n].
e The random variables nlp, converge to zero a.s but not in mean.

e Put Xy, = 1p, and Xs,4+1 = 1 — Xy,. The random variables X,, converge to 1p, in distribution
but not in probability. The random variables X,, converge in distribution to 1 — 15, as well.

e Both X5, = 1p, and Xa,11 = 1 — Xy, converge to 1p, in distribution but their sum does not
converge to 21p,.

14



3.3 Continuity of expectation

Theorem 3.12 Bounded convergence. Suppose |X,| < M almost surely and X, 5 X. Then E(X) =
ImE(X,,).

Proof. Let € > 0 and use

IE(X,) —E(X)| <E|X, — X| =E(|Xn — X| - 1x,—x|<e}) T E(1Xn — X|- 11x,—x|>¢})
<e+ MP(| X, — X| > e€).

Lemma 3.13 Fatou’s lemma. If almost surely X, > 0, then liminf E(X,,) > E(liminf X,,). In particu-
lar, applying this to X, = 114,y and X,y =1 — 144,y we get

P(liminf A,,) < liminf P(A4,,) < limsupP(A4,,) < P(limsup A4,).

Proof. Put Y, = inf, -, X,,. We have Y}, < X,, and Y;, /Y = liminf X,,. It suffices to show that
liminf E(Y;,) > E(Y). Since, |Y, A M| < M, the bounded convergence theorem implies

liminf E(Y;,) > liminf E(Y,, A M) = E(Y A M).

n—o0 n—oo
The convergence E(Y A M) — E(Y) as M — oo can be shown using the definition of expectation.

Theorem 3.14 Monotone convergence. If 0 < X, (w) < Xp41(w) for all n and w, then E(lim X,,) =
lmE(X,,).

Proof. From E(X,,) < E(lim X,,) we have limsup E(X,,) < E(lim X,,). Now use Fatou’s lemma.

Theorem 3.15 Dominated convergence. If X, *¥ X and almost surely | X,,| <Y and E(Y) < oo, then
E|X| < o0 and E(X,,) — E(X).

Proof. Apply Fatou’s lemma twice.
Definition 3.16 A sequence X, of random variables is said to be uniformly integrable if

supE(|X,|; | Xn| > a) =0, a— occ.

Lemma 3.17 A sequence X,, of random variables is uniformly integrable if and only if both of the
following hold:
1. sup, E|X,| < oo,

2. for alle > 0, there is 6 > 0 such that, for alln, E(|X,|14) < € for any event A such that P(A) < 4.

Theorem 3.18 Let X, BX. The following three statements are equivalent to one another.
(a) The sequence X, is uniformly integrable.

(b) E|Xn| < 00 for all n, E|X| < 0o, and X» % X.
(c) E|X,| < oo for alln, E|X| < 0o, and E|X,,| — E|X]|.

3.4 Weak law of large numbers
Definition 3.19 Convergence in distribution X, % X means

P(X, <) = P(X <) for all  such that P(X =z) =0.

This is equvalent to the weak convergence F, 4 F of distribution functions when F,, () — F(z) at each
point x where F' is continuous.
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Theorem 3.20 Weak convergence and convergence of characteristic functions:
(i) two r.v. have the same characteristic function iff they have the same distribution function,

(ii) if Xpn % X, then ¢n(t) — (t) for all t,
(iii) conversely, if ¢(t) = lim ¢, (t) exists and continuous at t = 0, then ¢ is cf of some F, and
d

F, — F.

Theorem 3.21 If X1, Xo,... are iid with finite mean p and S, = X1 + ...+ X,, then
Sn/n A W, n — oo.

Proof. Let F, and ¢, be the df and cf of n=1S,. To prove F,(z) S 1{z>uy we have to see that
én(t) — e which is obtained using a Taylor expansion

Pn(t) = (¢1(t”71))n = (1 + iuhfl + 0(n71)>n —y eltH,

Example 3.22 Statistical application: the sample mean is a consistent estimate of the population mean.
Counterexample: if X; has the Cauchy distribution, then S, /n 2 X, since Pn(t) = ¢1().

3.5 Central limit theorem

The LLN says that |S, — np| is much smaller than n. The CLT says that this difference is of order \/n.

Theorem 3.23 If X, Xo, ... are iid with finite mean [ and positive finite variance o2, then for any x

Sp —np 1 r 2
]P’("7<x)—>—/ eV 2dy, n— oco.
O’\/ﬁ - V2T J oo Y

Proof. Let 1, be the cf of SU;\/%”‘ Using a Taylor expansion we obtain

t2 “17\" —12)2
Unlt) = (1= 3 +o(n™)) —e 2
Example 3.24 Important example: simple random walks. 280 years ago de Moivre (1733) obtained the
first CLT in the symmetric case with p = 1/2.
Statistical application: the standardized sample mean has the sampling distribution which is approx-
imately N(0,1). Approximate 95% confidence interval formula for the mean X + 1.96%.

Theorem 3.25 Let (X7',..., X)) have the multinomial distribution Mn(n,p1,...,p.). Then the nor-

malized vector (Xln;;%lpl sy Xf\;ﬁnpr) converges in distribution to the multivariate normal distribution
with zero means and the covariance matriz
pi(l—=p1)  —pip2 —-pips .- —Pipr
—papr p2(l—p2)  —peps ... —papy
V= —P3p1 —psp2 p3(l—p3) ...  —p3pr
—Prp1 —prp2 —prps .. pr(l—py)
Proof. To apply the continuity property of the multivariate characteristic functions consider
—np1 L, X' —np, TN
Eexp(zﬁlT—k...—kzﬁ,.i) (Zpe )

where éj =0; — (61p1 + ...+ 60,p,). Similarly to the classical case we have

(ijeiéj/\/ﬁ) (1 _ 7217]92_’_0 ))” N 67%22:1173'5]2‘ :e*%(z;‘qPjeyz‘*(z;ﬂﬂpj@j)r")'
j=1

It remains to see that the right hand side equals e=29V0" which follows from the representation
21 0 D1
V = — (pl,...,pr)
0 Pr Pr
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3.6 Strong LLN

Theorem 3.26 Let X1, Xo, ... be ©id random variables defined on the same probability space with mean
w and finite second moment. Then

X1+...+XnL2
n

Proof. Since 02 := E(X?) — pu? < 0o, we have

X, ...+ X, 2 X, ...+ X, 2
E((M_M) >:Var<1++) _not o,
n n n

Theorem 3.27 Strong LLN. Let X1, Xo,... be itd random variables defined on the same probability

space. Then
Xi+...+ X, as
— "y

n
. . _ X4t X, L

for some constant p iff E|X1| < co. In this case p = EX; and === =y

There are cases when convergence in probability holds but not a.s. In those cases of course E|X;| = oo.

Theorem 3.28 The law of the iterated logarithm. Let X1, Xs,... be iid random variables with mean 0

and variance 1. Then x X
P ( lim sup S B 1)=1
n—oo /2nloglogn

and

P hminfm ——~1) =1
n—oo +/2nloglogn ’

Proof sketch. The second assertion of Theorem 3.28 follows from the first one after applying it to —X;.
The proof of the first part is difficult. One has to show that the events

Ap(e) ={X1+...+ X,, > c/2nloglogn}

occur for infinitely many values of n if ¢ < 1 and for only finitely many values of n if ¢ > 1.

4 Markov chains

4.1 Simple random walks

Let S, =a+ X1 +...+ X, where X1, X5, ... are IID r.v. taking values 1 and —1 with probabilities p
and ¢ = 1 —p. This Markov chain is homogeneous both in space and time. We have S,, = 2Z,, —n, with
Z, ~ Bin(n,p). Symmetric random walk if p = 0.5. Drift upwards p > 0.5 or downwards p < 0.5 (like
in casino).

(i) The ruin probability pr = pr(IV): your starting capital k against casino’s N — k. The difference
equation

Pk =D Prt1+q pr—1, PN =0, po=1
gives
(a/p)~ —(a/p)"

pk(N) :{ (q/ﬁ),N_l ; lfp?é05a

ek if p=10.5.

Start from zero and let 75, be the first hitting time of b, then for b > 0

L B 1, if p <0.5,
P(r—p <o0) = lim py(N) = { (¢/p), if p > 0.5,

and
B 1, ifp>0.5,
P(m < 00) = { (p/q)b, ifp<0.5.
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(ii) The mean number Dy, = Dy (N) of steps before hitting either 0 or N. The difference equation
Dy=p-(1+Di1) +q-(1+ Dp—1), Do=Dny=0

gives

1—(g/p)* .
[k —N - lf(q/p)N:| , ifp#£0.5,

_1
Dk(N) = q—p
k(N — k), if p =0.5.

If p < 0.5, then the expected ruin time is computed as Dp(N) — £ as N — oc.

(iii) There are
Ny (a,b) = (n>, k= %b_a

paths from a to b in n steps. Each path has probability p¥q¢™~*. Thus
bh—
P(Sy = bSo =a) = (1 phgnF, k=122

k 2

In particular, P(S2, = alSo = a) = (*")(pq)". Reflection principle: the number of n-paths visiting r is
N} (a,b) = N, (2r —a,b), a>r,b>r,
N7 (a,b) = Np(a,2r =b), a<rb<r.

(iv) Ballot theorem: if b > 0, then the number of n-paths 0 — b not revisiting zero is

anl(lvb) - Nr?fl(]wb) = anl(]-?b) - anl(_lvb)
() - (") = ermaon),

Thus (by default we will assume Sy = 0)

b
]P(Sl>0,..5n 1>0|Sn—b) E b>0,
P(S1 #0,...5,-1#0,5,=0) = |n| P(S, =b),
P(S; #0,...5, #0) =n"'E|[S,]|.
It follows that
P(S1 #0,...S2, #0) =P(Sz, =0) for p=0.5. (3)

Indeed,

n

P(S; #0, .. 52n¢0_22719>52n_2k _ZZ <n+k> —2n

k=1
2n—1 2n—1 2n—1
—2n+1 _ o—2n+1 _ _
=2 Z(n+k1> (n+k>_2 ( n )—P(Sgn—O).
(v) For the maximum M,, = max{Sy,...,S,} using N7 (0,b) = N,(0,2r —b) for r > b and r > 0 we

get
P(Mn > r, Sn = b) = (q/p)7_b]P’(Sn =2r — b),

implying for b > 0

P(S1 < by...Sn1 < b, Sn = b) = ZP(Sh = b).
n
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The obtained equality
P(Sl >0,...5,.1>0,8, Zb) ZP(Sl <b,...5,_1<b,8,= b)

can be explained in terms of the reversed walk also starting at zero: the initial walk comes to b without
revisiting zero means that the reversed walk reaches its maximum on the final step.
(vi) The first hitting time 7, has distribution

M]P’(Sn =b), n>0.

]P)(Tb:n) = n

The mean number of visits of b # 0 before revisiting zero

]EZ 115,#0,...50 10,5, =b} = ZP (y =n) =P(1, < 0).

n=1

Theorem 4.1 Arcsine law for the last visit to the origin. Let p = 0.5, Sg = 0, and Ty, be the time of
the last visit to zero up to time 2n. Then

2
P(Ty, < 2xn) — / oy 2 arcsin vz, n — oo.

Tyl —y T

Proof sketch. Using (3) we get

P(T5,, = 2k) = P(Saox = 0)P(Sag+1 # 0, ..., S2, # 0|Sax = 0)
= P(S2k = 0)P(S2(n—1) = 0),

and it remains to apply Stirling’s formula.

Theorem 4.2 Arcsine law for sojourn times. Let p = 0.5, Sy = 0, and T, be the number of time

intervals spent on the positive side up to time 2n. Then thl 4 Top.

Proof sketch. First using
1
P(S; >0,...,8, >0)=P(S;=1,5%>1,...,5, >1)= i]P’(T;; = 2n)

and (3) observe that
P(Ty, = 0) = P(Ty, = 2n) = P(S2, = 0).

Then by induction over n one can show that
P(Ty, = 2k) = P(Sax = 0)P(Sa(n—k) = 0)

for k=1,...,n — 1, applying the following useful relation
P(San =0) = Y P(Sa(n_r) = 0)P(ro = 2k),
k=1
where 7¢ is the time of first return to zero.

4.2 Markov chains

Conditional on the present value, the future of the system is independent of the past. A Markov chain
{X,}52, with countably many states and transition matrix P with elements p;;

P(X, =j|Xn-1 =1, Xn_2 =tn_2,..., X0 =io) = pij-

The n-step transition matrix with elements pgf) = P(X,1m = j|Xm = i) equals P™. Given the initial
distribution a as the vector with components a; = P(Xy = i), the distribution of X,, is given by the
vector aP"” since

n*] Z P n*]|X0:Z) Z azp(n)~

i=—00 1=—00
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Example 4.3 Examples of Markov chains:
e IID chain has transition probabilities p;; = p;,
e simple random walk has transition probabilities p;; = plyj—it1y + ql{j=i—1},

e Bernoulli process has transition probabilities p;; = plyj—i;1) + qlyj=; and state space S =
{0,1,2,...}.

Lemma 4.4 Hitting times. Let T; = min{n > 1: X,, =i} and put fi(f) =P(T; = n|Xo =1). Define the
generating functions

Py(s)=>_s"plY,  Fyl(s)=Y_s" .
n=0 n=1
It is not difficult to see that

Pij(s) = 1=y + Fij(s)Pj;(s)
1

Pii(s) =
Definition 4.5 Classification of states
e state i is called recurrent (persistent), if P(T; < oo|Xo =) =1,
e a non-recurrent state is called a transient state,
e a recurrent state ¢ is called null-recurrent, if E(T;| X, = i) = oo,
e state i is called positive-recurrent, if E(T;| Xy = i) < occ.

Theorem 4.6 State i is recurrent iff Y .o, pgf) = 00. A recurrent state i is null-recurrent iﬁpg?) — 0.

M 0 for all j.

In the latter case p;;

Proof sketch. Since Fj;(1) = P(T; < oo|Xo = i), we conclude that state 4 is recurrent iff the expected
number of visits of the state is infinite P;;(1) = co. See also the ergodic Theorem 4.14.

Example 4.7 For a simple random walk
. . 2n "
P(San = 150 =) = (2 ) 0"

Using the Stirling formula n! ~ n™e™"v/27mn we get

2n)  (4pq)"

~ n — 00.

p,,
K22 /ﬂ_n )
2n) 1

(") — o holds only if p = 0.5 when pz(-i ~ e The one and two-

Criterium of recurrence ) p;;

dimensional symmetric simple random walks are null-recurrent but the three-dimensional walk is tran-
sient!

> 0. We

Definition 4.8 The period d(i) of state i is the greatest common divisor of n such that p
call 7 periodic if d(i) > 2 and aperiodic if d(i) = 1.

If two states 7 and j communicate with each other, then
e i and j have the same period,
e § is transient iff j is transient,
e ¢ is null-recurrent iff j is null-recurrent.

Definition 4.9 A chain is called irreducible if all states communicate with each other.
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All states in an irreducible chain have the same period d. It is called the period of the chain. Example:
a simple random walk is periodic with period 2. Irreducible chains are classified as transient, recurrent,
positively recurrent, or null-recurrent.

Definition 4.10 State i is absorbing if p;; = 1. More generally, C' is called a closed set of states, if
pij =0forallie Cand j¢C.

The state space S can be partitioned uniquely as
S=TuC,UCU...,

where T is the set of transient states, and the C; are irreducible closed sets of recurrent states. If S is
finite, then at least one state is recurrent and all recurrent states are positively recurrent.

4.3 Stationary distributions

A vector of probabilities m = (7,7 € 5) is a stationary distribution for the Markov chain X, if given
X has distribution 7, X, has the same distribution 7 for any n, or in other words 7 is a left eigenvector
of the transition matrix

7P =.

Theorem 4.11 An irreducible chain (aperiodic or periodic) has a stationary distribution 7 iff the chain
is positively recurrent; in this case w is the unique stationary distribution and is given by m; = 1/p;,
where p; = E(T;| Xo = 1) and T; is the time of first return to .

Proof sketch. Let p(k) = (p;(k),j € S) where py(k) =1 and

oo

pi(k) = P(Xy = j,Ti > n|Xo = k)

n=1

is the mean number of visits of the chain to the state j between two consecutive visits to state k. Then

d_pilk) =" P(Xu=j,Ti > n|Xo = k)

jes jeSn=1
= ZP(Tk > n|Xo = k) = E(T|Xo = k) = pig-
n=1

If the chain is irreducible recurrent, then p;(k) < oo for any k and j, and furthermore, p(k)P = p(k).
Thus there exists a positive root x of the equation xP = x, which is unique up to a multiplicative

constant; the chain is positively recurrent iff > jes Tj < 00.

Theorem 4.12 Let s be any state of an irreducible chain. The chain is transient iff there exists a
non-zero bounded solution (y; : j # s) satisfying |y;| <1 for all j to the equations

vi= Y by, i€8\{s} (4)
JjeS\{s}

Proof sketch. Main step. Let 7; be the probability of no visit to s ever for a chain started at state j.
Then the vector (7; : j # s) satisfies (4).

Example 4.13 Random walk with retaining barrier. Transition probabilities
Poo=¢q, DPi-1,i=0Dp, DPii-1=¢q, 12=>1.
Let p =p/q.
e If ¢ < p, take s = 0 to see that y; = 1 — p~7 satisfies (4). The chain is transient.
e Solve the equation 7P = m to find that there exists a stationary distribution, with 7; = p?(1 — p),

if and only if ¢ > p.
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e If ¢ > p, the chain is positively recurrent, and if ¢ = p = 1/2, the chain is null recurrent.
Theorem 4.14 FErgodic theorem. For an irreducible aperiodic chain we have that

o1 o
pl(-j) — — asn — oo for all (i, ).

Hj

(n)

ij

{L;, where f;; is the

More generally, for an aperiodic state j and any state i we have that p;.’ —

probability that the chain ever visits j starting at i.

4.4 Reversibility

Theorem 4.15 Put Y, = Xy_, for 0 <n < N where X, is a stationary Markov chain. Then Y, is a
Markov chain with .
P(Yyir = j|Y, = i) = 24Pt
TG
The chain Y,, is called the time-reversal of X,,. If m exists and mﬂﬂ = pij, the chain X, is called
reversible (in equilibrium). The detailed balance equations '

TiPij = TjPji for all (Z,j) (5)

Theorem 4.16 Consider an irreducible chain and suppose there exists a distribution 7 such that (5)
holds. Then 7 is a stationary distribution of the chain. Furthermore, the chain is reversible.

Proof. Using (5) we obtain

E Wipij:E TiPji = Tj-
i i

Example 4.17 Ehrenfest model of diffusion: flow of m particles between two connected chambers. Pick
a particle at random and move it to another chamber. Let X,, be the number of particles in the first
chamber. State space S = {0,1,...,m} and transition probabilities

m—1 )
Diji+1 = s Diji—1 = —.
m m
The detailed balance equations
m—1i 1+1
T ——— = Ti4+1
m

imply
m—i+1 (m)
Tp=———"mi—1=| . |70
i i
Using Y, m = 1 we find that the stationary distribution 7; = ("7)27" is a symmetric binomial.

4.5 Poisson process and continuous-time Markov chains

Definition 4.18 A pure birth process X (¢) with intensities {\;}32,
(i) holds at state 7 an exponential time with parameter A;,
(ii) after the holding time it jumps up from i to i + 1.

Exponential holding times has no memory and therefore imply the Markov property in the continuous
time setting.

Example 4.19 A Poisson process N(¢) with intensity A is the number of events observed up to time ¢
given that the inter-arrival times are independent exponentials with parameter A:

P(N(t) = k) = (Akﬁ)ke—“, k> 0.
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To find the last formula observe that
PINt)=k)=P(Th +... + T <t)—P(T1 + ... + Trq1 < 1),

where T + ...+ T} has a gamma distribution with parameters (k, \) so that

P(T1+...+Tk<t):/t A kLA gy (At)* /1y’“1@”ydy
= o (k—=1)! (k=1 J,

Atk Ayt At)F
_ Qo k? ety DT ;, / yre My = (G0 k') e MAP(Ty + ..+ Tir < t).
. . 0 .

Explosion: P(X (t) = co) > 0 for a finite ¢. It is possible iff >~ 1/); < cc.

Definition 4.20 A continuous-time process X (¢) with a countable state space S satisfies the Markov
property if

P(X(tn) = JIX (1) = i1, -, X(bno1) = in1) = P(X(tn) = jIX (tn-1) = in—1)
for any states j,i1,...,i,_1 € S and any times t; < ... < t,.
In the time homogeneous case compared to the discrete time case instead of transition matrices P™ with

(n)

elements p;;” we have transition matrices P; with elements

pij(t) = P(X(u+1) = j|X (u) = 7).

Chapman-Kolmogorov: Py, = PP, for all t > 0 and s > 0. Here Py = I is the identity matrix.

— Qe

= Goore " and

Example 4.21 For the Poisson process we have p;;(t)

N O )T e AT g
;plk(t)pk](s)_;(k_z)'e A (j—k)'e A _We /\(+)—p”(t+s).

4.6 The generator of a continuous-time Markov chain

A generator G = (gi;) is a matrix with non-negative off-diagonal elements such that >, g;; = 0. A
Markov chain X (¢) with generator G

e holds at state i an exponential time with parameter \; = —g;;,

9gij

e after the holding time it jumps from i to j # ¢ with probability h;; = 5.

The embedded discrete Markov chain is governed by transition matrix H = (h;;) satisfying h;; = 0. A
continuous-time MC is a discrete MC plus holding intensities ();).

Example 4.22 The Poisson process and birth process have the same embedded MC with h; ;41 = 1.
For the birth process g;; = —\;, g:,i+1 = A; and all other g;; = 0.

Kolmogorov equations. Forward equation: for any i,j € S
pii(8) = > pir(t)grs
k

or in the matrix form P, = P;G. It is obtained from Py, — P, = P;(P. — Py) watching for the last
change. Backward equation P}, = GP; is obtained from P, — P; = (P. — Po)P; watching for the
initial change. These equations often have a unique solution



Theorem 4.23 Stationary distribution: wP; = m for all t iff #G = 0.

Proof:
o0 o0
vt tr vt tr vt v
P, =7 < E —mG" =1 & E —7G"Z0 < =wG"Zo.
‘ n! 1 n!
n= n—=

Example 4.24 Check that the birth process has no stationary distribution.

Theorem 4.25 Let X(t) be irreducible with generator G. If there exists a stationary distribution T,
then it is unique and for all (i, 7)
pij(t)—>7rj, t — o0.

If there is no stationary distribution, then p;;(t) — 0 as t — oo.

Example 4.26 Poisson process holding times \; = \. Then G = \(H — I) and P; = M(H-T),

5 Stationary processes

5.1 Weakly and strongly stationary processes

Definition 5.1 The real-valued process {X (t),t > 0} is called strongly stationary if the vectors (X (¢1), ..., X (tn))
and (X (t; + h),..., X (t, + h)) have the same joint distribution for all 1,...,¢, and h > 0.

Definition 5.2 The real-valued process {X(t),t > 0} with E(X?(t)) < oo for all ¢ is called weakly
stationary if for all t1,¢5 and h > 0

E(X(tl)) = E(X(tQ)), (COU(X(tl), X(tg)) = (COU(X(tl + h), X(t2 + h))

Its autocovariance and autocorrelation functions are

c(t) = Cov(X(s), X (s +1t)), p(t) = s((é))

Example 5.3 Consider an irreducible Markov chain {X(¢),t > 0} with countably many states and a
stationary distribution 7 as the initial distribution. This is a strongly stationary process since

]P)(X(h + tl) =11, X(h + 11+ tg) =19,... ,X(h +t14+...+ tn) = ’Ln) = 7ri1pi1,i2(t2) .. .pi,,HlmL(tn).
Example 5.4 The process {X,,,n =1,2,...} formed by iid Cauchy r.v is strongly stationary but not a

weakly stationary process.

5.2 Linear prediction

Task: knowing the past (X, X;—1,..., X;—s) predict a future value X, by choosing (ao,...,as) that
minimize E(X, 1, — X,1%)?, where

Xr+k - Zanr—j~ (6)
7=0

Theorem 5.5 For a stationary sequence with zero mean and autocovariance c(m) the best linear pre-
dictor (6) satisfies the equations

Zajc(\j—mD =ck+m), 0<m<s.
=0

Proof. Geometrically, the best linear predictor Xr+k makes an error, X, — Xr+k, which is orthogonal
to the past (X,, X;—1,..., X, —5):

E((Xpin — Xpih)Xoem) =0, m=0,...,s.

Plugging (6) into the last relation, we arrive at the claimed equations.
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Example 5.6 AR(1) process Y, satisfies
Y.=aY, 1+ 72, —oco<n<oo,

where Z,, are independent r.v. with zero means and unit variance. If |a| < 1, then Y, =3~ a™Z,_,
alml ~

is weakly stationary with zero mean and autocovariance c(m) = ;5. The best linear predictor is
- T - a2k
Y, x = a”Y,.. The mean squared error of prediction is E(Y, x — Y,4x)? = 11_%2 .

Example 5.7 Let X = (=1)"Xy, where Xy is —1 or 1 equally likely. The best linear predictor is
Xpsr = (—=1)*X,.. The mean squared error of prediction is zero.

5.3 Linear combination of sinusoids

Example 5.8 For a sequence of fixed frequencies 0 < A\; < ... < A\x < oo define a continuous time
stochastic process by

k
Z (A;j cos(A;t) + Bjsin(At)),

where Ay, By, ..., Ag, By, are uncorrelated r.v. with zero means and Var(4;) = Var(B;) = o3. Its mean
is zero and its autocovarlanmes are

k
Cov(X(t),X(s)) =E(X(t)X(s)) = Z E(A? cos(Ajt) cos(Ajs) + Bj2- sin(\;t) sin(A;s))

k
= Z o7 cos(Aj(s — t)),
J:l
Var(X (1) = Yo}

We can write

X(t) = /O " cos(tN AU () + /O  sin(tn)dV (L),

Z Aj, V() = Z B;.

FiA <A FiA <A

where

s

Example 5.9 Let specialize further and put k =1, Ay = 7, assuming that A; and B are iid with

-7 =
Then X(t) = cos(§(t+ 7)) with

Plr=1)=P(r=-1)=P(r=3)=P(r =-3) =



This stochastic process has only four possible trajectories. This is not a strongly stationary process since

1 T T, 1 T 1+ sin?(Z¢)
40y _ & a(T, T ca (T, TN Ly _ s gt
E(X (t))fz(cos (4t+4)+sm <4t+4)) 4(2 sin (2t+2>) 5 .
Example 5.10 Put
X(t) =cos(t+Y) = cos(t) cos(Y) — sin(t) sin(Y),

where Y is uniformly distributed over [0,27]. In this case k = 1,A = 1,07 = (47)~!. What is the
distribution of X (¢)? For an arbitrary bounded measurable function ¢(z) we have

BO(X(1) = Bloeos(t + YD) = 5 [ ofeostt + )y =

o 2

= 1(/07r ¢(cos(z))dz + /:Tr qS(cos(z))dz) = % /0 P(cos(m —y))dy + /0” ¢(cos(m +y))dy

2m
1 ™
= | ot costuy

The change of variables © = — cos(y) yields dz = sin(y)dy = V1 — z2dz, hence

1
Boeo) - [ S2E

Thus X (¢) has the so-called arcsine density f(x) =
has a Beta(1

over the interval [—1,1]. Notice that Z = £+1

1
T/ 1—y2

/ S(FH)de 1 [ g(2)dz

1 - :1:2 T Jo 2(1—-2z)
This is a strongly stationary process, since X (t + h) = cos(t + Y’), where Y’ is uniformly distributed
over [h, 2w + h], and

3 2) distribution, since

(X(t1+h),..., X (tn +h)) = (cos(t; +Y'),...,cos(t, + Y')) = (cos(t1 +Y),...,cos(t, +Y)).

Example 5.11 In the discrete time setting for n € Z put

k
Z Aj cos(Ajn) + Bjsin(A;n)),

j=1
where 0 < Ay < ... < A\; <7 is a set of fixed frequencies, and again, Ay, By, ..., Ag, By are uncorrelated
r.v. with zero means and Var(A4;) = Var(B;) = J2 Similarly to the continuous time case we get

k T
E(X) =0, c(n) = Y oFeosOyn), pln) = /0 cos(An)dGN),
X, = /O cos(n\) U (\) + /O sin(nA\)dV()).

5.4 The spectral representation

Any weakly stationary process {X(t) : —oo < t < 0o} with zero mean can be approximated by a linear
combination of sinusoids. Indeed, its autocovariance function ¢(t) is non-negative definite since for any
ti,...,tp and z1,...,2,

ZZ ty —t; zjzk—Var(szX tk))_O_

j=1k=1 k=1

26

t+2m 1 27
/ eos(2)dz = 5 [ oleon(2))d

)



Thus due to the Bochner theorem, given that ¢(t) is continuous at zero, there is a probability distribution
function G on [0, 00) such that

p(t) = /OOO cos(tA)dG(N).

In the discrete time case there is a probability distribution function G on [0, 7] such that

p(n) = /07r cos(nA)dG(A).

Definition 5.12 The function G is called the spectral distribution function of the corresponding sta-
tionary random process, and the set of real numbers A such that

GA+e)—G(A—¢€)>0foralle>0
is called the spectrum of the random process. If G has density it is called the spectral density function.

Example 5.13 Consider an irreducible continuous time Markov chain {X(¢),t > 0} with two states

{1,2} and generator
—a o«
G = .
( b -8 )

Its stationary distribution is = = ( 8 will be taken as the initial distribution. From

o
r—&-ﬁ’@)

pii(t) p2t) \ _ e © [P = o 1 “1(q _ —t(a+B)
(p21(t) p22(t)>—e _TZB"!G _I+G;n!( a=B)" =1+ (a+8)" 11— )G

we see that
p O —t(ats)
t)=1- t) = + e TR
p11(t) p12(t) atB  a+p
o B —ta+p)
t)=1- t) = + e )
p22(t) p21(t) atpB a+p
and we find for ¢t > 0
B _iasp) —t(a+8)
t) = e , t)=e .
(t) CEE p(t)
Thus this process has a spectral density corresponding to a one-sided Cauchy distribution:
2(a+p
o) = — 2B Ao
(o + B)2 + \2)
Example 5.14 Discrete white noise: a sequence Xg, X1,... of independent r.v. with zero means and

unit variances. This stationary sequence has the uniform spectral density:

p(n) =1g—gp =7 " / cos(nA)dA.
0

Theorem 5.15 If {X(t) : —co <t < oo} is a weakly stationary process with zero mean, unit variance,
continuous autocorrelation function and spectral distribution function G, then there ezists a pair of
orthogonal zero mean random process (U(AN), V(X)) with uncorrelated increments such that

X(t) = / " cos(tN AU () + / () AV (N
0 0
and Var(U(X)) = Var(V(X\)) = G(X).

Theorem 5.16 If {X,, : —0co < n < oo} is a discrete-time weakly stationary process with zero mean,
unit variance, and spectral distribution function G, then there ezists a pair of orthogonal zero mean
random process (U(X), V(X)) with uncorrelated increments such that

Xn:/O cos(n)\)dU()\)+/O sin(nA)dV (A)

and Var(U (X)) = Var(V(N)) = G(A).
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5.5 Stochastic integral
Let {S(t) : t € R} be a complex-valued process on the probability space (£, F,P) such that
e E(]S(t)]?) < oo for all ¢,
e E(|S(t+h)—S(t)]?) — 0as h\,0 for all ¢,
e E([S(v) — S(w)][S(t) — S(s)]) = 0 whenever u < v < s < t.
Put
rig- { _EpO-s0R. i<
(1S(t) = S(0)]*), ift<o.
Since the process has orthogonal increments we obtain
E(IS(t) - S(s)]*) = F(t) - F(s), s<t (7)
implying that F' is monotonic and right-continuous.

Example 5.17 The Wiener process S(t) = W(t) with F(t) = ¢ is an example of such a process with
orthogonal increments.

Let ¢ : R — C be a measurable complex-valued function for which
| wwrara <.

Next comes a two-step definition of a stochastic integral of 1 with respect to S,
1) = [~ wiast)

possessing the following important property

BUW)I() = [ or(ualdF (@), ®
1. For an arbitrary step function
n—1
o(t) = chl{aj§t<aj+1}, —o<a <... < ap <00
j=1

put

n—1

1(¢) =Y ¢;(S(ajr1) — S(ay)).

)

<

Due to orthogonality of increments we obtain (8) and find that ”integration is distance preserving”

B(I(61) ~ 162)) = B((I(61 6207 = [ lon = suPdF (1),

2. There exists a sequence of step functions such that

oo

oo - vl = ([

Thus I(¢,) is a mean-square Cauchy sequence and there exists a mean-square limit I(¢,,) — I(¢).

1/2
| — w|2dF(t)> 0.

o0
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A sketch of the proof of Theorem 5.16 for the complex-valued processes.
Step 1. Let Hx be the set of all r.v of the form Z;’L:1 a;jXm, foray,as,...€ C,ne N, my,my,... €L,

Similarly, let Hr be the set of linear combinations of sinusoids f,,(x) := €!"®. Define the linear mapping
p: Hp — Hx by p(fn) = Xn.

Step 2. The closure H x of Hx is defined to be the space Hx together with all limits of mean-square
Cauchy-convergent sequences in Hy. Define the closure Hy of Hp as the space Hp together with all
limits of Cauchy-convergent sequences w,, € Hp, with the latter meaning by definition that

/( ](un()\) — U (N) (U (A) = U (N)dEF(N) — 0, n,m — oo.

For u = lim u,,, where u,, € Hp, define p(u) = lim uu(u, ) thereby defining a mapping p: Hr — Hx.
Step 3. Define the process S(A) by
SA) =p(hy), —m<A<m ha(x) = Lge-ra)

and show that it has orthogonal increments and satisfies (7). Prove that
p) = [ vst
first for step-functions and then for ¥ (z) = 2.

5.6 The ergodic theorem for the weakly stationary processes

Theorem 5.18 Let {X,,,n = 1,2,...} be a weakly stationary process with mean u and autocovariance
function ¢(m). There exists a r.v. Y with mean p and variance

Var(Y) = lim n~" ZC(J’) = ¢(0)(G(0) - G(0-)),

such that
Xi+...+X, .
——— = Y in square mean.
n

Proof. Suppose that p = 0, then using a spectral representation

Xn:/o cos(n)\)dU()\)—&-/O sin(nA)dV (A).
we get

o Xi+.+ X, [T " gn(N) = n71(cos(A) + ... + cos(n))),
Xn = n _/0 gn(A)dU(A”/O fn(M)dV (), { B (A) = n=1(sin(A) + ... + sin(n))).

We have that [g,(\)| < 1, |h,(A)] <1, and g, (A) = 1{r=0}, An(A) = 0 as n — co. It can be shown that

/Tr gn(N)dU(A) — /7r Lia=0ydU(N) = U(0) — U(0—), /Tr hn(A)dV(X) — 0
0 0 0

in square mean. Thus X,, — Y := U(0) — U(0—) in square mean and it remains to find the mean and
variance of Y.

5.7 The ergodic theorem for the strongly stationary processes

Let {X,,n = 1,2,...} be a strongly stationary process defined on (2, F,P). The vector (X7, Xo,...)
takes values in RT, where T' = {1,2,...}. We write BT for the appropriate number of copies of the Borel
o-algebra B of subsets of R.
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Definition 5.19 A set A € F is called invariant, if for some B € BT and all n
A=Aw: (X,, Xn41,...) € B}

The collection of all invariant sets forms a o-algebra and denoted Z. The strictly stationary process is
called ergodic, if for any A € Z either P(A) =0 or P(A) = 1.

Example 5.20 Any invariant event is a tail event, so that Z C T. If {X,,,n = 1,2,...} are iid with
a finite mean, then according to Kolmogorov’s zero-one law such a stationary process is ergodic. The
classical LLN follows from the next ergodic theorem.

Theorem 5.21 If {X,,n=1,2,...} is a strongly stationary sequence with a finite mean, then

- Xit+...+ X,

X, — E(X1]Z) a.s. and in mean.

n

In the ergodic case -
X, — E(X1) a.s. and in mean.

PROOF IN THE ERGODIC CASE. To prove the a.s. convergence it suffices to show that

if E(X;) <0, then limsup X, <0 a.s. (9)

n— oo
Indeed, applying (9) to X/, = X,, —E(X;) — e and X! = E(X1) — X,, — ¢, we obtain

E(X;) — € < liminf X,, < limsup X,, <E(X1) +e.

To prove (9) assume E(X;) < 0 and put
Mn = maX{O,Xth +X2,...7X1 ++Xn}

Clearly X,, < M, /n, and it is enough to show that P(M,, < oo) = 1. Suppose the latter is not true.
Since { M, < oo} is an invariant event, we get P(My, < 00) = 0 or in other words M,, / oo a.s. To
arrive to a contradiction observe that

M, 11 =max{0, X1 + M} = M} + max{—M, X1}, M) :=max{0, X9, Xo+ X3,..., X0+ ...+ X,}.

Since E(My,4+1) > E(M,,) = E(M),) it follows that E(max{—M,,,X;}) > 0. This contradicts the as-
sumption E(X;) < 0 as due to the monotone convergence theorem E(max{—M,, X;}) — E(X;). Thus
almost-sure convergence is proved.

To prove the convergence in mean we verify that the family {X,,},,>1 is uniformly integrable, that is
for all € > 0, there is 6 > 0 such that, for all n, E(|X,,|14) < € for any event A such that P(A) < §. This
follows from

E(Xal1a) < 0 S E(XLa),
i=1
and the fact that for all € > 0, there is 0 > 0 such that E(|X;|14) < € for all ¢ and for any event A such
that P(A) < ¢.
Example 5.22 Let Z1,..., Zy be iid with a finite mean pu. Then the following cyclic process
X1=21,..., Xy = Zg,
Xiy1 = 2Z1,..., Xop = Zg,
Xoky1 =21, X3 = Zy - . -,

is a strongly stationary process. The corresponding limit in the ergodic theorem is not the constant p
like in the strong LLN but rather a random variable

Xi+...+ X, 14+ ...+ 72y
— )
n k
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Example 5.23 Let {X,,,n =1,2,...} be an irreducible positive-recurrent Markov chain with the state
space S = {0,£1,%2,...}. Let m = (7;),cs be the unique stationary distribution. If X has distribution
7, then X, is strongly stationary.

For a fixed state k € S let I, = 1x,—x). The stronlgy stationary process I, has autocovariance
function

)

c(m) = (COU(Ina In+m) = E(InIn+m) - Wl% = Tk(p[(;z - ﬂ—k)'

Since p,(;z) — 7, as m — oo we have ¢(m) — 0 and the limit in Theorem 5.21 has zero variance. It
follows that n=!(I; +...+1I,,), the proportion of (X1, ..., X,) visiting state k, converges to 7 as n — oo.

Example 5.24 Binary expansion. Let X be uniformly distributed on [0, 1] and has a binary expansion
X =372, X277 Put Y,, = 377 X;2"77/7! so that Y1 = X and Y, 41 = (2"X) mod 1. From

2"—1 .(j4+1)27" 2" -1 1 2" —1 1 ] 1 9—n
E(Y1Y,41) = Z / z(2"x — j)dx = 272" Z / (y+ j)ydy = 272" Z (§ + 5) =1 + =3
j=0 /327" j=0 70 =0

we get ¢(n) = 45 implying that n~*! > j—1Yj — 1/2 almost surely.

5.8 Gaussian processes

Definition 5.25 A random process {X(t),t > 0} is called Gaussian if for any (¢1,...,t,) the vector
(X (t1),...,X(t,)) has a multivariate normal distribution.

A Gaussian random process is strongly stationary iff it is weakly stationary.

Theorem 5.26 A Gaussian process {X (t),t > 0} is Markov iff for any 0 <t; < ... <t,
E(X ()X (1), - X (b 1)) = E(X ()| X (tn1). (10)

Proof. Clearly, the Markov property implies (10). To prove the converse we have to show that in the
Gaussian case (10) gives

Var(X (tn)| X (t1), - -, X (tn=1)) = Var(X (£,)|X (tn-1)).
Indeed, since X (t,) — E{X(¢,)|X(¢1),..., X (tn—1)} is orthogonal to (X (¢1),..., X (tn—1), which in the

Gaussian case means independence, we have

E{(X(tn) CEIX ()X (1), - .. ,X(tn,l)})2|X(t1), . ,X(tn,l)}
= B{(X(t) ~ ELX()X (). o X (b))} = B (X(0) - B ()IX (1)) )
= B{ (X(t) ~ E(X(t)1X (tm)}) X (1) b

Example 5.27 A stationary Gaussian Markov process is called the Ornstein-Uhlenbeck process. It is
characterized by the auto-correlation function p(t) = e, ¢t > 0 with a positive a. This follows from
the equation p(t + s) = p(t)p(s) which is obtained as follows. From the property of the bivariate normal
distribution

E(X(t+5)[X(s)) = 0+ p(t)(X(s) — 0)

we derive

c(0) TE{E((X (t + s) — 0)(X(0) — 0)|X(0), X (s))}
p(t)c(0) T E((X (s) — 6)(X(0) - 6))

p(t)p(s).

p(t+s) = c(0)'E((X(t + ) — 0)(X(0) — 0))
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6 Renewal theory and Queues

6.1 Renewal function and excess life

Let Ty =0, T,, = X1 + ...+ X, where X are iid strictly positive random variables called inter-arrival
times. A renewal process N (t) gives the number of renewal events during the time interval (0, ¢]

{N(@t)>n} ={T, <t}, Tyw <t <Tnw+1-

Definition 6.1 The renewal function m(t) := E(N(¢)). In other texts it is the function U(t) = 1+ m(t)
called the renewal function.

Put F(t) =P(X; <t) and define convolutions
¢
FO(t) = 1z, F() = / FE=D (¢ — w)dF (u).
0

Using a recursion N(t) = 1yx,<; (1 + N(t — X1)), where N(t) is a renewed copy of the initial process
N(t) we find

m(t) = F(t) + /O m(t — u)dF (u),

and - -
m(t) =Y F™(), Ut)=Y F*.
k=1 k=0
In terms of the Laplace-Stieltjes transforms F'() := fooo e Ot dF(t) we get
R 00 oo o) o 1
Ud) = / e U (t) = / e MaFt ) =) FO)F = ———.
0 I; 0 kzzo 1—-F(0)
Example 6.2 Poisson process = Markovian renewal process: F(t) = 1 — e~ **. Since
- A A
F = — 7 — —
)= 525 = ) =5,

we find m(t) = At.
Definition 6.3 The excess life time E(t) := T )41 — 1.

The distribution of E(t) is given by
P(E(t) > y) = /Ot(l — F(t+y - w)dU(u). (1)
This follows from the following recursion for b(t) := P(E(t) > y)
b(t) = E(E(l{E<t>>y}|X1)) =E(Lp0-xsp toasn + 1{X1>t+y})
=1—-F(t+y)+ /Ot b(t — z)dF ().
6.2 LLN and CLT for the renewal process

Theorem 6.4 Law of large numbers: N(t)/t *3 1/p ast — co.

Proof. Note that T <t < TN(t)Jrl. Thus, if N(t) > 0,

Ty t Tn)+1 1
RO IOES (1+ N(t))

Since N(t) — oo as t — oo, it remains to apply the classical law of large numbers T, /n — p.
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Theorem 6.5 Central limit theorem. If 0? = Var(X,) is positive and finite, then

W%ui N(0,1) as t — oc.

Proof. The usual CLT implies

P(Ta(t) — pa(t)

/a0 < a:) — ®(z) as a(t) — oo.

Put a(t) = |t/p+ xz+/to?/u? |, and observe that on one hand

P M>x =P(N(t) > a(t)) = P(Taw) < 1),
( (t)

Vito? /s

and on the other hand, t_“a((g — —x as t — 0o. We conclude

P(M > x) S B(—z) =1 B(x).

Vie? /s

6.3 Stopping times and Wald’s equation

Definition 6.6 Let M be a r.v. taking values in the set {1,2,...}. We call it a stopping time with
respect to the sequence X, of inter-arrival times, if

{M <m}eo{Xy,..., X}, foralm=1,2,...

Lemma 6.7 Let X1, Xo,... be iid r.v. with finite mean wu, and let M be a stopping time with respect to
the sequence X, such that E(M) < co. Then

]E(Xl ++XM) = ME(M)

Proof. By dominated convergence

E(X1+...+ Xu) = E(T}LH;OZXil{MZi}) - T}LH;OE(ZXA{MZQ) = 3 E(X)P(M > i) = uE(M).
i=1 i=1 =1

Here we used independence between {M > i} and X;, which follows from the fact that {M > i} is the
complimentary event to {M <i—1} € o{X1,..., X;_1}.

Example 6.8 Observe that M = N(t) is not a stopping time and in general E(Ty ;) # pm(t). Indeed,
for the Poisson process pum(t) =t while Ty =t — C(t), where C(t) is the current lifetime.

Theorem 6.9 FElementary renewal theorem: m(t)/t — 1/u as t — oo, where p = E(X4).
Proof. Since M = N(t) + 1 is a stopping time for X,,:
{M<m}={N@t)<m-1}={X1+...+ X, > t},
the Wald equation implies
E(Tn(t)+1) = pE(N(t) + 1) = pU(t).
From Ty ()41 =t + E(t) we get
U(t) = p~ ' (t + E(E(t),

so that U(t) > p~'t. Moreover, if P(X; < a) = 1 for some finite a, then U(t) < pu~'(t + a) and the
assertion follows.

If X, is unbounded, then consider truncated inter-arrival times min(X;, a) with mean p, and renewal
function U,(¢). It remains to observe that U, (t) ~ tu;t, U,(t) > U(t), and g — p as a — oo.
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6.4 Stationary distribution

Theorem 6.10 Renewal theorem. If X1 is not arithmetic, then for any positive h
Ut+h)—U(t) = pth, t— oo

Example 6.11 Arithmetic case. A typical arithmetic case is obtained, if we assume that the set of
possible values Rx for the inter-arrival times X; satisfies Rx C {1,2,...} and Rx ¢ {k,2k,...} for
any k = 2,3,..., implying g > 1. If again U(n) is the renewal function, then U(n) — U(n — 1) is the
probability that a renewal event occurs at time n. A discrete time version of Theorem 6.10 claims that
Un)—U(m—1)— p L.

Theorem 6.12 Key renewal theorem. If Xy is not arithmetic, p < oo, and g : [0,00) — [0,00) is a
monotone function, then

/ g(t —u)dU(u) — p~* /OC g(u)du, t— oo.
0 0

Sketch of the proof. Using Theorem 6.10, first prove the assertion for indicator functions of intervals,
then for step functions, and finally for the limits of increasing sequences of step functions.

Theorem 6.13 If X; is not arithmetic and p < oo, then

lim P(E(t) <y)=p ! /Oy(l — F(z))dx.

t—o0

Proof. Apply the key renewal theorem to (11).

Definition 6.14 Let X, X5,... be independent positive r.v. such that X5, X3,... have the same dis-
tribution. If as before, Ty = 0 and T,, = X1 +...+ X,,, then N4(t) = max{n : T}, <t} is called a delayed
renewal process. It is described by two distributions F(t) = P(X; < t), i > 2 and F4(t) = P(X; < t).

Theorem 6.15 The process N4(t) has stationary increments: N9 (s +t) — N4(s) 4 N4(t), if and only
if
y
i) = [ (- Fa)da.

0
In this case the renewal function is linear me(t) = t/p and P(E4(t) < y) = F(y) independently of t.

6.5 Renewal-reward processes

Let (X;, R;),i = 1,2,... beiid pairs of possibly dependent random variables: X; are positive inter-arrival
times and R; the associated rewards. Cumulative reWard process

W(t)=Ry+...+ Ry, w(t) =E(W(t)).

Theorem 6.16 Renewal-reward theorem. Suppose (X;, R;) have finite means p = E(X) and E(R).
Then
WS ER) g w)/t > BR) oo

6.6 Regeneration technique for queues

Three applications of Theorem 6.16 to a general queueing system. Customers arrive one by one, and
the n-th customer spends time V;, in the system before departing. Let Q(t) be the number of customers
in the system at time ¢ with Q(0) = 0. Let T" be the time of first return to zero Q(7') = 0. This can
be called a regeneration time as starting from time T the future process Q(T + t) is independent of the
past. Assuming the traffic is light so that P(T < c0) = 1, we get a renewal process of regeneration times
0=Tyo<T =T <Tp <T3 < ... Write N; for the number of customers arriving during the cycle
[T;-1,T;) and put N = N;. To be able to apply Theorem 6.16 we shall assume

E(T) < oo, E(N) < oo, E(NT) < . (12)
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(A) The reward associate with the inter-arrival time X; = T; — T;_; is taken to be
T;
R; = Q(u)du.
T; 1
Since R := Ry < NT, we have E(R) < E(NT) < oo, and by Theorem 6.16,
t - 3
7 [ Q(u)du*3 E(R)/E(T) =: L the long run average queue length.
0

(B) The reward associate with the inter-arrival time X; is taken to be N;. In this case the cumulative
reward process N (t) is the number of customers arrived by time ¢, and by Theorem 6.16,

N(t)/t %% E(N)/E(T) =: A the long run rate of arrival.

(C) Consider now the reward-renewal process with inter-arrival times NNV;, and the associated rewards
S; defined as the total time spent in system by the customers arrived during [T;_1,T;), so that S :=
Sy =Vi+... 4+ Vy. Since E(S) <E(NT) < oo, by Theorem 6.16,

n

nt Z V; 2% E(S)/E(N) =: v the long run average time spent by a customer in the system.
=1

Theorem 6.17 Little’s law. Under the assumption (12) we have L = \v.

Although it looks intuitively reasonable, it’s a quite remarkable result, as the relationship is not influenced
by the arrival process distribution, the service distribution, the service order, or practically anything else.

Proof. The mean amount of customer time spent during the first cycle can be represented in two ways

E(iv) - IE(/OTQ(u)du).

Thus combining (A), (B), (C) we get

0 T T T T T T T T

A S, *Sz++ S, *SA* A S, *Ss*Sst*

6.7 M/M/1 queues

The most common notation scheme annotates the queueing systems by a triple A/B/s, where A describes
the distribution of inter-arrival times of customers, B describes the distribution of service times, and s
is the number of servers. It is assumed that the inter-arrival and service times are two independent iid
sequences (X;) and (S;). Let Q(t) be the queue size at time t.
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The simplest queue M/M/1 has exponential with parameter X\ inter-arrival times and exponential
with parameter p service times (M stands for the Markov discipline). It is the only queue with Q(t)
forming a Markov chain. In this case Q(t) is a birth-death process with the birth rate A and the death
rate p for the positive states, and no deaths at state zero. The probabilities p, (t) = P(Q(t) = n) satisfy
the Kolmogorov forward equations

{ PL(t) ==\ +w)pa(t) + Apn-1(t) + ppnia(t)  forn >1,
Po(t) = —Xpo(t) + ppi(t),

subject to the boundary condition p;,(0) = 1¢,—0y-
In terms of the Laplace transforms p, () := [~ ¢ %p,(t)dt we obtain

{ Nﬁn+1(9) - (>‘ +p+ 9)}3”(9) + )‘ﬁnfl(e) =0, for n > 1,
ppr(0) — (A +0)po(6) = 1.

Its solution is given by

A+p+0)— O+ pu+0)2 -4
2u '
Theorem 6.18 Stationarity. Let p = \/u be the traffic intensity. Ast — oo for alln >0

_ (L—pp" ifp<l,
P =m - { 17 HrS

Pu(0) = 0711 — a(0)a()”,  ab) =

The result asserts that the queue settles down into equilibrium if and only if the service times are shorter
than the inter-arrival times on average. It follows from the fact that a stationary distribution (g, 71, . ..)
must satisfy the following equations

Tng1 — (L4 p)Tn + prpy =0 forn>1,
m —prp =0.

6.8 M/G/1 queues

In the M/G/1 queueing system customers arrive according to a Poisson process with intensity A and the
service times S; has a fixed but unspecified distribution (G for General). Let p = AE(S) be the traffic
intensity.

Theorem 6.19 If the first customer arrives at time Ty, define a typical busy period of the server as
B=inf{t >0:Q(t+T1)=0}. We have thatP(B<o0)=14fp <1, andP(B <o0) <1 ifp>1. The
moment generating function ¢(u) = E(e*B) satisfies the functional equation

¢(U) _ ]E(e(ufz\Jr)\d)(u))S)'

Proof. Imbedded branching process. Call customer Cs an offspring of customer C1, if C5 joins the queue
while C7 is being served. The offspring number has generating function

- J ()‘S)] — u—

h(u) = ZuJ]E(ij! e ’\S> = E(es’\( 1)).

§=0

The mean offspring number is 2'(1) = p. Observe that the event (B < c0) is equivalent to the extinction
of the branching process, and the first assertion follows.

The functional equation follows from the representation B = S 4+ By + ... + Bz, where B; are iid

busy time of the offspring customers and Z is the number of offspring with generating function h(u).
Theorem 6.20 Stationarity. Ast — oo for alln >0
h(u)

P(Q(t) = n) — { T if p <1, where Z;io mul = (1—p)(1— u)h(u)iu,
0 ifp>1.
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Proof. Let D,, be the number of customers in the system right after the n-th customer left the system.
Denoting Z,, the offspring number of the n-th customer, we get

Dypy1 = Dpn + Znt1 — 1{p, >0}

Clearly, D,, forms a Markov chain with transition probabilities

So 81 &
So & by ... ;

0 G & ... |, 5j:IF’(Z:j):]E<()\$') e_’\s).
0 0 & ... J:

The stationary distribution of this chain gives the stated results.

Theorem 6.21 Suppose a customer joins the queue after some large time has elapsed. He will wait a
period W of time before his service begins. If p < 1, then

B = Sy RSy

Proof. Suppose that a customer waits for a period of length W and then is served for a period of length
S. Assuming that the length D of the queue on the departure of this customer is distributed according
to the stationary distribution given in Theorem 6.20 we get

Bu?) = (1= )1 - w2

On the other hand, D conditionally on (W, S) has a Poisson distribution with parameter A(W + 5):
h(w) Dy AWAS)(u—1)y _ (AW (u—1)
(1= p)(1 = u) s = B(u?) = Ble ) = B WD) ()

)

and

Au—1)W (1-pA(u—1)
E(e (=1 ) = M — AE(eMu—1)S)’

Theorem 6.22 Heavy traffic. Let p = Ad be the traffic intensity of the M/G/1 queue with M = M(\)
and G = D(d) concentrated at value d. For p < 1 let Q, be a r.v. with the equilibrium queue length
distribution. Then (1 — p)Q, converges in distribution as p /1 to the exponential distribution with
parameter 2.

Proof. Due to Theorem 6.20 the moment generating function E(e*(!=?)%r) equals (writing u = e5(1=))

A B (S LA )
=0 — e~ exp(s(l— p) = pler( 1)) 1

s .
ZﬁjeS(l—p)J = (1—p)(es=P) —1)
j=0

which converges to 235 as p 1.

6.9 G/M/1 queues

Customers’ arrival times form a renewal process with inter-arrival times (X,,), and the service times are
exponentially distributed with parameter u. The traffic intensity is p = (uE(X))~L.

An imbedded Markov chain. Consider the moment 7, at which the n-th customer joins the queue,
and let A,, be the number of customers who are ahead of him in the system. Define V,, as the number of
departures from the system during the interval [T, Ty, +1). Conditionally on A,, and X,,11 = Tpy1 — Th,
the r.v. V,, has a truncated Poisson distribution

—(“z,)u eHT if v <a,
v

PV, =v|A,=a,X,11=x) = i
( | e {Zi>a+1wﬁ)6_w fv=a+l
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The sequence (A,,) satisfies 4,11 = A, +1—V,, and forms a Markov chain with transition probabilities

].7040 Q) 0 0 )
l—apg— ap o9 0 ... 7 aj:E((#).()je*“X)
l—apg—a1—as oy a1 o 4!

Theorem 6.23 If p < 1, then the chain (Ay) is ergodic with a unique stationary distribution m; =
(1 —n)n?, where n is the smallest positive root of n = E(eXt=1) If p =1, then the chain (A,) is null
recurrent. If p > 1, then the chain (A,) is transient.

Unlike the case of M/G/1, the stationary distribution of (A,) need not be the limiting distribution of
Q(t). To see an example of this consider a deterministic arrival process with P(X = 1) = 1.

Theorem 6.24 Let p < 1, and assume that the chain (A,) is in equilibrium. Then the waiting time W
of an arriving customer has an atom of size 1 —n at zero and for x > 0

P(W > zx) = ne~Ha-ma,
Proof. If A, > 0, then the waiting time of the n-th customer is

WvL:ST+SQ+S3+.--+SA

n?

where S} is the residual service time of the customer under service, and So,Ss,..., 54, are the service
times of the others in the queue. By the lack-of-memory property, this is the sum A,, iid exponentials.
Use the equilibrium distribution of A,, to find that

W SuS))An) PN - w)d-n) pd —n)
E(e) = (B =E((5) ) = s =

6.10 G/G/1 queues

Now the arrivals of customers form a renewal process with inter-arrival times X,, have an arbitrary
distribution. The service times S,, have another fixed distribution. The traffic intensity is given by

p =E(S)/E(X).

Lemma 6.25 Lindley’s equation. Let W, be the waiting time of the n-th customer. Then
W”Jrl = max{ov Wn+ S, — XnJrl}'

Imbedded random walk. Note that U,, = S,,—X,,11 is a collection of iid r.v.. Denote by G(z) = P(U,, < )
their common distribution function. Define an imbedded random walk by

0=0, X, =U1+...+U,.
Lemma 6.25 implies

Wis1 = max{0,Up,Un + Un_1, ..., Up +Un_1 + ...+ U1} £ max{, ..., 5, }. (13)
Note that E(U) = E(S) — E(X), and E(U) < 0 is equivalent to p < 1.
Theorem 6.26 Let F,(x) =P(W,, < x). Then for x >0

Fun(@)= [ Fule =G
—0o0
There exists a limit F(z) = lim,_,o F),(x) which satisfies the Wiener-Hopf equation

) = [ " Fla— y)dG().

— 00
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Proof. If £ > 0 then due to the Lindley equation and independence between W,, and U,, = S,, — X, 41

P(Wypt1 <z)=PW,+U, <z)= /L P(W,, <z —y)dG(y)

— 00

and the first part is proved. We claim that
Foi1(x) < F,(z) forallz >0 and n > 1. (14)

If (14) holds, then the second result follows immediately. We prove (14) by induction. Observe that
Fy(x) <1 = Fi(x), and suppose that (14) holds for n = k — 1. Then

x

Fup(z) - Fi(x) = / (Fu(x — ) — Feo(z — 1))dG(y) < 0.

— 00

Theorem 6.27 If p < 1, then F is a non-defective distribution function. If p = 1 and G is not
concentrated at one point or if p > 1, then F(x) =0 for all x.

Proof. In view of (13) we have F(x) =P(%,, <z for all n) if x > 0. If E(U) < 0, then
P(¥, > 0 for infinitely many n) = P(n™'%, > 0i0.) =P(n"'%, —E(U) > [E(U)| i.0.) =0

due to the LLN. Thus max{Xg, ¥1,...} is either zero or the maximum of only finitely many positive
terms, and F' is a non-defective distribution.
Next suppose that E(U) > 0 and pick any = > 0. For n > 2z/E(U)

P(Z, >z)=Pn 'Y, —EU) >n" 'z —EU)) > P(n'%, —EU) > -E(U)/2) = P(n"'%, > EU)/2).

Since 1 — F(z) > P(X, > z), the weak LLN implies F(x) = 0.

In the case when E(U) = 0 we need a more precise measure of the fluctuations of ¥,,. According to
the law of the iterated logarithm the fluctuations of ¥,, are of order O(y/nloglogn) in both positive and
negative directions with probability 1, and so 1 — F'(z) = P(X,, > = for some n) = 1 for any given z.

Definition 6.28 Define an increasing sequence of r.v. by
L(0) =0, L(n+1)=min{k > L(n):Xx > X}

The L(n) are called ladder points of the random walk X, these are the times when the random walk
reaches its new maximal values.

Lemma 6.29 Let n = P(X,, > 0 for some n). The total number A of ladder points has a geometric
distribution
P(A=k)=(1-n)n* k=0,1,2,....

Lemma 6.30 If p <1, the equilibrium waiting time distribution has the Laplace-Stieltjes transform

~ ]_—7]
T TEeTy

where Y = X1y 1s the first ladder hight of the imbedded random walk.
Proof. Follows from the representation in terms of Y; = Xy — ¥p;_1) which are iid copies of ¥ = Y:

max{¥g, X1,...} = EL(A) =Y1+...+ Y.
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7 Martingales

7.1 Definitions and examples

Example 7.1 Martingale: a betting strategy. Let X,, be the gain of a gambler doubling the bet after
each loss. The game stops after the first win.

(i) Xo=0

(ii) X7 = 1 with probability 1/2 and X; = —1 with probability 1/2,

(iii) X3 = 1 with probability 3/4 and X3 = —3 with probability 1/4,

(iv) X3 = 1 with probability 7/8 and X5 = —7 with probability 1/8,...,

(v) X,, = 1 with probability 1 —27™ and X,, = —2" + 1 with probability 27".
Conditional expectation

1 1
E(Xni1|Xn) = (2Xn = 1)5 + (1)5 = X,
If N is the number of games, then P(N =n) =27", n=1,2,... with E(N) = 2 and

E(Xy_1)=E(1-2""")=1-) 2""'27" = —c0.

n=1

Definition 7.2 A sequence of sigma-fields (F,,) such that 7o C 7 C ... C F, C ... C F is called a
filtration. A sequence of r.v. (Y,,) is called adapted to (F,) if Y,, is F,,-measurable for all n. In this case
the sequence (Y,,, F,) is called a martingale if, for all n > 0,

o E(JYn]) < oo,
o E(Y,+1|F,) =Y.
Definition 7.3 Let (Y,,) be adapted to a filtration (F,,). Then (Y,,F,) is called a submartingale if
e E(V,[) < oo,
o E(Y, 11| Fn) > Y.
Definition 7.4 Let (Y,,) be adapted to a filtration (F,). Then (Y,,, F,) is called a supermartingale if
o E(Y, ) < oo,
o E(Yy i1 F) < Y

Consider the sequence of means m,, = E(Y,,). We have m, 11 > m,, for submartingales, m, 11 < m,, for
supermartingales, and m,,+1 = m,, for martingales. A martingale is both a sub- and supermartingale. If
(Y,,) is a submartingale, then (—Y;,) is a supermartingale.

Example 7.5 Counsider a simple random walk S,, = X1 +...+X,, with P(X; =1) =p, P(X; = —-1) =g,
and Sy = k. The centered S,, — n(p — ¢q) is a martingale:

E(Spt1—(n+1)(p—|X1,.. ., Xn) =S +E(Xpnt1) — (n+ 1)p=S5, —n(p —q).
Another martingale is Y;, = (¢/p)>»:

E(Yn41lX1,..., X0) = pla/p)** ' +a(a/p)°" " = (¢/p)°" =Y,

with E(Y,,) = E(Yy) = (¢/p)*. Tt is called De Moivre’s martingale. Put P(Sy = 0) = P(Yr = 1) = p;,
and P(Sy = N) = P(Y7 = (¢/p)") = 1 — px. From E(Y7) = E(Y;) (to be proved later) we derive
N—-k _ 1
0 N _ _ k _ (p/9)
(¢/p)°pr+ (a/p)" (L —pr) = (a/P)" = P& W/ —1

as long as p # q.
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Example 7.6 Stopped de Moivre’s martingale. Consider the same simple random walk and suppose
that it stops if it hits 0 or IV which is larger than the initial state k. Denote D,, = Y, where T is the
stopping time of the random walk and Y,, is the de Moivre martingale. It is easy to see that D,, is also
a martingale.

E(D,L+1|X1, ce ,Xn) e E(Yn—i-l 1{T>n} + YTl{TSn}|X17 e ,Xn)

Example 7.7 Let S,, = X; + ...+ X,,, where X, are iid r.v. with zero means and finite variances o2.

Then S2 — no? is a martingale
E(S2,, — (n+1)0?Xy,..., X,,) = 52 + 25, E(Xp41) + E(X72, ) — (n+1)0® = S2 — no?.

Example 7.8 Branching processes. Let Z,, be a branching process with Z; = 1 and the mean offspring
number u. Since E(Z,,11|Z,) = puZ,, the ratio W,, = u~"Z, is a martingale.

In the supercritical case, u > 1, the extinction probability n € [0,1) of Z,, is identified as a solution
of the equation n = h(n), where h(s) = E(s¥) is the generating function of the offspring number. The
process V,, = n?» is also a martingale

E(Viii1l|Z1, ..., Zy) = Bt X2 |7, . Z,) = h(n)?" = V,.

Example 7.9 Doob’s martingale. Let Z be a r.v. on (Q,F,P) such that E(|Z]) < co. For a filtration
(Fn) define Y,, = E(Z|F,,). The (Y,,F,) is a martingale: first, by Jensen’s inequality,

E(|Ya]) = E[E(Z]F,)| < E(E(Z]|F0)) = E(12]),

and secondly
E(Yn+1|]:n) = E(E(Z|]:n+1)|]:n)) =E(Z|F,) =Y.

As we show next the Doob martingale is uniformly integrable. Again due to Jensen’s inequality,

so that |Y, |14y, |>a} < Znl{z,>a}- By the definition of conditional expectation IE((|Z\ _Zn)l{ana}> =0
and we have
|Yn|1{|Yn‘Za} < IZ‘I{ZTLZG.}

which entails uniform integrability, since P(Z,, > a) — 0 by the Markov inequality.

7.2 Convergence in L2

Lemma 7.10 If (Y,) is a martingale with IE(YnQ) < 00, then Yy,4+1 — Y, and Y, are uncorrelated. It
follows that (Y,?) is a submartingale.

Proof. The first assertion follows from
E(Y,(Yoi1 — Vo) | Fn) = Yo (E(Y, 41| Fn) — Yo) = 0.
The second claim is derived as follows

E(Yn2+1|]:n) = E((Yn—H - Yn)2 + 2Yn(Yn+1 - Yn) + Yn2|-7:n)
= E((Yn+1 - Yn)gl}—n) + YnQ > Yng'

Notice that
E(Yi1) = E(Y;) + E((Yar1 — Ya)?)
so that E(Y,2) is non-decreasing and there always exists a finite or infinite limit

M = lim E(Y?). (15)

n—oo

More generally, if J(z) is convex, then J(Y},) is a submartingale (due to the Jensen inequality).
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Lemma 7.11 Doob-Kolmogorov’s inequality. If (Y,,) is a martingale with E(Y,?) < oo, then for any
e>0

E(Y;?)
m Y| > < n
P(lg%xn‘ iz = €2
Proof. Let By, = {|Y1| <¢€,...,|Ye—1| <€, |Yi| > €}. Then using a submartingale property for the second

inequality we get

n

E(Y?) > Y BV 15) > Y E(Y21s) > €Y B(B,) = P max |¥i] > o).
=1 =1

‘ 1<i<n
1=1

Theorem 7.12 If (Y,,) is a martingale with finite M defined by (15), then there exists a random variable
Y such that Y, — Y a.s. and in mean square.

Proof. Step 1. For
Ap(e) = U{|Ym+i — Y| > €}

i>1

we will show that
P(A,.(€)) = 0, m — oo for any € > 0. (16)

Put S, = Yi4n — Y. It is also a martingale, since
E(Sn+1]S1,---55n) = E(E(Sn41|Fmtn)|S1, -, Sn) =E(Sn|S1,...,5) = Sn.
Apply the Doob-Kolmogorov inequality to this martingale to find that
P(|Yynti — Y| > € for some i € [1,n]) < € 2E((Yiin — Yim)?) = ¢ 2(E(Y,2,,) —E(Y;2)).

Letting n — 0o we obtain P(A,,(¢)) < e 2(M — E(Y,2)) and hence (16).
Step 2. Show that the sequence (Y,,) is a.s. Cauchy convergent:

P(ﬂ U A;(e)) -1

e0m>1

which implies the existence of Y such that Y,, — Y a.s. Indeed, since A, (1) C A, (e2) for €1 > €3, we

have
’ IP’(U N Am(e)) :mp( N Am(e)) < lim lim P(An(e)) = 0.
m>1

e—0m—o0
e>0m>1
Step 3. Prove the convergence in mean square using the Fatou lemma

E((Y, — Y)?) = E(liminf(Y;, — Y;,,)?) < liminf E((Y;, — Y;,,)?)

m—o0 m—roo
= liminf E(Y,2) — E(Y?) = M —E(Y,?) =0, n — oc.
m—00

Example 7.13 Branching processes. Let Z, be a branching process with Zy = 1 and the offspring
numbers having mean u and variance o2. The ratio W,, = p~"Z, is a martingale with

E(W2) =1+ (o/p)*(1+p 4.+ p "),

In the supercritical case, u > 1, we have E(W?2) — 1+ u(fbiil)’ and there is a r.v. W such that W,, - W

a.s. and in L2, The Laplace transform of the limit ¢(6) = E(e=") satisfies a functional equation

¢(nb) = h(e(0))-
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7.3 Doob’s decomposition
Definition 7.14 The sequence (S, F,) is called predictable if Sy = 0, and S, is F,,_1-measurable for
all n > 1. It is also called increasing if P(S,, < Sp,+1) = 1 for all n > 0.

Theorem 7.15 Doob’s decomposition. A submartingale (Y, F,) with finite means can be expressed in
the formY,, = M,,+ Sy, where (M,, F,) is a martingale and (S,, F,) is an increasing predictable process
(called the compensator of the submartingale). This decomposition is unique.

Proof. We define M and S explicitly: My =Yy, So =0, and for n > 0
Myy1 — M, =Yoi1 — EYi1|Fn), Snt+1 — Sn = E(Yoi1|Fn) — Y.
To see uniqueness suppose another such decomposition Y,, = M/, + S;,. Then
M’;L-’rl — M, + S;H-l -8, = Myt1— M, + Spy1 — S

Taking conditional expectations given F,, we get S;, | —S;, = Sp41 — Sy. This in view of Sj = Sy =0

implies S), = 5,,.
Definition 7.16 Let (Y;,) be adapted to (F,) and (S,) be predictable. The sequence

n

Zn=Yo+ Y Si(Yi—Yi1)

i=1
is called the transform of (Y;,) by (Sy).

Example 7.17 Such transforms are usually interpreted as gambling systems with (Y},) being a super-
martingale (the capital after n gambles each involving a unit stake). Optional skipping is one such
strategy. Here the gambler either wagers a unit stake or skip the round: S,, equals either 1 or 0.

Theorem 7.18 Let (Z,) be the transform of (Y,,) by (Sn). Then

(i) If (Y,,) is a martingale, then (Z,) is a martingale so long as E|Z,| < co for all n.

(i1) If (V) is a submartingale and in addition S, > 0 for all n, then (Z,) is a submartingale so long
as E(Z,) < oo for all n.

Proof. Both assertions follow immediately from
E(Zn,+1|-Fn,) - Zn = E(Sn+1(Yn+1 - Yn)|fn) = Sn—}—l(E(Yn-&-l‘fn) - Yn)

Example 7.19 Optional stopping. The gambler wagers a unit stake on each play until the random time
T. In this case S,, = 1<y and Z, = Yrpa,. If S, is predictable, then {T' = n} = {S, = 1,5,41 =
0} € F,, so that T is a stopping time.

Example 7.20 Optional starting. The gambler does not play until the (T + 1)-th round, where T is a
stopping time. In this case S, = 1{7r<,_1} is a predictable sequence.

7.4 Hoeffding’s inequality
Definition 7.21 Let (Y, F,) be a martingale. The sequence of martingale differences is defined by
D, =Y, —-Y,_1,so that D, is F,,-measurable
E|D,| < oo, E(Dy41|Fn) =0, Yo.=Yo+D1+...4+D,.
Theorem 7.22 Hoeffding’s inequality. Let (Y, F,) be a martingale, and suppose P(|D,| < K,) =1
for a sequence of real numbers K,,. Then for any x > 0
2

x
1 n
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Proof. Let 6 > 0.
Step 1. The function e%? is convex, therefore

1
< (1—de? + S+ d)e? for all |d| < 1.

DN | =

Hence if D is a r.v. with mean 0 such that P(|D| < 1) = 1, then E(e?P) < 678;69 < /2,
Step 2. Using the martingale differences we obtain

]E(ee(Yang)u:n_l) _ 69(Yn717Y0)E(69Dn‘J—_-n_1) < 69(Yn717YO)602KfL/2.

Take expectations and iterate to find
2 n
0(Y,—Yo) 0(Yy—1—Yo)\ 02 K2 /2 97 2
E(e 0y < E(e 1=Y0))e gexp(2lei .
Step 3. Due to the Markov inequality we have for any x > 0
02
P(Y, = Yo > x) < e "B ("0 7Y0)) <exp ( —fz+ 5 ZKZQ)
i=1
Set # =x/> ", K? to minimize the exponent. Then

2

x
1 n

Since (—Y,,) is also a martingale, we get

2

X
P(Y, — Yy < —z) = P(-Y, + Yy > 2) < (_ )
( 0= —7) =P(-Yn+ Yo 2 2) < exp 2K2+... +K2)

Example 7.23 Large deviations. Let X,, be iid Bernoulli (p) r.v. If S,, = X1 + ...+ X,,, then Y,, =
S, — np is a martingale. Due to the Hoeffding’s inequality for any x > 0

2

P(|Sp —np| > 2v/n) < 2exp ( B 2(max(; 1 —P))2).

In particular, if p = 1/2,
P(|S, — n/2| > zv/n) < 2672

Putting here x = 3 we get P(|S,, —n/2| > 3y/n) <3-1078.

7.5 Convergence in L!

On the figure below five uppcrossing time intervals are shown: (11, Ts], (T5,Ty4], ..., (To,T10]. If for all
rational intervals (a,b) the number of uppcrossings U(a,b) is finite, then the corresponding trajectory
has a (possibly infinite) limit.

b = FANAY
«JLI /UH
a un\\/
T T

|4
T T Ts s

n Ay N A
AN WVAVAY
\VA v~ V AN
T T Te Ts To T

Lemma 7.24 Snell’s uppcrossing inequality. Let a < b and Uy (a,b) is the number of uppcrossings of a
submartingale (Yo, ..., Y,). Then E(Uy,(a,b)) < E((Yb”i_aﬁ).

—a
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Proof. Since Z,, = (Y,, —a)™ forms a submartingale, it is enough to prove E(U,(0,¢)) < E(f"), where

U, (0, ¢) is the number of uppcrossings of the submartingale (Zo, ..., Z,). Let I; be the indicator of the
event that ¢ € (Tor_1, Ty for some k. Note that I; is F;_;-measurable, since

(I =1} = | J{Toe1 < i — 1P\ {Tox < i — 1}

is an event that depends on (Yp,...,Y;—_1) only. Therefore,

E((Zi — Zi-1) i) = E(E((Zi — Zi—1)1i| Fi-1)) = E(L(E(Zi| Fi1) — Zi-1))
< E(E(Zi|Fio1) = Zi1) = B(Z:) — E(Zi_1).

It remains to observe that

C- Un(O, C) < i(ZZ — Zi—l)Ii = cC- E(Un(o, C)) < E(Zn) — E(Zo) < ]E(Zn)

Theorem 7.25 Suppose (Yy,, F,) is a submartingale such that E(Y,) < M for some constant M and
alln. (i) There exists a r.v. Y such that'Y,, =Y almost surely. In addition: (ii) the limit Y has a finite
mean if E|Yy| < oo, and (iii) if (Yy) is uniformly integrable, then Y,, —Y in L1.

Proof. (i) Using Snell’s inequality we obtain that U(a,b) = lim U, (a, b) satisfies

<M+|a|

E(U(a,b)) < 55—

Therefore, P(U(a,b) < co) = 1. Since there are only countably many rationals, it follows that with
probability 1, U(a,b) < oo for all rational (a,b), and Y,, — Y almost surely.
(ii)) We have to check that E|Y| < oo given E[Yy| < oo. Indeed, since |Y,| = 2V, — Y, and
E(Y,|Fo) > Yo, we get
E(|Yy||Fo) < 2E(Y,1|Fo) — Yo.

By Fatou’s lemma

E(|Y||Fo) = E(liminf |Y;,||Fo) < liminf E(]Y,||Fo) < 2liminf E(Y,}|Fo) — Yo,
n—oo n—oo n—>00

and it remains to observe that E(liminf,_, . E(Y,F|Fo)) < M, again due to Fatou’s lemma.
(iii) Finally, recall that given Y, 5 Y, the uniform integrability of (Y,) is equivalent to E|Y,| < oo
1
for all n, E[Y| < 0o, and ¥, 5 Y.

Corollary 7.26 Any martingale, submartingale or supermartingale (Yy,, Fy) satisfying sup,, E|Y,| < M
converges almost surely to a r.v. with a finite limit.

Corollary 7.27 A non-negative supermartingale converges almost surely. A non-positive submartingale
converges almost surely.

Example 7.28 De Moivre martingale Y;, = (q/p)°" is non-negative and hence converges a.s. to some
limit Y. Let p # ¢. Since S,, — oo for p > g and S,, = —oo for p < ¢ we have Y = 0. Note that Y, does
not converge in mean, since E(Y,,) = E(Yp) # 0.

Example 7.29 Doob’s martingale Y;, = E(Z|F,,) is uniformly integrable, see Example 7.9. It converges
a.s. and in mean to E(Z|Fu ), where Fo, is the smallest o-algebra containing all F,,. There an important
converse result: if a martingale (Y;,, F,,) converges in mean, then there exists a r.v. Z with finite mean
such that Y, = E(Z|F,).
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7.6 Bounded stopping times. Optional sampling theorem

Definition 7.30 A r.v T taking values in {0,1,2,...} U {oo} is called a stopping time with respect to
the filtration (F,), if {T'=n} € F, for all n > 0. It is called a bounded stopping time if P(T' < N) =1
for some finite constant N.

We denote by Fr the o-algebra of all events A such that AN {T =n} € F, for all n.

The stopped de Moivre martingale from Example 7.6 is also a martingale. A general statement of this
type follows next.

Theorem 7.31 Let (Y, F,) be a submartingale and let T be a stopping time. Then (Yran,Fn) is a
submartingale. If moreover, E|Y,| < oo, then (Y, — Yran, Fn) is also a submartingale.

Proof. The r.v. Z,, = YA, is F,,-measurable:

n—1

Zn =Y Yilir—iy + Yalirsay,
=0

and

E(z) < 3 E(Y) < .
=0

It remains to see that Z,, 1 — Z,, = (Y41 — Yo )1{r>n) implies
E(ZnJrl - Zn|]:n) = E(YnJrl - Yn|]:n)1{T>n} > 0.

with
0 < E(YnJrl - Yn|fn)1{T>n} < ]E(YnJrl - Yn‘fn)

Corollary 7.32 If (Y., F,) is a martingale, then it is both a submartingale and a supermartingale, and
therefore, for a given stopping time T, both (Yran, Fn) and (Y, — Yran, Fn) are martingales.

Theorem 7.33 Optional sampling. Let (Y,, F,) be a submartingale.

(i) If T is a bounded stopping time, then E(Y;) < oo and E(Yr|Fo) > Yy.

(ii) If 0 = Ty < Ty < Ty < ... is a sequence of bounded stopping times, then (Yr,,Fr;) is a
submartingale.

Proof. (i) Let P(T < N) = 1 where N is a positive constant. Since (Yra,) is a submartingale and
Yran = Yz, we have E(Y,1) < oo and E(Y7|Fy) > Y.

(ii) Consider two bounded stopping times S < T < N. To show that E(Yr|Fg) > Yg observe that
for A € Fs we have

E(Yrla) = Z E(Yrlangs=k}) = Z E(lAm{S:k}E(YT|~Fk))>
k<N k<N

and since in view of Theorem 7.31, E(Yr|Fi) = E(Yran|Fr) = Yrag for all k£ < N, we conclude
E(Yrla) > E( Z 1Aﬁ{S:k}YT/\k) = E( Z 1Aﬁ{S:k}Yk) =E(Ys1a).
k<N k<N

Example 7.34 The process Y,, is a martingale iff it is both a submartingale and a supermartingale.
Therefore, according to Theorem 7.33 (i) we have E(Y7|Fy) = Yo and E(Yr) = E(Yp) for any bounded
stopping time 7". This martingale property is not enough for Example 7.6 because the ruin time is not
bounded. However, see Theorem 7.35.
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7.7 Unbounded stopping times

Theorem 7.35 Optional stopping. Let (Y, Fn) be a martingale and T be a stopping time. Then
E(Yr) =E(Yo) if (a) P(T < o0) =1, (b) E[Yr| < 00, and (¢) E(Yn1l{r>n)) — 0 asn — co.

Proof. From Y7 = Yran + (Y7 — Yo) {15y} using that E(Y7a,) = E(Y)) we obtain
E(Yr) = E(Yo) + E(Yrlirsny) — E(Yalirsny).
It remains to apply (c) and observe that due to the dominated convergence E(Y71{7sn,y) — 0.

Theorem 7.36 Let (Y., F,) be a martingale and T be a stopping time. Then E(Yr) = E(Yy) if
(a) E(T) < oo and (b) there exists a constant ¢ such that for any n

E(|Yn+1 - YnH]'—n)l{T>n} < Cl{T>n}-
Proof. Since T An — T, we have Yprp, — Y7 a.s. It follows that
E(Yo) = EY7ran) = E(Y7)

as long as (Yray) is uniformly integrable. To prove the uniform integrability it is enough to verify that
E(W) < oo, where
Yranl < Yol + W, Wi=|Y1 = Yo|+...+ Y7 — Y7 4|

Indeed, since E(D/; — 5/1—1|1{TZ7,}|‘F:L—1) S Cl{TZi}’ we have ]E('Yz - Yi—1|1{T2i}) S CP(T 2 Z) and
therefore

E(W) = ZEUYZ —Yi1|lyr>iy) < cE(T) < oo.
i=1

Example 7.37 Wald’s equality. Let (X,,) be iid r.v. with finite mean p and S,, = X7 +... 4+ X,,, then
Y, = S, — ny is a martingale with respect to 7, = o{X1,...,X,}. Now

E(|Yn41 — Yn”]:n) =E[Xn+1 — p| = E[X1 — | < oo

We deduce from Theorem 7.36 that E(Y7) = E(Yp) for any stopping time T with finite mean, implying
that E(S7) = pE(T).

Lemma 7.38 Wald’s identity. Let (X,,) be iid r.v. with M(t) = E(e!X) and S,, = X1+ ... + X,,. If T
is a stopping time with finite mean such that |Sp|l{psny < clipsyy, then

(57 M(6)") = 1 whenever M(t) 2 1.

Proof. Define Yy = 1, Y,, = e>"M()™", and let F,, = 0{X1,...,X,}. It is clear that (V) is a
martingale and thus the claim follows from Theorem 7.36. To verify condition (b) note that

E(|Yni1 — Yal|Fn) = YLRE[eX M) — 1] S V,E(eX M(¢) 7' +1) = 2Y,,.

Furthermore, given M (t) > 1
Y, =S M(t)™™ < el for n < T.

Example 7.39 Simple random walk S,, with P(X; = 1) = p and P(X; = —1) = q. Let T be the first
exit time of (—a,b). By Lemma 7.38 with M (t) = pe' + ge™*,

e*‘”E(M(t)*Tl{ST=_a}) + eth(M(t)*Tl{STﬂ,}) = 1 whenever M (¢t) > 1.
Setting M (t) = s~! we obtain a quadratic equation for e! having two solutions

1+ /1 — 4pgs? 1— /1 — 4pqs?
M(s) = VoIS ) = VT o),
2ps 2ps
They give us two linear equations resulting in
MAF(AT — A9)
Xll-i-b _ )\g-i-b ’

AT = A3

E(s™1(5y——a}) = E(s"Lisr=b}) = Sarb—yath:
1 2

Summing up these two relations we get the probability generating function

_ A=A AN - 1)
B )‘iH_b _ )\g-i-b

E(sT)

47



7.8 Maximal inequality

Theorem 7.40 Maximal inequality.
(i) If (Y,,) is a submartingale, then for any ¢ >0

E(Y,)

P(max Y; >¢) <
0<i<n €

(11) If (Yy,) is a supermartingale and E|Yy| < oo, then for any € > 0
E(Y E(Y,”
P(max Y; > ¢€) < M.
0<i<n €

Proof. (i) If (Y},) is a submartingale, then (Y,) is a non-negative submartingale with finite means and

T:=min{n:Y, > e} =min{n: Y, >}
By Theorem 7.31, E(Y,, ) < E(Y,}). Therefore,
E(Y,") > E(Y;

TAn

) = E(Vi Lirany) + E(Vy Lpany) > E(Yi Lrany) > €B(T < n),

implying the first stated inequality as {T' < n} = {maxg<;<n Y; > €}.
Furthermore, since E(Y7,, Lir>n}) = E(Y, 1{1>n}), we have

]E(Yn+1{T§n}) Z E(Y’J:L/\n

Using this we get a stronger inequality

E(Y, 14)

P(A) < , where A = {OIE?ZX Y; > €} (17)

(ii) If (Y,) is a supermartingale, then by Theorem 7.31 the second assertion follows from
E(Yo) = E(Yran) = E(Yrl{r<ny) + E(Yolirsny) = €P(T < n) — E(Y,).
Corollary 7.41 If (Y,,) is a submartingale and E|Yp| < oo, then for any e > 0

2E(Y. ) — E(Y,
P( max |Y;| > ¢€) < M.
0<i<n c

In particular, if (Y,) is a martingale, then
E|Y,
P(max |Y;| > €) < M
0<i<n €

Proof. Let € > 0. If (Y;,) is a submartingale, then (—Y,,) is a supermartingale so that according to (ii),

+)
P( min ¥; < —¢) < 20n) —E(Y0),
0<i<n €

Combine this with (i) to get the asserted inequality.
Corollary 7.42 Doob-Kolmogorov’s inequality. If (Y,) is a martingale with finite second moments, then

(Y,2) is a submartingale for any e > 0

P( max |Y;| > ¢) = P( max Y2 > ¢?) <
1<i<n 1<i<n €

Corollary 7.43 Kolmogorov’s inequality. Let (X,) are independent r.v. with zero means and finite
variances (02), then for any € > 0

2 2
P(max [X1+...+ X;| > ) < LT F 0
1<i<n €
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Theorem 7.44 Convergence in L". Letr > 1. Suppose (Y, Fy) is a martingale such that B(|Y,|") < M
for some constant M and all n. Then Y, — Y in L", whereY is the a.s. limit of Y, as n — oc.

Proof. Combining Corollary 7.26 and Lyapunov’s inequality we get the a.s. convergence Y,, — Y. To
prove Y, L Y, we observe first that

E(( max |YZDT) < IE((|Y0| +...+ \Yn|)r) < 00.

0<i<n

Now using (17) we obtain (writing A(x) = {maxo<;<n |Yi| > z})

0<i<n 0<i<n

oo
E(( max |V;])") :/0 ra"'P( max |Y;| > z)dx

S/ T$T_2E(|Yn|lA(m))dx :]E<|Yn|/ mr—21A(z)dm) = LE“Yn\(maX i)
0 0

r—1 0<i<n
By Holder’s inequality,

B[l g ] < [Bvn)] (e ]

and we conclude

E((max %)) < () E(YaI) < (5) M.

Thus by monotone convergence E(sup,, |Y,,|") < oo and (Y,7) is uniformly integrable, implying Y, By,

7.9 Backward martingales. Strong LLN

Definition 7.45 Let (G,) be a decreasing sequence of g-algebras and (Y;,) be a sequence of adapted
r.v. The sequence (Y,,,G,) is called a backward or reversed martingale if, for all n > 0,

o E(]Yn]) < oo,
L4 ]E(Yn|gn+1) - Yn+1-

Theorem 7.46 Let (Y,,,G,) be a backward martingale. Then Y, converges to a limit Y almost surely
and in mean.

Proof. The sequence Y,, = E(Yy|G,,) is uniformly integrable, see the proof in Example 7.9. Therefore,
it suffices to prove a.s. convergence. Applying Lemma 7.24 to the martingale (Y, G,),..., (Yo, Go) we

obtain E(U,(a,b)) < E((};"f_;m for the number U, (a,b) of [a,b] uppcrossings by (Yy,...,Yy). Now let
n — oo and repeat the proof of Theorem 7.25 to get the required a.s. convergence.

Theorem 7.47 Strong LLN. Let X1, Xo,... be iid random wvariables defined on the same probability

space. Then
Xi+...+ X, as
— "y

n
for some constant p iff E|X1| < co. In this case p = EXy and % E) I
Proof. Set S,, = X1 + ...+ X,, and let G,, = o(Sy, Sn+1,--.), then
E(Sn|Gn+1) = E(Sn[Snt1) = nE(X1[Sn+1).
On the other hand,
Sn+1 = E(Snt1[Sn+1) = (n + DE(X1[Sn41).

We conclude that S, /n is a backward martingale, and according to the Backward Martingale Convergence
Theorem there exists Y such that S,/n — Y a.s. and in mean. By Kolmogorov’s zero-one law, Y is
almost surely constant, and hence Y = E(X;) a.s.
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a.s

The converse. If S, /n %3 p, then X,,/n %% 0 by the theory of convergent real series. Indeed, from
(a1 + ...+ ap)/n — p it follows that
(025 a1+ ...+ap_1 a+...+a, ar+...+ap_1

— = — —0
n nin—1) + n n—1

Now, in view of X,,/n 230, the second Borell-Cantelli lemma, gives

> P(IX,| > n) < o0,

since otherwise P(n™!|X,,| > 1i.0.) = 1.

8 Diffusion processes

8.1 The Wiener process

Definition 8.1 The standard Wiener process W (t) = W, is a continuous time analogue of a simple
symmetric random walk. It is characterized by three properties:

L4 WO = Oa
e W; has independent increments with W; — W ~ N(0,t — s) for 0 < s < ¢,

e the path t — W, is continuous with probability 1.

Next we sketch a construction of Wy for ¢t € [0, 1]. First observe that the following theorem is not enough.

Theorem 8.2 Kolmogorov’s extension theorem. Assume that for any vector (t1,...,t,) with t; € [0,1]
there given a joint distribution function F(tl,.,.,tn)(xlu .oy Xn). Suppose that these distribution functions
satisfy two consistency conditions

(Z) F(tl,...,t,,t,t,LJFl)(xl: <oy Ty OO) = F(tl,..,tn)(xh e 7xn);

(i) if ™ is a permutation of (1,...,n), then F(tﬂ(lwm,tw(n))(xﬂ(l), oy Trmy) = Fey ) (@1, )
Put Q = {functions w : [0,1] — R} and F is the o-algebra generated by the finite-dimensional sets
{w : w(t;) € By,i = 1,...,n}, where B; are Borel subsets of R. Then there is a unique probability
measure P on (Q, F) such that a stochastic process defined by X (t,w) = w(t) has the finite-dimensional
distributions Fiy, . ¢ y(T1,...,%5).

The problem is that the set {w : t — w(¢) is continuous} does not belong to F, since all events in F may
depend on only countably many coordinates.

The above problem can be fixed if we focus of the subset Q be the set of dyadic rationals {t = m2™"
for some 0 <m < 2" n > 1}.

Step 1. Let (X, ) be a collection of Gaussian r.v. such that if we put X(¢) = X,,, ,, for ¢t = m2™",
then

e X(0)=0,
e X(t) has independent increments with X (t) — X(s) ~ N(0,t —s) for 0 < s < t, s,t € Q.

According to Theorem 8.2 the process X(t), t € Q can be defined on (9, 7,4, P;) where index ¢ means
the restriction t € Q.
Step 2. For m2™" <t < (m + 1)27" define

Xn(t) =X + 2"t —m27" ) ( Xpmt1,n — Xmon)-

For each n the process X, (t) has continuous paths for ¢ € [0,1]. Think of X, 11(¢) as being obtained
from X, (t) by repositioning the centers of the line segments by iid normal amounts. If ¢ € Q, then
Xn(t) = X (t) for all large n. Thus X,,(t) — X (t) for all t € Q.

50



Step 3. Show that X(t) is a.s. uniformly continuous over t € Q. It follows from X, (¢t) — X (¢) a.s.
uniformly over t € Q. To prove the latter we use the Weierstrass M-test by observing that X,,(t) =
Z1(t) + ...+ Z,(t), where Z;(t) = X;(t) — X;_1(¢), and showing that

Zsup |Zi(t)] < 0. (18)
i1 t€Q

Using independence and normality of the increments one can show for z; = ¢4/i27%log 2 that

) 2—ic2
i—1
P(fgngz(t)l > ;) <2 /iTosd
The first Borel-Cantelli lemma implies that for ¢ > 1 the events sup;c g |Z;(t)| > x; occur finitely many
times and (18) follows.

Step 4. Define W (¢t) for any t € [0,1] by moving our probability measure to (C,C), where C' =
continuous w : [0,1) — R and C is the o-algebra generated by the coordinate maps t — w(t). To do
this, we observe that the map v that takes a uniformly continuous point in €2, to its unique continuous
extension in C' is measurable, and we set P(A) = P, (1 (4)).

8.2 Properties of the Wiener process

We will prove some of the following properties of the standard Wiener process.

(i) The vector (W (t1),...,W(t,)) has the multivariate normal distribution with zero means and co-
variances Cov(W (t;), W(t;)) = min(¢;, ¢;).

(ii) For any positive s the shifted process W, = Wits — Wy is a standard Wiener process. This implies
the (weak) Markov property.

(iii) For any non-negative stopping time 7T the shifted process Wiy r — Wy is a standard Wiener
process. This implies the strong Markov property.

(iv) Let T(z) = inf{t : W(¢) = z} be the first passage time. It is a stopping time for the Wiener
process.

(v) The r.v. M(t) = max{W(s) : 0 < s < t} has the same distribution as |W (t)| and has density
2

function f(z) = \/22?6_% for > 0.

(vi) The r.v. T(x) 4 (x/Z)?, where Z ~ N(0,1), has density function f(t) = \/%e’g for t > 0.

(vii) If F; is the filtration generated by (W (u),u < t), then (eGW(t)’GQt/Q, Fi) is a martingale.

(viii) Consider the Wiener process on t € [0,00) with a negative drift W (¢) — m¢ with m > 0. Its
maximum is exponentially distributed with parameter 2m.

Proof of (i) If 0 < s < t, then
E(W(s)W () = E[W(s)* + W (s)(W(t) — W(s))] = E[W(s)’] = 5.
Proof of (v) For x > 0 we have {T'(z) <t} = {M(¢t) > z}. This and
P(M(t)>xz)=PM(t)>z,W{t)—x>0)+P(M(t) >z, W(t) —x <0)

imply



Thus

Proof of (vi) We have

P(T(x)gt):IP(M(t)z:c):IP(|W(t)|zx)z\/%t/ooe—%fdyz/o Le—‘z"*idu.

OW (s)

Proof of (vii) Bringing e outside

E(e?W O F,) = W OR(LWVO-WE)| £,) = oW (3) 0 (=92,
Proof of (viii) It suffices to prove that for any = > 0
P(W(t) — mt = x for some t) = e~ 2™,

Let T(a,b) be the first exit time from the interval (a,b). Applying a continuous version of the optional
stopping theorem to the martingale U(t) = e2mW () =2m*t o ohtain E(U(T(a,z))) =E(U(0)) =1. Thus

1= P(U(T(a,x)) = z) + 2™ P(U(T(a,z)) = a).

Letting a — —oo we obtain the desired relation.

8.3 Examples of diffusion processes

Definition 8.3 An Ito diffusion process X (¢) = X; is a Markov process with continuous sample paths
characterized by the standard Wiener process W; in terms of a stochastic differential equation

dXt = ,LL(t,Xt)dt+O'(t,Xt)th (19)

Here u(t,r) and o2(t,x) are the instantaneous mean and variance for the increments of the diffusion
process.

The second term of the stochastic differential equation is defined in terms of the Ito integral leading to
the integrated form of the equation

¢ t
X —Xo= / w(s, Xs)ds +/ o(s, Xs)dWs.
0 0

The Ito integral J; = fot Y,dWj is defined for a certain class of adapted processes Y;. The process J; is
a martingale (cf Theorem 7.18).

Example 8.4 The Wiener process with a drift W; + m¢t corresponds to pu(t,z) = m and o(t,z) = o

Example 8.5 The Ornstein-Uhlenbeck process: u(t,z) = —a(z —6) and o(t,z) = 0. Given the initial
value X the process is described by the stochastic differential equation

dXt = —OZ(Xt — 9)dt + O'th, (20)

which is a continuous version of an AR(1) process X,, = aX,,_1 + Z,. This process can be interpreted
as the evolution of a phenotypic trait value (like logarithm of the body size) along a lineage of species in
terms of the adaptation rate a > 0, the optimal trait value @, and the noise size o > 0.

Let f(t,y|s,x) be the density of the distribution of X; given the position at an earlier time X, = x.
Then

_ aof 0 19% ,
forward equation Frie fa—y[u(t, y) f]+ 58742[0 t,y)fl,
: of of 1 , 0% f
backward equation s = wu(s, ) 9 27 (s,z)axQ.
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Example 8.6 The Wiener process W; corresponds to u(t,z) = 0 and o(¢t,z) = 1. The forward and

_—w)?
backward equations for the density f(¢,y|s,z) = ﬁe 2T are
T(l—S

of 19> of 19

ot 20y ds 2022
Example 8.7 For dX; = o(t)dW; the equations

of o(t) 82 Af  o3(t) 0%f

ot 2 9y s 2 Oa?

imply that X; has a normal distribution with zero mean and variance fg o (u)du.

8.4 The Ito formula
Main rule: (dW;)? should be replaced by dt.

Theorem 8.8 Let f(t,x) be twice continuously differentiable on [0,00) x R and X, is given by (19).
Then Yy = f(t, By) is also an Ito process given by

dYe = {fe(t, Xe) + fo(t, Xe)p(t, Xe) + %fm(t,Xt)az(t,Xt)}dt + fo(t, X¢)o(t, Xy)dWr,

where

2

Folt, X0 = 26 Fll X0 = (e Frelt X0) = o 70 2) oo,

Example 8.9 The distribution of the Ornstein-Uhlenbeck process X; is normal with
E(X) =0+e *(Xg—0), Var(X;)=o%(1—e 2" /20 (21)

implying that X; looses the effect of the ancestral state Xy at an exponential rate. In the long run X
is forgotten, and the OU-process acquires a stationary normal distribution with mean 6 and variance
a? /2.

To verify these formula for the mean and variance we apply the following simple version of Ito’s
lemma: if dX; = pidt + oydWy, then for any nice function f(¢,x)

0 0

Let f(t,z) = xe**. Then using (20) we obtain

162f

d(X;e) = aX,e®tdt + et (a(e —X,)dt + ath) = Betadt + oetdW,.

Integration gives

¢
Xpe® — Xo = 0(e™ — 1) + 0’/ e dW,,
0

implying (21), since in view of Example 8.7 (see also (8) with F; = t) we have

t 2 t 2at 1
E(/ ea“dVVu> :/ et dy = € .
0 0 2x

Observe that the correlation coefficient between X (s) and X (s + t) equals
_ _—at 1 —e20s —at
p(5,8+t)—€ m-)@ s § — 0Q.
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Example 8.10 Geometric Brownian motion Y; = e#***W¢. Due to the Ito formula

1
dY, = (u + 502)Ytdt + oY, dWy,

so that p(t,z) = (u+ 30%)x and o%(t,z) = o%z?. The process Y; is a martingale iff p = —402.

Example 8.11 Take f(t,7) = 22. Then the Ito formula gives
dX? = 2X,dX,; + o(t, X;)?dt.
In particular, dW? = 2W,dW, + dt so that [ W,dW, = (W7 —t)/2.
Example 8.12 Product rule. If
dXy = p1(t, Xe)dt + o1(t, Xo)dWy,  dYy = pa(t, Yy)dt + oo(t, Yi)dWy,

then
d(X:Y;) = XudY; + Yid X, + 01(t, Xi)oa(t, Yy )dt.

This follows from 2XY = (X +Y)? — X2 — Y? and

dX? =2XdX, + o1 (t, X,)2dt, dY? = 2Y,dY, + oo(t, X;)?dt,
d(Xt + Yrt)2 = Q(Xt —|— }/t)(dXt + d}/t) —|— (0’1 (t,Xt) + Og(t,Xt))2dt.

8.5 The Black-Scholes formula

Lemma 8.13 Let (W;,0 < ¢ < T) be the standard Wiener process on (2, F,P) and let v € R. Define

another measure by Q(A) = E(e?Wr—v T/zl{A}) Then Q is a probability measure and Wy = W, — vt,
regarded as a process on the probability space (Q, F,Q), is the standard Wiener process.

Proof. By definition, Q(2) = e‘”zT/QIE( vWr) = 1. For the finite-dimensional distributions let 0 = t <
t1 <...<tp,=Tand xg,21,...,2, € R. Writing {W(¢;) € dz;} for the event {z; < W(t;) < z; + dx;}
we have that

2
QW (t1) € dxy,...,W(ty) € dzy,) =E(e vWr—v T/21{W(t1)edgg1 ,,,,, W (t)edan})
(

2
_  VXp—V T/2 ( _ i )d .
—° H TV 2m(t; —tio) 2(t; —ti1) i

Black-Scholes model. Writing B; for the cost of one unit of a risk-free bond (so that By = 1) at time
t we have that
dB; = rB.dt or B; = e".

The price (per unit) S; of a stock at time ¢ satisfies the stochastic differential equation

dS; = Si(pdt + odW;) with solution S; = exp{(u — 0?/2)t + oW, }.

This is a geometric Brownian motion, and parameter o is called volatility of the price process.
European call option. The buyer of the option may purchase one unit of stock at the exercise date T’
(fixed time) and the strike price K:

e if St > K, an immediate profit will be S — K
e if S7 < K, the call option will not be exercised.

The value of the option at time t < T is V; = e"(T=9)(Sp — K)T, where Sy is not known.
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Theorem 8.14 Black-Scholes formula. Let t <T. The value of the European call option at time t is
Vi = S ®(di(t,S;)) — Ke " T=D(dy(t, Sy)),
where ®(x) is the standard normal distribution function and

_log(z/K) + (r + a2 /2)(T —t) _log(z/K) + (r — o2 /2)(T —t)
ovT —t ’ ovT —t )
Definition 8.15 Let F; be the o-algebra generated by (S,,0 < u < t). A portfolio is a pair (o, 5¢)

of Fi-adapted processes. The value of the portfolio is Vi(a, 8) = oSt + B:B¢. The portfolio is called
self-financing if

dl (t, .TII)

dQ(t, JC)

dVi(a, B) = audSs + B¢dBy.
We say that a self-financing portfolio (ay, 8;) replicates the given European call if Vp(«, 8) = (St — K)™
almost surely.

Proof. We are going to apply Lemma 8.13 with v = “=£. Note also that under Q the process e "'S; =

- ag
exp{(vo — 02/2)t + oW} = e“W+=971/2 ig a martingale.
Take without a proof that there exists a self-financing portfolio (a4, ;) replicating the European
call option in question. If the market contains no arbitrage opportunities, we have V; = Vi(«a, ) and
therefore

d(e™"V;) = e " dV; — re”"WVidt = e "y (dSy — rSydt) + e " By (dBy — rBydt)
= atefrtSt((,u - ’l")dt + O'th) = atefrtStUth.

This defines a martingale under Q:
t ~
e "V, =V, +/ ayge " S,odW,.
0

Thus

Vi = e"Bo(e " Vp|F) = e "TTEG((Sr — K)T|F) = e T VEg((ae” — K)TIF),
where a = S; with

Z = exp{(p — 02 )2)(T — t) + o(Wp — W)} = exp{(r — 02 /2)(T — t) + o(Wr — W;)}.

Since (Z|F)g ~ N(v,72) with v = (r —0?/2)(T — t) and 72 = (T — t)o?. It remains to observe that for
any constant a and Z ~ N(v,72)

log(a/K) + v

log(a/K)Jrv).

E((ae? — K)*) = ae“”z/?q)(
-

+T> —Kc1>(
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