Tentamentsskrivning i MSF200/MVE330, 7.5 hp .

Tid: torsdagen den 3 juni 2014 kl 8.30-12.30
Examinator och jour: Serik Sagitov, tel. 772-5351, mob. 0736907 613, rum H3026 i MV-huset.

Hjälpmedel: miniräknare, egen formelsamling på fyra A4 sidor (2 blad).
CTH: för " 3 " fordras 12 poäng, för " 4 " - 18 poäng, för " 5 " - 24 poäng.
GU: för "G" fordras 12 poäng, för "VG" - 20 poäng.

1. (5 points) Suppose $X_{n} \xrightarrow{L_{2}} X$ as $n \rightarrow \infty$.
(a) Show that $X_{n} \xrightarrow{L_{1}} X$ and

$$
\mathbb{E}\left(X_{n}\right) \rightarrow \mathbb{E}(X)
$$

(b) Show that

$$
\operatorname{Var}\left(X_{n}\right) \rightarrow \operatorname{Var}(X)
$$

Reminder.
Hölder's inequality: for $p, q>1$ and $p^{-1}+q^{-1}=1$,

$$
\mathbb{E}|X Y| \leq\left(\mathbb{E}\left|X^{p}\right|\right)^{1 / p}\left(\mathbb{E}\left|Y^{q}\right|\right)^{1 / q}
$$

Minkowski's inequality: for $p \geq 1$,

$$
\left(\mathbb{E}|X+Y|^{p}\right)^{1 / p} \leq\left(\mathbb{E}\left|X^{p}\right|\right)^{1 / p}+\left(\mathbb{E}\left|Y^{p}\right|\right)^{1 / p}
$$

2. (5 points) Let $\left(X_{n}\right)$ be independent random values with

$$
\mathbb{P}\left(X_{n}=0\right)=\mathbb{P}\left(X_{n}=1\right)=1 / 2
$$

and consider the sequence of shifted numbers

$$
U_{n}=\sum_{i=1}^{\infty} X_{i+n} 2^{-i}, \quad n=0,1, \ldots
$$

For example, if $U_{0}=0.0110001 \ldots$, then $U_{1}=0.110001 \ldots, U_{2}=0.10001 \ldots, U_{3}=$ $0.0001 \ldots$, and so on.
(a) Show that each $\left(U_{n}\right)$ is uniformly distributed on $[0,1]$.
(b) Show that $\left(U_{n}\right)$ is strongly stationary, and calculate its covariance function.
(c) Knowing the past $\left(U_{0}, U_{1}, \ldots, U_{r}\right)$ find the best linear predictor \hat{U}_{r+k} for the future value U_{r+k}. Discuss the result.
3. (5 points) Let the times between the events of a renewal process N be uniformly distributed on $[0,1]$.
(a) Write down the renewal equation for the mean $m(t)=\mathbb{E}(N(t))$ and show that $m(t)=e^{t}-1$ for $0 \leq t \leq 1$.
(b) Write down the renewal equation for the second moment $m_{2}(t)=\mathbb{E}\left(N^{2}(t)\right)$ and show that for $0 \leq t \leq 1$, the variance is

$$
\operatorname{Var}(N(t))=e^{t}\left(1+2 t-e^{t}\right) .
$$

4. (5 points) Consider a G/G/1 queue. The arrivals of customers form a renewal process with the independent inter-arrival times X_{n} having an arbitrary common distribution. Let W_{n} be the waiting time of the n-th customer and S_{n} be its service time.
(a) Show that the Lindley equation holds:

$$
W_{n+1}=\max \left\{0, W_{n}+S_{n}-X_{n+1}\right\} .
$$

(b) Note that $U_{n}=S_{n}-X_{n+1}$ is a collection of iid r.v. Define an imbedded random walk by

$$
\Sigma_{0}=0, \quad \Sigma_{n}=U_{1}+\ldots+U_{n}
$$

Show that

$$
W_{n+1} \stackrel{d}{=} \max \left\{\Sigma_{0}, \ldots, \Sigma_{n}\right\} .
$$

(c) Let $F_{n}(x)=\mathbb{P}\left(W_{n} \leq x\right)$ and $G(x)=\mathbb{P}\left(U_{n} \leq x\right)$. Show that for $x \geq 0$,

$$
F_{n+1}(x)=\int_{-\infty}^{x} F_{n}(x-y) d G(y) .
$$

5. (5 points) Let $\left\{Z_{n}\right\}_{n=0}^{\infty}$ be the Markov chain describing the size of a population of particles which reproduce themselves according to the following rules:

- $Z_{0}=1$, so that the population stems from a single particle,
- $Z_{1}=2$ with probability p and $Z_{1}=0$ with probability $1-p$,
- $Z_{n+1}=X_{n, 1}+\ldots+X_{n, Z_{n}}$, where $X_{n, 1}, X_{n, 2}, \ldots$ are independent copies of Z_{1}.

In other words, each particle, independently of other coexisting particles, either produces no offspring or splits in two particles. The mean offspring number equals $m=2 p$.
(a) Show that the ratio $\frac{Z_{n}}{m^{n}}$ is a martingale.
(b) Let $p=0.8$. Does $\frac{Z_{n}}{m^{n}}$ converge almost surely? Sketch a number of trajectories for $\frac{Z_{n}}{m^{n}}$ illustrating its typical asymptotic behavior.
(c) Show that if $m=1$, the martingale Z_{n} does not converge in L^{2}.
6. (5 points) Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a submartingale and let T be a stopping time.
(a) Give and discuss the definition of a stopping time T.
(b) For $Z_{n}=Y_{T \wedge n}$, verify that

$$
Z_{n}=\sum_{i=0}^{n-1} Y_{i} 1_{\{T=i\}}+Y_{n} 1_{\{T \geq n\}}
$$

Illustrate by drawing trajectories of $\left(Y_{n}\right)$ and $\left(Z_{n}\right)$.
(c) Show that $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is also a submartingale.

Partial answers and solutions are also welcome. Good luck!

Solutions summaries

1a. Using Hölder with $Y=1$ we get

$$
\mathbb{E}\left|X_{n}-X\right| \leq\left(\mathbb{E}\left(X_{n}-X\right)^{2}\right)^{1 / 2}
$$

Thus $X_{n} \xrightarrow{L_{2}} X$ implies $X_{n} \xrightarrow{L_{7}} X$. Moreover, by Jensen,

$$
\left|\mathbb{E}\left(X_{n}-X\right)\right| \leq \mathbb{E}\left|X_{n}-X\right|
$$

which entails

$$
\mathbb{E}\left(X_{n}\right) \rightarrow \mathbb{E}(X)
$$

1b. To show that

$$
\operatorname{Var}\left(X_{n}\right) \rightarrow \operatorname{Var}(X)
$$

it is enough to prove that

$$
\mathbb{E}\left(X_{n}^{2}\right) \rightarrow \mathbb{E}\left(X^{2}\right)
$$

which is obtained using Minkowski twice:

$$
\begin{aligned}
& \left(\mathbb{E}\left(X_{n}^{2}\right)\right)^{1 / 2}=\left(\mathbb{E}\left(X_{n}-X+X\right)^{2}\right)^{1 / 2} \leq\left(\mathbb{E}\left(X_{n}-X\right)^{2}\right)^{1 / 2}+\left(\mathbb{E}\left(X^{2}\right)\right)^{1 / 2} \\
& \left(\mathbb{E}\left(X^{2}\right)\right)^{1 / 2}=\left(\mathbb{E}\left(X_{n}-X+X_{n}\right)^{2}\right)^{1 / 2} \leq\left(\mathbb{E}\left(X_{n}-X\right)^{2}\right)^{1 / 2}+\left(\mathbb{E}\left(X_{n}^{2}\right)\right)^{1 / 2}
\end{aligned}
$$

By L^{2}-convergence this yields the desired convergence

$$
\limsup \mathbb{E}\left(X_{n}^{2}\right) \leq \mathbb{E}\left(X^{2}\right) \leq \liminf \mathbb{E}\left(X_{n}^{2}\right)
$$

2a. By the iid property of $\left(X_{n}\right)$ all $\left(U_{n}\right)$ have the same distribution. Put

$$
F_{k}(x)=\mathbb{P}\left(\sum_{i=1}^{k} X_{i} 2^{-i} \leq x\right)
$$

Clearly, $F_{k}(x)$ is the discrete uniform distribution over the set $\left\{m 2^{-k}\right\}_{m=0}^{2^{k}-1}$. It remains to see that $F_{k}(x) \rightarrow x$ as $k \rightarrow \infty$ for any $x \in[0,1]$.

2b. The sequence $\left(U_{n}\right)$ is strongly stationary:

$$
\left(U_{n}, \ldots, U_{n+k}\right) \stackrel{d}{=}\left(U_{0}, \ldots, U_{k}\right)
$$

since

$$
\left(X_{n+1}, X_{n+2}, \ldots\right) \stackrel{d}{=}\left(X_{1}, X_{2}, \ldots\right)
$$

Its autocovariance function $c(k)$ for $k \leq 0$, is

$$
\begin{aligned}
c(k) & =\mathbb{E}\left(U_{0} U_{k}\right)-1 / 4=\mathbb{E}\left(\left\{\sum_{i=1}^{k} X_{i} 2^{-i}+U_{k} 2^{-k}\right\} U_{k}\right)-1 / 4 \\
& =2^{-1} \mathbb{E}\left(\sum_{i=1}^{k} X_{i} 2^{-i}\right)+2^{-k} \mathbb{E}\left(U_{k}^{2}\right)-1 / 4=\frac{2^{-k}}{12}
\end{aligned}
$$

2c. Knowing the past $\left(U_{0}, U_{1}, \ldots, U_{r}\right)$ find best linear predictor for the future value U_{r+k} has the form

$$
\hat{U}_{r+k}=a_{0} U_{r}+\ldots+a_{r} U_{0}+\left(1-a_{0}-\ldots-a_{r}\right) \cdot \frac{1}{2}
$$

where the coefficients a_{i} are found from the linear equations

$$
\begin{aligned}
& a_{0} c(0)+a_{1} c(1)+\ldots+a_{r} c(r)=c(k), \\
& a_{0} c(1)+a_{1} c(0)+\ldots+a_{r} c(r-1)=c(k+1), \ldots \\
& a_{0} c(r)+a_{1} c(r-1)+\ldots+a_{r} c(0)=c(k+r),
\end{aligned}
$$

that is

$$
\begin{aligned}
& a_{0}+a_{1} 2^{-1}+\ldots+a_{r} 2^{-r}=2^{-k}, \\
& a_{0} 2^{-1}+a_{1}+\ldots+a_{r} 2^{-r+1}=2^{-k-1}, \ldots \\
& a_{0} 2^{-r}+a_{1} 2^{-r+1}+\ldots+a_{r}=2^{-k-r} .
\end{aligned}
$$

It is easy to find that $a_{0}=2^{-k}$ and $a_{1}=\ldots=a_{r}=0$ satisfy this system. So that

$$
\hat{U}_{r+k}=2^{-k} U_{r}+2^{-1}-2^{-k-1} .
$$

Its mean square error error is
$\mathbb{E}\left(\hat{U}_{r+k}-U_{r+k}\right)^{2}=\mathbb{E}\left(2^{-k}\left(U_{r}-2^{-1}\right)-\left(U_{r+k}-2^{-1}\right)\right)^{2}=\frac{2^{-2 k}+1}{12}-2 \cdot 2^{-k} \cdot \frac{2^{-k}}{12}=\frac{1-2^{-2 k}}{12}$.
Observe that the best (not necessarily linear) prediction has zero error, since knowing U_{0} you know all the following U_{n}.

3a. Let the times between the events of a renewal process N be uniformly distributed on $[0,1]$ so that $F(t)=t \cdot 1_{\{0 \leq t \leq 1\}}$. The renewal property gives

$$
N(t)=1_{\left\{X_{1} \leq t\right\}}\left(1+\tilde{N}\left(t-X_{1}\right)\right) .
$$

Taking expectations we see that $m(t)=\mathbb{E} N(t)$ satisfies the renewal equation

$$
m(t)=F(t)+\int_{0}^{t} m(t-u) d F(u)
$$

For $0 \leq t \leq 1$, we have

$$
m(t)=t+\int_{0}^{t} m(u) d u
$$

and therefore $m^{\prime}(t)=1+m(t)$ with $m(0)=0$. Thus $m(t)=e^{t}-1$ for $0 \leq t \leq 1$.
3b. From

$$
N(t)=1_{\left\{X_{1} \leq t\right\}}\left(1+\tilde{N}\left(t-X_{1}\right)\right)
$$

we get

$$
N^{2}(t)=1_{\left\{X_{1} \leq t\right\}}\left(1+2 \tilde{N}\left(t-X_{1}\right)+\tilde{N}^{2}\left(t-X_{1}\right)\right)
$$

Taking expectations we obtain the renewal equation for the second moment $m_{2}(t)=$ $\mathbb{E}\left(N^{2}(t)\right)$

$$
m_{2}(t)=A(t)+\int_{0}^{t} m_{2}(t-u) d F(u)
$$

where

$$
A(t)=\int_{0}^{t}(1+2 m(t-u)) d F(u)
$$

Using the renewal function $U(t)=1+m(t)$ we find the solution of this renewal equation as

$$
m_{2}(t)=\int_{0}^{t} A(t-u) d U(u)
$$

For $0 \leq t \leq 1$, we have $U(t)=e^{t}$ and

$$
A(t)=\int_{0}^{t}\left(2 e^{u}-1\right) d u=2 e^{t}-2-t
$$

so that

$$
\begin{aligned}
m_{2}(t) & =2 e^{t}-2-t+\int_{0}^{t}\left(2 e^{t-u}-2-t+u\right) e^{u} d u \\
& =t e^{t}+\int_{0}^{t} u e^{u} d u=1-e^{t}+2 t e^{t}
\end{aligned}
$$

Thus for $0 \leq t \leq 1$, the variance is

$$
\operatorname{Var}(N(t))=1-e^{t}+2 t e^{t}-\left(e^{t}-1\right)^{2}=e^{t}+2 t e^{t}-e^{2 t}=e^{t}\left(1+2 t-e^{t}\right)
$$

4. See the Lecture Notes, the section on G/G/1 queues.

5a. The branching process $\left\{Z_{n}\right\}_{n=0}^{\infty}$ has the mean offspring number equals $m=2 p$. Put $Y_{n}=\frac{Z_{n}}{m^{n}}$. Clearly, $0 \leq Z_{n} \leq 2^{n}$ so that $0 \leq Y_{n} \leq p^{-n}$. Using the branching property

$$
Z_{n+1}=X_{n, 1}+\ldots+X_{n, Z_{n}},
$$

we find

$$
\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=m^{-n-1} m Z_{n}=Y_{n} .
$$

Thus the ratio $\frac{Z_{n}}{m^{n}}$ is a martingale.
5b. If $p=0.8$, then $m=1.6$. The non-negative martingale $\frac{Z_{n}}{m^{n}}$ converges almost surely. There are two types of trajectories for $\frac{Z_{n}}{m^{n}}$ in the supercritical case ($m>1$). Some trajectories go to zero (extinction), and some trajectories converge to (different) non-zero values.

5c. In the critical case $m=1$, the branching process Z_{n} always converge to zero. Since $\mathbb{E}\left(Z_{n}\right)=1$ the martingale $\left(Z_{n}\right)$ does not converge in L^{1} and therefore, does not converge in L^{2}.
6. See the Lecture Notes, the section on Bounded stopping times and Optional sampling theorem.

