Tentamentsskrivning i MSF200/MVE330, 7.5 hp .

Tid: fredagen den 31 maj 2013 kl 8.30-12.30
Examinator och jour: Serik Sagitov, tel. 772-5351, mob. 0736907 613, rum H3026 i MV-huset. Hjälpmedel: miniräknare, egen formelsamling på 4 A 4 sidor (2 blad).

CTH: för " 3 " fordras 12 poäng, för " 4 " - 18 poäng, för " 5 " - 24 poäng.
GU : för "G" fordras 12 poäng, för "VG" - 20 poäng.
Inklusive eventuella bonus poäng.

1. (6 points) Define a process Y_{n} recursively by

$$
Y_{n}=Z_{n}-0.3 \cdot Y_{n-1}, \quad n \geq 1
$$

where Z_{n} are independent r.v. with zero means and unit variance.
(a) Under which conditions on Y_{0} this process is weakly stationary? Compute its autocovariance function.
(b) Find the best linear predictor \hat{Y}_{r+3} of Y_{r+3} given $\left(Y_{0}, \ldots, Y_{r}\right)$.
(c) What is the mean squared error of this prediction?
(d) Give an example when this process is strongly stationary.
2. (4 points) Consider a Poisson process with parameter λ.
(a) Describe the Poisson process as a renewal process. Compute its renewal function.
(b) Let $E(t)$ be the excess life at time t. Write down a renewal equation for $\mathbb{P}(E(t)>x)$. Solve this equation to find the distribution of $E(t)$.
(c) What is the stationary distribution of the excess life?
3. (4 points) Let X_{1}, X_{2}, \ldots be iid r.v. with finite mean μ, and let M be a stopping time with respect to the sequence X_{n} such that $\mathbb{E}(M)<\infty$. Then

$$
\mathbb{E}\left(X_{1}+\ldots+X_{M}\right)=\mu \mathbb{E}(M)
$$

(a) Give a detailed proof of the above formulated Wald's equation lemma.
(b) Illustrate by an example that the statement may fail if M is not a stopping time.
4. (6 points) Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of stochastic variables defined by

$$
X_{n}=I_{1} \sin (\phi n)+I_{2} \cos (\phi n)
$$

where I_{1}, I_{2}, ϕ are independent random variables such that $P\left(I_{1}=1\right)=P\left(I_{1}=-1\right)=$ $P\left(I_{2}=1\right)=P\left(I_{2}=-1\right)=\frac{1}{2}$ and ϕ is uniformly distributed over $[-\pi, \pi]$.
(a) On the same graph draw three examples of trajectories of the process $\left\{X_{n}\right\}$. What is random in these trajectories?
(b) Verify that $\left\{X_{n}\right\}$ is a stationary process.
(c) Find the spectral density function of $\left\{X_{n}\right\}$.
(d) Find the spectral representation for the process $\left\{X_{n}\right\}$ in the following form

$$
X_{n}=\int_{0}^{\pi} \cos (n \lambda) d U(\lambda)+\int_{0}^{\pi} \sin (n \lambda) d V(\lambda)
$$

5. (4 points) Let random variables $\left\{X_{n}\right\}$ be iid random variables with $\mathbb{P}\left(X_{n}=2\right)=\mathbb{P}\left(X_{n}=\right.$ $0)=1 / 2$.
(a) Show that the product $S_{n}=X_{1} \cdots X_{n}$ is a martingale.
(b) Show that $S_{n} \rightarrow 0$ in probability but not in mean.
(c) Does S_{n} converge a.s.?
6. (3 points) For a filtration $\left(\mathcal{F}_{n}\right)$ let $B_{n} \in \mathcal{F}_{n}$. Put $X_{n}=1_{B_{1}}+\ldots+1_{B_{n}}$.
(a) Show that $\left(X_{n}\right)$ is a submartingale.
(b) What is the Doob decomposition for X_{n} ?
7. (3 points) Theorem. Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a submartingale and let T be a stopping time. Then $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is a submartingale. If moreover, $\mathbb{E}\left|Y_{n}\right|<\infty$, then $\left(Y_{n}-Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is also a submartingale.
(a) Referring to the above theorem carefully deduce the following statement. If $\left(Y_{n}, \mathcal{F}_{n}\right)$ is a martingale and T is a stopping time, then $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ and $\left(Y_{n}-Y_{T \wedge n}, \mathcal{F}_{n}\right)$ are martingales.
(b) Illustrate this theorem with a simple example.

Partial answers and solutions are also welcome. Good luck!

Solutions

1. This is an example of $\operatorname{AR}(1)$ model $Y_{n}=\alpha Y_{n-1}+Z_{n}$. Observe that for $n \geq 0, m \geq 0$,

$$
Y_{n+m}=Z_{n+m}+\alpha Z_{n+m-1}+\ldots+\alpha^{n-1} Z_{m+1}+\alpha^{n} Y_{m}
$$

1a. Let Y_{0} has mean μ and variance σ^{2}. In the stationary case Y_{n} should also have mean μ and variance σ^{2}. This leads to equations

$$
\mu=\alpha^{n} \mu, \quad \sigma^{2}=1+\alpha^{2}+\ldots+\alpha^{2 n-2}+\alpha^{2 n} \sigma^{2}
$$

which imply $\mu=0$ and $\sigma^{2}=\frac{1}{1-\alpha^{2}} \approx 1.0989$. Hence, using these values we compute for $n \geq 0$,

$$
c(n)=\mathbb{C o v}\left(Y_{n+m}, Y_{m}\right)=\mathbb{E}\left(Y_{n+m} Y_{m}\right)=\alpha^{n} \mathbb{E}\left(Y_{m}^{2}\right)=\frac{\alpha^{n}}{1-\alpha^{2}}=(-1)^{n} \frac{(0.3)^{n}}{0.91}
$$

1b. The best linear predictor $\hat{Y}_{r+k}=\sum_{j=0}^{r} a_{j} Y_{r-j}$ is found from the equations

$$
\sum_{j=0}^{r} a_{j} c(|j-m|)=c(k+m), \quad 0 \leq m \leq r
$$

or

$$
\sum_{j=0}^{r} a_{j} \alpha^{|j-m|}=\alpha^{k+m}, \quad 0 \leq m \leq r
$$

Intuition suggests seeking a solution of the form $\hat{Y}_{r+k}=a_{0} Y_{r}$. Indeed, plugging $a_{1}=\ldots=a_{r}=0$ we easily obtain $a_{0}=\alpha^{k}$. Thus $\hat{Y}_{r+k}=(-0.3)^{k} Y_{r}$, and $\hat{Y}_{r+3}=-0.027 \cdot Y_{r}$.

1c. The mean square error is

$$
\begin{aligned}
\mathbb{E}\left(\left(Y_{r+k}-\hat{Y}_{r+k}\right)^{2}\right) & =\mathbb{E}\left(\left(Y_{r+k}-\alpha^{k} Y_{r}\right)^{2}\right)=\mathbb{E}\left(\left(Z_{r+k}+\alpha Z_{r+k-1}+\ldots+\alpha^{k-1} Z_{r+1}\right)^{2}\right) \\
& =\frac{1-\alpha^{2 k}}{1-\alpha^{2}}=\frac{1-(0.09)^{k}}{0.91}=1.0981 \text { for } k=3
\end{aligned}
$$

1 d . If Y_{0} has a normal distribution with mean zero and variance $\sigma^{2}=\frac{1}{1-\alpha^{2}} \approx 1.0989$, then the process becomes Gaussian. For the Gaussian processes weak and strong stationarity are equivalent.

2a. Let $T_{0}=0, T_{n}=X_{1}+\ldots+X_{n}$, where X_{i} are iid exponential inter-arrival times with parameter λ. The Poisson process $N(t)$ is the renewal process giving the number of renewal events during the time interval $(0, t]$, so that

$$
\{N(t) \geq n\}=\left\{T_{n} \leq t\right\}, \quad T_{N(t)} \leq t<T_{N(t)+1}
$$

Its renewal function $m(t):=\mathbb{E}(N(t))$ satisfies the renewal equation

$$
m(t)=F(t)+\int_{0}^{t} m(t-u) d F(u), \quad F(t)=1-e^{-\lambda t}
$$

In terms of the Laplace-Stieltjes transforms $\hat{m}(\theta):=\int_{0}^{\infty} e^{-\theta t} d m(t)$ we get

$$
\hat{m}(\theta)=\hat{F}(\theta)+\hat{m}(\theta) \hat{F}(\theta)
$$

Since $\hat{F}(\theta)=\frac{\lambda}{\theta+\lambda}$, we obtain $\hat{m}(\theta)=\frac{\lambda}{\theta}$, implying $m(t)=\lambda t$.

2 b . The excess life time $E(t):=T_{N(t)+1}-t$. The distribution of $E(t)$ is given by the following recursion for $b(t):=\mathbb{P}(E(t)>y)$

$$
\begin{aligned}
b(t) & =\mathbb{E}\left(\mathbb{E}\left(1_{\{E(t)>y\}} \mid X_{1}\right)\right)=\mathbb{E}\left(1_{\left\{E\left(t-X_{1}\right)>y\right\}} 1_{\left\{X_{1} \leq t\right\}}+1_{\left\{X_{1}>t+y\right\}}\right) \\
& =1-F(t+y)+\int_{0}^{t} b(t-x) d F(x)
\end{aligned}
$$

This renewal equation gives

$$
\begin{aligned}
\mathbb{P}(E(t)>y) & =1-F(t+y)+\int_{0}^{t}(1-F(t+y-u)) d m(u) \\
& =e^{-\lambda(t+y)}+\lambda \int_{0}^{t} e^{-\lambda(t+y-u)} d u=e^{-\lambda(t+y)}+\lambda \int_{y}^{y+t} e^{-\lambda x} d x=e^{-\lambda y}
\end{aligned}
$$

Thus $E(t)$ is exponentially distributed with parameter λ.
2c. From the previous calculation we see that the stationary distribution of $E(t)$ is geometric with parameter λ. This is in agreement with the general result, with μ standing for the mean inter-arrival time,

$$
\lim _{t \rightarrow \infty} \mathbb{P}(E(t) \leq y)=\mu^{-1} \int_{0}^{y}(1-F(x)) d x=\lambda \int_{0}^{y} e^{-\lambda x} d x=1-e^{-\lambda y}
$$

3a. Let X_{1}, X_{2}, \ldots be iid r.v. with finite mean μ, and let M be a stopping time with respect to the sequence X_{n} such that $\mathbb{E}(M)<\infty$. Then

$$
\mathbb{E}\left(X_{1}+\ldots+X_{M}\right)=\mu \mathbb{E}(M)
$$

Proof. By dominated convergence

$$
\begin{aligned}
\mathbb{E}\left(X_{1}+\ldots+X_{M}\right) & =\mathbb{E}\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} X_{i} 1_{\{M \geq i\}}\right)=\lim _{n \rightarrow \infty} \mathbb{E}\left(\sum_{i=1}^{n} X_{i} 1_{\{M \geq i\}}\right) \\
& =\sum_{i=1}^{\infty} \mathbb{E}\left(X_{i}\right) \mathbb{P}(M \geq i)=\mu \mathbb{E}(M)
\end{aligned}
$$

Here we used independence between $\{M \geq i\}$ and X_{i}, which follows from the fact that $\{M \geq i\}$ is the complimentary event to $\{M \leq i-1\} \in \sigma\left\{X_{1}, \ldots, X_{i-1}\right\}$.

3c. Turn to the Poisson process and observe that $M=N(t)$ is not a stopping time and in this case $\mathbb{E}\left(T_{N(t)}\right) \neq \mu m(t)$. Indeed, for the Poisson process $\mu m(t)=t$ while $T_{N(t)}=t-C(t)$, where $C(t)>0$ is the current lifetime.

4a. What looks on the figure as a cloud of stationary allocated points is produced by three sinusoids:
pluses: $\sin (\pi n / 5)+\cos (\pi n / 5)$,
circles: $\sin (\pi n / 5)-\cos (\pi n / 5)$,
stars: $\sin (\pi n / 3)+\cos (\pi n / 3)$.
The randomness is created by the random choice of the frequency and phase.
4b. The process

$$
X_{n}=I_{1} \sin (\phi n)+I_{2} \cos (\phi n)
$$

has zero means by independence and $\mathbb{E}\left(I_{1}\right)=\mathbb{E}\left(I_{2}\right)=0$. Its autocovariancies are

$$
\begin{aligned}
\operatorname{Cov}\left(X_{n}, X_{m}\right) & =\mathbb{E}\left(X_{n} X_{m}\right)=\mathbb{E}(\sin (\phi n) \sin (\phi m)+\cos (\phi n) \cos (\phi m)) \\
& =\mathbb{E}\left(\cos (\phi(n-m))=\int_{-\pi}^{\pi} \cos (\phi(n-m)) d \phi=1_{\{n=m\}}\right.
\end{aligned}
$$

Thus $\left(X_{n}\right)$ is a weakly stationary sequence with mean zero, variance 1 , and zero autocorrelation $\rho(n)=0$ for $n \neq 0$.

4c. The spectral density g must satisfy $\rho(n)=\int_{0}^{\pi} \cos (\lambda n) g(\lambda) d \lambda$. Then it is the uniform density $g(\lambda)=\pi^{-1} 1_{\{\lambda \in[0, \pi]\}}$.

4d. In this case the spectral representation for the process $\left\{X_{n}\right\}$ is straightforward

$$
X_{n}=I_{1} \sin (\phi n)+I_{2} \cos (\phi n)=\int_{0}^{\pi} \cos (n \lambda) d U(\lambda)+\int_{0}^{\pi} \sin (n \lambda) d V(\lambda)
$$

where

$$
U(\lambda)=I_{1} 1_{\{\lambda \geq \phi\}}, \quad V(\lambda)=I_{2} 1_{\{\lambda \geq \phi\}} .
$$

Let us check the key properties of the random process $(U(\lambda), V(\lambda))$:
(i) $U(\lambda)$ and $V(\lambda)$ have zero means,
(ii) $U\left(\lambda_{1}\right)$ and $V\left(\lambda_{2}\right)$ are uncorrelated,
(iii) $\operatorname{Var}(U(\lambda))=\mathbb{V} \operatorname{ar}(V(\lambda))=\mathbb{E}\left(1_{\{\lambda \geq \phi\}}\right)=\lambda=G(\lambda)$,
(iv) increments of $U(\lambda)$ are uncorrelated, and increments of $V(\lambda)$ are uncorrelated.

The last property is obtained as follows: for $\lambda_{1}<\lambda_{2}<\lambda_{3}$,

$$
\begin{aligned}
\mathbb{E}\left(U\left(\lambda_{3}\right)-U\left(\lambda_{2}\right)\right)\left(U\left(\lambda_{2}\right)-U\left(\lambda_{1}\right)\right) & =\mathbb{E}\left(1_{\left\{\lambda_{3} \geq \phi\right\}}-1_{\left\{\lambda_{2} \geq \phi\right\}}\right)\left(1_{\left\{\lambda_{2} \geq \phi\right\}}-1_{\left\{\lambda_{1} \geq \phi\right\}}\right) \\
& =\mathbb{E}\left(1_{\left\{\lambda_{2}<\phi \leq \lambda_{3}\right\}} 1_{\left\{\lambda_{1}<\phi \leq \lambda_{2}\right\}}\right)=0 .
\end{aligned}
$$

5a. We have $S_{n}=2^{n}$ with probability 2^{-n} and $S_{n}=0$ with probability $1-2^{-n}$, so that $\mathbb{E}\left(S_{n}\right)=1$. Clearly, $\mathbb{E}\left(S_{n+1} \mid S_{n}=2^{n}\right)=2^{n}$ and $\mathbb{E}\left(S_{n+1} \mid S_{n}=0\right)=0$, so that $\mathbb{E}\left(S_{n+1} \mid S_{n}\right)=S_{n}$.

5b. On one hand, $\mathbb{P}\left(\left|S_{n}\right|>\epsilon\right)=2^{-n} \rightarrow 0$, so that $S_{n} \xrightarrow{\mathrm{P}} 0$. On the other hand, $\mathbb{E}\left(S_{n}\right)=1 \nrightarrow 0$, so that S_{n} does not converge in mean.

5c. Put $A_{n}=\left\{S_{n}=0\right\}$. We have $A_{n} \subset A_{n+1}$ and $A=\cup_{n} A_{n}=\left\{\omega: S_{n}(\omega) \rightarrow 0\right\}$. Since $\mathbb{P}(A)=\lim \mathbb{P}\left(A_{n}\right)=1$, we conclude that $S_{n} \rightarrow 0$ almost surely.

6a. We verify three properties.
(i) Since $B_{i} \in \mathcal{F}_{i} \subset \mathcal{F}_{n}$, we conclude that X_{n} is measureable with respect to \mathcal{F}_{n}.
(ii) The random variables X_{n} have finite means $a_{n}:=\mathbb{E}\left(X_{n}\right)=\mathbb{P}\left(B_{1}\right)+\ldots+\mathbb{P}\left(B_{n}\right)$.
(iii) $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}+\mathbb{P}\left(B_{n+1}\right) \geq X_{n}$.

6b. Doob's decomposition: $X_{n}=M_{n}+S_{n}$, where $\left(M_{n}, \mathcal{F}_{n}\right)$ is a martingale and $\left(S_{n}, \mathcal{F}_{n}\right)$ is an increasing predictable process (called the compensator of the submartingale). Here M and S are computed as: $M_{0}=0, S_{0}=0$, and for $n \geq 0$

$$
\begin{aligned}
M_{n+1}-M_{n} & =X_{n+1}-\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=1_{\left\{B_{n+1}\right\}}-\mathbb{P}\left(B_{n+1}\right) \\
S_{n+1}-S_{n} & =\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)-X_{n}=\mathbb{P}\left(B_{n+1}\right)
\end{aligned}
$$

Thus $M_{n}=X_{n}-a_{n}$ and $S_{n}=a_{n}$.
7a. Theorem 1. Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a submartingale and let T be a stopping time. Then $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is a submartingale. If moreover, $\mathbb{E}\left|Y_{n}\right|<\infty$, then $\left(Y_{n}-Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is also a submartingale.

Changing the sign we easily get the next sister theorem.
Theorem 2. Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a supermartingale and let T be a stopping time. Then $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is a supermartingale. If moreover, $\mathbb{E}\left|Y_{n}\right|<\infty$, then $\left(Y_{n}-Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is also a supermartingale.

Since a martingale is both a submartingale and a supermartingale, these two theorems imply the following desired result.

Theorem 3. Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a martingale and let T be a stopping time. Then $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is a martingale. If moreover, $\mathbb{E}\left|Y_{n}\right|<\infty$, then $\left(Y_{n}-Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is also a martingale.

7b. Consider a symmetric simple random walk $Y_{n}=S_{n}$ and take $T=$ the first hitting time of the level a. On the figure we show the trajectories of the three martingales in question.

