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1. BOREL MEASURES ON METRIC SPACES

1.1. Borel sets versus closed sets

Let (X,d) be a metric space. Given a subset A ⊆ X, we define d(·,A) : X→ [0,∞) by

d(x,A) = inf
y∈A

d(x,y), for x ∈ X. (1.1)

The triangle inequality for d shows that∣∣d(x,A) − d(y,A)
∣∣ 6 d(x,y), for all x,y ∈ X,

so in particular, x 7→ d(x,A) is continuous, whence

A = {x ∈ X | d(x,A) = 0
}

,

and the set Ar ⊂ X defined by
Ar =

{
x ∈ X | d(x,A) < r} (1.2)

is open for every r > 0. Hence,
A =

⋂
n∈N

A1/n. (1.3)

Let us fix a Borel probability measure µ on X. Our aim here is to show that µ is completely
determined by its values on closed sets. More specifically:

Lemma 1.1. For every Borel set B ⊂ X,

µ(B) = sup
{
µ(C) | C ⊂ B is closed

}
= inf

{
µ(U) | U ⊃ B is open

}
.

Proof. Let Aµ denote the set of all Borel sets B ⊂ X for which

µ(B) = sup
{
µ(C) | C ⊂ B is closed

}
= inf

{
µ(U) | U ⊃ B is open

}
.

We claim that Aµ is a σ-algebra, containing all closed sets, whence must be equal to the Borel
σ-algebra of X. To prove that Aµ is a σ-algebra, first note that ∅,X ∈ Aµ trivially, and that Aµ is
closed under complements. Hence it suffices to show that if B1,B2, . . . belong to Aµ, then so does
B := ∪kBk. Fix ε > 0 and a sequence (εk) such that

∑
k εk < ε/2. Since Bk ∈ Aµ for every k, we

can find closet sets Ck ⊂ X and open sets Uk ⊂ X such that

Ck ⊂ Bk ⊂ Uk and µ(Uk \ Ck) < εk, for all k.

Set U = ∪kUk and note that U is an open set with B ⊂ U and

µ(U \ B) 6
∑
k

µ(Uk \ Bk) < ε.

1
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Set F = ∪kCk. We stress that F might no longer be closed, but since µ is σ-additive, there exists
N > 1 such that

µ
(
F \

N⋃
k=1

Ck) < ε/2.

Set C =
⋃N
k=1Ck and note that C is a closed subset of Bwith

µ(B \ C) 6 µ(B \ F) + µ(F \ C) < ε/2 + ε/2 = ε.

Since ε > 0 is arbitrary, we conclude that B ∈ Aµ.

It remains to show that every closed subset C ⊂ X belongs to Aµ, which amounts to showing
that

µ(C) = inf
{
µ(U) | U ⊃ C is open

}
.

By (1.3),

C =
⋂
n>1

C1/n,

where each C1/n is open, whence µ(C) = limn µ(C1/n), and we are done.
�

1.2. Narrow convergence and the Portmanteau Lemma

A sequence (µn) of bounded and positive Borel measures on X converges narrowly to a bounded
and positive Borel measure µ on X if∫

X

f dµn →
∫
X

f dµ, for all f ∈ Cb(X).

Our aim here is to show that narrow convergence can be characterized in terms of the values of
µn on closed subsets of X (the equivalence (i) ⇐⇒ (ii) below).

Lemma 1.2 (Portmanteau Lemma). Let µ,µ1,µ2, . . . be Borel probability measures on X. TFAE,
(i) µn(f)→ µ(f) for every f ∈ Cb(X).

(ii) limn µn(C) 6 µ(C) for every closed set C ⊂ X.
(iii) limn µn(f) 6 µ(f) for every upper semicontinuous function f : X → R which is bounded from

above.
(iv) limn µn(U) > µ(U) for every open set U ⊂ X.
(v) limn µn(f) > µ(f) for every lower semicontinuous function f : X → R which is bounded from

below.

Proof. The implications
(ii) ⇐⇒ (iv) and (iii) ⇐⇒ (v)

are trivial. Furthermore, if C ⊂ X is a closed set, then f = χC is an upper semicontinuous function
(which is clearly bounded from above), and if U ⊆ X is an open set, then f = χU is a lower
semicontinuous function (which is clearly bounded from below). In view of this,

(iii) =⇒ (ii) and (v) =⇒ (iv)

are immediate. Since every f ∈ Cb(X) is both lower and upper semicontinuous, (iii) and (v)
together imply (i). It remains to prove

(i) =⇒ (ii) and (iv) =⇒ (v).
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We begin with (i) =⇒ (ii). Fix a closed set C ⊂ X and define

ψN(x) = 1 −
( d(x,C)

1 + d(x,C)

) 1
N

, for N > 1.

Note that ψN is continuous for every N and 1 6 ψN(x) ↘ χC(x) as N → ∞ for all x ∈ X. In
particular,

µ(C) = lim
N

∫
X

ψN dµ = lim
N

lim
n

∫
X

ψN dµn > lim
n

∫
X

χC dµn = lim
n
µn(C),

which finishes the proof.

To prove (iv) =⇒ (v), let us fix a lower semicontinuous function f : X → R which is bounded
from below by some constantM. Then f−M > 0, and thus∫

X

f dµn −M =

∫∞
0
µn(
{
f−M > t

}
)dt.

Since f, and thus f −M, is lower semicontinuous, the set Ut = {f −M > t} is open. By our
assumption (iv), we know that

lim
n
µn(Ut) > µ(Ut), for all t,

whence, by Fatou’s Lemma,

lim
n

∫
X

f dµn −M >
∫∞

0
lim
n
µn(
{
f−M > t

}
)dt >

∫∞
0
µ(
{
f−M > t

}
)dt =

∫
X

f dµ−M.

�

1.3. Tightness

A subsetM ⊂ P(X) is tight if for every ε > 0, there exists a compact set Kε ⊂ X such that

inf
µ∈M

µ(Kε) > 1 − ε.

Theorem 1.3. Suppose that (X,d) is separable. Then every tight subset M ⊂ P(X) is sequentially pre-
compact.

Towards the proof, let us fix a countable dense sequence (xn) in X once and for all.

Step I: Embedding X into [0, 1]N

Set Z := [0, 1]N and define the map ϕ : X→ Z by

ϕ(x)n =
d(x, xn)

1 + d(x, xn)
, for x ∈ X.

It is easy to see thatϕ is continuous. We claim thatϕ is also injective. Indeed, ifϕ(x) = ϕ(y), then

d(x, xn)
1 + d(x, xn)

=
d(y, xn)

1 + d(y, xn)
, for all n,

whence d(x, xn) = d(y,yn) for all n. Fix ε > 0 and pick xn such that d(x, xn) < ε/2. Then, by the
triangle inequality,

d(x,y) 6 d(x, xn) + d(xn,y) = 2d(x, xn) < ε.

Since ε is arbitrary, we conclude that d(x,y) = 0, and thus x = y.
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Step II: The closure ofM in P([0, 1]N)

Let (µn) be a sequence in P(X), and define νn ∈ P(Z) by

νn(C) = µn(ϕ
−1(C)), for C ⊂ Z Borel.

Since Z is compact and metrizable, P(Z) is sequentially compact, and hence we can extract a
subsequence (νnk) which converges narrowly to a Borel probability measure ν on Z.

Step III: Pulling back from P([0, 1]N)

SinceM is tight, there exists for every integer N > 1 a compact set KN ⊂ X such that

µn(KN) > 1 − 1/N and for all n.

In particular, the set Y :=
⋃
N KN is σ-compact and satisfies µn(Y) = 1 for all n. Since ϕ : Y → Z is

continuous and injective, Exercise 8 shows thatϕ(Y) is a Borel set in Z. We claim that ν(ϕ(Y)) = 1.
Indeed, since ϕ(KN) is compact (and hence closed) in Z for every N, it follows from Lemma (1.2)
that

ν(ϕ(Y)) > ν(ϕ(KN)) > lim
k
νnk(ϕ(KN)) = lim

k
µnk(KN) > 1 −

1
N

for every N, whence ν(ϕ(Y)) = 1. Set

µ(B) = ν(ϕ(B ∩ Y)), for B ⊂ X Borel.

By Exercise 8, µ defines a Borel probability measure on X. It remains to show that the sequence
µnk narrowly converges to µ. By Lemma 1.2 it suffices to show that

lim
k
µnk(C) 6 µ(C), for every closed set C ⊂ X.

Pick a closed set C ⊂ X. Then, for every N,

µnk(C) = µnk(C ∩ KN) + µnk(C ∩ K
c
N) 6 νnk(ϕ(C ∩ KN)) +

1
N

.

Since νnk → ν narrowly andϕ(C∩KN) ⊂ Z is compact, and hence closed, we know from Lemma
1.2 that limk νnk(ϕ(C ∩ KN)) 6 ν(ϕ(C ∩ KN)) = µ(C ∩ KN), and thus

lim
k
µnk(C) 6 µ(C ∩ KN) +

1
N
6 µ(C) +

1
N

.

Since N > 1 is arbitrary, we are done.

2. TIGHTNESS THROUGH FOURIER TRANSFORMS

Let µ be a Borel measure on Rd with finite measure. The Fourier transform µ̂ of µ is defined by

µ̂(ξ) =

∫
R
eiξx dµ(x), for ξ ∈ Rd.

It is easy to see that ξ 7→ µ̂(ξ) is uniformly continuous. Furthermore, by Cauchy-Schwarz,

|µ̂(ξ+ η) − µ̂(ξ)| 6
( ∫

R
|eiηx − 1|2 dµ(x)

)1/2

=
( ∫

R
2(1 − cos(ξx))dµ(x)

)1/2

6
(
2(1 − Re µ̂(ξ)

)1/2
6
(
2(1 − |µ̂(ξ)|)

)1/2
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2.1. Levy’s Continuity Theorem and Bochner’s Theorem

2.2. Infinitely divisible probability measures and Levy-Khinchin’s representation

3. DECORRELATION OF WIENER SEQUENCES AND HELLINGER DISTANCES

Let (X,d) be a metric space. Let µ and ν be bounded and positive Borel measures on X and fix a
bounded and positive Borel measure on X such that µ� λ and ν� λ; for instance, λ = µ+ ν. Set

dµ = udλ and dν = v dλ,

for some non-negative Borel functions u, v : X → [0,∞]. The Hellinger distance distH(µ,ν) is
defined as

distH(µ,ν) =
1
2

∫
X

(√
u−
√
v
)2
dλ =

1
2
(
µ(X) + ν(X)

)
−H(µ,ν)

)
, (3.1)

where

H(µ,ν) =
∫
X

√
uvdλ.

You are encouraged to check that this definition is independent of the choice of λ (Exercise 1).

Our aim here is to show:

Theorem 3.1. The Hellinger distance is (sequentially) lower semicontinuous with respect to narrow con-
vergence, i.e. if µ and ν are bounded and positive Borel measures onX, and (µn) and (νn) are two sequences
of bounded and positive Borel measures on X such that µn → µ and νn → ν in the narrow topology, then

lim
n

distH(µn,νn) > distH(µ,ν),

or equivalently,
lim
n
H(µn,νn) 6 H(µ,ν).

The key to Theorem 3.1 is the following lemma.

Lemma 3.2. Let µ and ν be bounded and positive Borel measures on X. There exists a function

γ : [0, 1)→ [0, 1), with lim
t→0

γ(t) = 0,

such that for every κ > 0 and for every ε > 0, which is small enough, there are N = Nκ,ε and (Lipschitz)
continuous functions f0, f1, . . . , fN : X→ [0, 1] with

N∑
k=0

fk(x) = 1, for all x ∈ X,

such that

H(µ,ν) >
1

1 + ε

N∑
k=0

( ∫
X

fk dµ
) 1

2
( ∫
X

fk dν
) 1

2
− γ(ε) − κ.

3.0.1. Proof of Theorem 3.1 assuming Lemma 3.2

Let µ and ν be bounded and positive Borel measures on X, and let (µn) and (νn) be two se-
quences of bounded and positive Borel measures on X such that µn → µ and νn → ν in the
narrow topology. We want to show that

H(µ,ν) > lim
n
H(µn,νn).
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By Lemma 3.2 we can find a function γ : [0, 1) → [0, 1) with limt→0 γ(t) = 0, such that for every
κ > 0 and for all small enough ε > 0, there are N = Nε and continuous functions f0, f1, . . . , fN
with

N∑
k=0

fk(x) = 1, for all x ∈ X

such that

H(µ,ν) >
1

1 + ε

N∑
k=0

( ∫
X

fk dµ
) 1

2
( ∫
X

fk dν
) 1

2
− γ(ε) − κ.

Let η be positive and bounded Borel measure on X such that µn � η and νn � η for all n. For
instance, η =

∑
n>1

1
2nµn(X)

µn will do. We write

dµn = un dη and dνn = vn dη, for all n,

where un, vn : X → [0,∞] are Borel measurable functions. Since µn → µ and νn → ν in the
narrow topology, and each fk is continuous, we see that∫

X

fk dµn →
∫
X

fk dµ and
∫
X

fk dνn →
∫
X

fk dν, for all k = 0, 1, . . . ,N,

and thus

H(µ,ν) >
1

1 + ε

N∑
k=0

( ∫
X

fk dµ
) 1

2
( ∫
X

fk dν
) 1

2
− γ(ε) − κ

= lim
n

1
1 + ε

N∑
k=0

( ∫
X

fk dµn

) 1
2
( ∫
X

fk dνn

) 1
2
− γ(ε) − κ

= lim
n

1
1 + ε

N∑
k=0

( ∫
X

fk un dη
) 1

2
( ∫
X

fk vn dη
) 1

2
− γ(ε) − κ

> lim
n

1
1 + ε

N∑
k=0

∫
X

fk
√
unvn dη− γ(ε) − κ

= lim
n

1
1 + ε

∫
X

√
unvn dη− γ(ε) − κ

=
1

1 + ε
lim
n
H(µn,νn) − γ(ε) − κ,

where we in the second inequality used Cauchy-Schwarz inequality. Since ε > 0 and κ > 0 are
arbitrary and γ(ε)→ 0 when ε→ 0, we are done.

3.0.2. Proof of Lemma 3.2

Fix ε > 0 and a bounded and positive Borel measure λ on X such that µ � λ and ν � λ. We
write

dµ = udλ and dν = v dλ,

and set
C = {x ∈ X | v(x) = 0

}
and D = {x ∈ X \ C | u(x) = 0}.

We define

Ak =
{
x ∈ X \ C | (1 + ε)k 6

u(x)

v(x)
< (1 + ε)k+1}, for k ∈ Z,
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and note that X = C tD t
(
tk∈Z Ak

)
. In particular,

∑
k ν(Ak) 6 ν(X) < ∞, so for any δ > 0 we

can findMδ > 1 such that ∑
|k|>Mδ

ν(Ak) < δ.

Given δ, we set

Bo = C t
(
t|k|>Mδ

Ak
)

and B1 = D and Bk = Ak−1−Mδ
,

for k = 2, . . . , 2Mδ, so that B0,B1, . . . ,B2Mδ
is a partition of X into Borel sets, and

ν(Bo) < δ and µ(B1) = 0. (3.2)

By Exercise 3 we can find a function β : [0, 1) → [0, 1) with limt→0 β(t) = 0 and continuous
functions f0, f1, . . . , f2Mδ

: X→ [0, 1] such that

2Mδ∑
k=0

fk(x) = 1 for all x ∈ X,

and with the following properties:

(i) If µ(Bk) = 0, then
∫
X fk dµ < ε.

(ii) If ν(Bk) = 0, then
∫
X fk dν < ε.

(iii) If µ(Bk)ν(Bk) > 0, then

β(ε) 6
∫
X

fk dµ 6 (1 + ε)
1
2µ(Bk) + β(ε), (3.3)

and

β(ε) 6
∫
X

fk dν 6 (1 + ε)
1
2ν(Bk) + β(ε). (3.4)

We further note that for k > 2,

µ(Bk) =

∫
Bk

udλ =

∫
Bk

u

v
vdλ 6 (1 + ε)k−Mδν(Bk),

and thus ∫
Bk

√
uvdλ =

∫
Bk

√
u

v
vdλ

> (1 + ε)(k−1−Mδ)/2ν(Bk)

> (1 + ε)−
1
2µ(Bk)

1
2 ν(Bk)

1
2 .

By (3.3), we can now conclude that if µ(Bk)ν(Bk) > 0, then∫
Bk

√
uvdλ > (1 + ε)−1

( ∫
X

fk dµ− β(ε)
) 1

2
( ∫
X

fk dν− β(ε)
) 1

2

> (1 + ε)−1
(( ∫

X

fk dµ
) 1

2
−
√
β(ε)

)(( ∫
X

fk dν
) 1

2
−
√
β(ε)

)
> (1 + ε)−1

( ∫
X

fk dµ
) 1

2
( ∫
X

fk dν
) 1

2
− 2
√
β(ε),
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if ε is small enough. Hence,

H(µ,ν) >
2Mδ∑
k=2

∫
Bk

√
uvdλ

> (1 + ε)−1
2Mδ∑
k=2

( ∫
X

fk dµ
) 1

2
( ∫
X

fk dν
) 1

2
− 4Mδ

√
β(ε)

= (1 + ε)−1
2Mδ∑
k=0

( ∫
X

fk dµ
) 1

2
( ∫
X

fk dν
) 1

2
− 4Mδ

√
β(ε)

− (1 + ε)−1
(( ∫

X

f0 dµ
) 1

2
( ∫
X

f0 dν
) 1

2
+
( ∫
X

f1 dµ
) 1

2
( ∫
X

f1 dν
) 1

2
)

> (1 + ε)−1
2Mδ∑
k=0

( ∫
X

fk dµ
) 1

2
( ∫
X

fk dν
) 1

2
− 4Mδ

√
β(ε)

− Cmax(
√
ε,
√
δ),

for some constant C. Fix κ > 0 and choose δ = δκ,ε > 0 so that the last term is less than κ. By
setting

N = 2Mδ,ε and γ(ε) = 4Mδ

√
β(ε),

we are done.

3.1. An application to decorrelation of Wiener sequences

Let (an) be a bounded sequence of complex numbers and assume that the limit

γa(n) := lim
N

1
N

N−1∑
m=0

amam+n

exists for all n > 0. If this is the case, then we say that (an) is a Wiener sequence and we refer to
γo as its autocorrelation. If we extend γo to a function γa : Z → C by setting γa(−n) = γa(n) for
n < 0, then γa is a positive definite function (Definition A.1) on Z (Exercise 2). Let θγa denote the
spectral measure associated to γa (Definition (A.3). By Exercise 2, the sequence (θ

(a)
N ) of bounded

positive Borel measure measures on T defined by

∫
T
f dθ

(a)
N =

∫
T
f(x)

∣∣∣ 1
N

N−1∑
n=0

ane
−2πinx

∣∣∣2 dλ(x), for f ∈ C(T), (3.5)

converges in the narrow topology to θγa , where λ denotes the Lebesgue probability measure on T.

Let us now fix two Wiener sequences (an) and (bn) with autocorrelations (γa) and γb respec-
tively, with associated spectral measures θγa and θγb . Let (θ(a)N ) and (θ

(b)
N ) be the sequences of

bounded positive Borel measures on T defined in (3.5), which narrowly converge to θγa and θγb
respectively. Note that both θ(a)N and θ(b)N are absolutely continuous with respect to the Lebesgue
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probability measure λ on T, whence

H(θ
(a)
N , θ(b)N ) =

∫
T

1
N

∣∣N−1∑
m=0

ame
−2πimx∣∣ ∣∣N−1∑

n=0

bne
−2πinx∣∣dλ(x)

>
1
N

∣∣∣ ∫
T

N−1∑
m,n=0

ambne
2πi(n−m)x dλ(x)

∣∣∣
=

1
N

∣∣∣N−1∑
n=0

anbn

∣∣∣.
By Theorem 3.1, we now have the following result, due to Coquet, Kamae and Mendes France.

Theorem 3.3. For any two Wiener sequences (an) and (bn), we have

lim
N

∣∣∣ 1
N

N−1∑
n=0

anbn

∣∣∣ 6 H(θγa , θγb),

where θγa and θγb denote the spectral measures associated to the autocorrelations γa and γb of (an) and
(bn) respectively.

4. A CRASH COURSE IN ERGODIC THEORY

4.1. Measurable aspects

Let (X,µ) be a Borel probability measure space. A measurable map T : X→ X is said to preserve
the measure µ if

µ(T−1B) = µ(B), for every Borel set B ⊂ X.

If T preserves µ, we say that (X,µ, T) is a probability measure preserving system. In this case, T
induces (for every p > 1) an isometric linear map T : Lp(X,µ) → Lp(X,µ) by f 7→ f ◦ T (see
exercises below). We say that (X,µ, T) is ergodic if there is no Borel set B ⊂ X with 0 < µ(B) < 1
such that T−1(B) = B. It is not hard to show (exercise below) that (X,µ, T) is ergodic if and only if
UT : Lp(X,µ) → Lp(X,µ) (for some p) does not have a non-constant fixed point. Let us consider
two examples.

Example 4.1. Let X = R/Z and Tx = x + α (mod 1) for some irrational α. It is plain to see that T
preserves the Lebesgue probability measure µ on X (we can think of X as the interval [0, 1] with
the end points identified). We claim that (X,µ, T) is ergodic. Indeed, suppose that f ∈ L2(X,µ)
satisfies UT f = f. We wish to show that f is essentially constant. To do this, expand f in a Fourier
series,

f =
∑
n∈Z

cne
2πin·,

where the convergence of the series is taken in the Hilbert space sense. The equationUT f = f now
translates to ∑

n

cne
2πnαe2πin· =

∑
n

cne
2πin·,

whence cne2πinα = cn for all n. We conclude that for every n, we either have cn = 0 or
e2πinα = 1. Since α is irrational, the second case only happens for n = 0, and thus f = co,
i.e. f is (essentially) a constant.
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Example 4.2. Let X = R/Z and Tx = 2x (mod 1). We leave it is an exercise (see below) to show that
T preserves the Lebesgue measure µ on X. We claim that (X,µ, T) is ergodic, and we will argue
as in the previous example: Pick f ∈ L2(X,µ) such that UT f = f, and expand in a Fourier series
as above. Then c2n = cn for all n, whence c2kn = cn for all n and k > 1. In particular, for every
n 6= 0, by Parseval’s Theorem,

∞ >

∫
T
|f|2 dµ =

∑
m

|cm|2 >
∑
k>1

|c2kn|
2 =
∑
k>1

|cn|
2,

which forces cn = 0. Hence f = co, and we are done.

Our aim is to show the following classical theorem of George Birkhoff.

Theorem 4.1 (The Pointwise Ergodic Theorem). Let (X, T ,µ) be an ergodic probability measure pre-
serving system. Then, for every µ-integrable f : X→ R,

lim
n

1
n

n−1∑
k=0

f(Tkx) =

∫
X

f dµ, for µ-almost every x ∈ X.

The proof will be broken down into two lemmas. We will use the notations,

(Anf)(x) =
1
n

n−1∑
k=0

f(Tkx)

and
(MNf)(x) = sup

16n6N
(Anf)(x) and (Mf)(x) = sup

n

(Anf)(x),

for x ∈ X.

Lemma 4.2 (Maximal inequality). For every λ > 0 and f ∈ L1(X,µ),

µ
({
x ∈ X | |Mf(x)| > λ

})
6

1
λ

∫
X

|f|dµ.

Lemma 4.3 (Approximation). Set C = span{g− g ◦ T | g ∈ L1(X,µ)
}

. Then,

L1(X,µ) = R1⊕ C.

Proof of Theorem 4.1 assuming Lemma 4.2 and Lemma 4.3. The theorem is trivial for f ∈ R ⊕ C. In-
deed, it is trivial for constants, if f = g− g ◦ g, then by telescoping,

Anf =
g− g ◦ Tn

n
,

which clearly goes to zero as n→∞ (for the second term, use Borel-Cantelli). Set

P =
{
f ∈ L1(X,µ) | Anf(·)→

∫
X

f dµ, µ-almost everywhere
}

.

We wish to prove that P = L1(X,µ). The argument above shows that P is dense (since it contains
R⊕C, which is dense by Lemma 4.3), so it suffices to show that P is closed in the L1-norm topology.
Let (fm) be a sequence in P which converges to f in the L1-norm. Set

∆(x) := lim
n

∣∣Anf(x) − ∫
X

f dµ
∣∣.
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We wish to prove that ∆ = 0 µ-almost everywhere. Note that for allm,

∆(x) 6 lim
n

(∣∣Anfm(x) −

∫
X

fm dµ
∣∣+ ‖f− fm‖1 + |M(f− fm)(x)|

)
6 ‖f− fm‖1 + |M(f− fm)(x)|,

since fm ∈ P, whence, for all λ > 0 andm,

µ
(
{∆(x) > λ}

)
6 µ

(
{M(f− fm)(x) > λ− δm

}
) 6

δm

λ− δm
,

where δm = ‖f − fm‖1, and where we in the last inequality used Lemma 4.2. Since δm → 0, we
conclude that ∆ = 0 µ-almost everywhere. �

4.1.1. Proof of Lemma 4.2

By replacing fwith f− λ, it suffices to show that∫
Mf>0

f dµ > 0.

Since Mf(x) > 0, if and only if QNf(x) = max16n6N
∑n−1
k=0 f(T

nx) > 0 for large enough N, it is
enough to show ∫

QNf>0
f dµ > 0, for large enough N.

Since
QNf(x) 6 QN+1f(x) = max(0, f(x) +QNf(Tx)), for all N,

we see that ∫
X

QNf(x)dµ(x) 6
∫
QNf>0

f dµ+

∫
X

QNf(Tx)dµ(x),

and thus
∫
QNf>0 f dµ since T preserves µ.

4.1.2. Proof of Lemma 4.3

If R1 ⊕ C is not dense in L1(X,µ), then by Hahn-Banach’s Theorem, there exists a non-zero
h ∈ L∞(X,µ) = L1(X,µ)∗ such that∫

X

hdµ = 0 and
∫
X

(g− g ◦ T)hdµ = 0, for all g ∈ L1(X,µ).

The second set of inequalities is clearly equivalent to saying U∗Th = h, where U∗T : L∞(X,µ) →
L∞(X,µ) denotes the transpose of UT . By Exercise 13, we conclude that h is constant, hence iden-
tically zero (since its integral is zero).

4.2. Topological aspects

Let us now consider the case when X is a compact metrizable space. Suppose that T : X → X

is a continuous map which preserves a Borel probability measure µ. Let us further assume that
(X,µ, T) is ergodic. By the Pointwise Ergodic Theorem, there exists for every f ∈ C(X), a conull set
Xf ⊂ X such that

lim
n→∞ 1

n

n−1∑
k=0

f(Tkx) =

∫
X

f dµ, for all x ∈ Xf.
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In one of the exercises below you are asked to prove that C(X) is separable. Assuming this for
now, we can pick a countable dense set (fj) in C(X), and define the µ-conull subset Xgen of µ-
generic points by

Xgen =
⋂
j

Xfj ⊂ X.

Lemma 4.4. For every f ∈ C(X), we have

lim
n

1
n

n−1∑
k=0

f(Tkx) =

∫
X

f dµ, for all x ∈ Xgen.

Proof. Fix f ∈ C(X) and ε > 0. Pick fj such that ‖f− fj‖∞ < ε/2. Then, if x ∈ Xgen,

lim
n

∣∣∣ 1
n

n−1∑
k=0

f(Tkx) −

∫
X

f dµ
∣∣∣ 6 2‖f− fj‖∞ + lim

n

∣∣∣ 1
n

n−1∑
k=0

fj(T
kx) −

∫
X

fj dµ
∣∣∣ < ε.

Since ε > 0 is arbitrary, we are done. �

Corollary 4.5. Suppose that µ and ν are two different ergodic and T -invariant Borel probability measures
on X. Then µ ⊥ ν. In fact, if Xµ denotes the set of µ-generic points in X, then µ(Xµ) = 1, while ν(Xµ) = 0.

Proof. Let Xµ and Xν denote the set of µ-generic points and the set of ν-generic points respectively,
so that µ(Xµ) = 1 and ν(Xν) = 1. We claim that Xµ ∩ Xν = ∅, whence µ ⊥ ν. Since µ 6= ν, there
exists f ∈ C(X) such that µ(f) 6= ν(f). For this f, we have for every x ∈ Xµ ∩ Xν,∫

X

f dµ = lim
n

1
n

n−1∑
k=0

f(Tkx) =

∫
X

f ν,

which is clearly impossible. �

We say that a continuous map T : X→ X is uniquely ergodic if there exists exactly one T -invariant
Borel probability measure on X.

Lemma 4.6. Suppose that T : X → X is uniquely ergodic, and let µ denote the unique T -invariant Borel
probability measure on X. Then, for every f ∈ X,

lim
n

1
n

n−1∑
k=0

f(Tkx) =

∫
X

f dµ, uniformly in x.

Proof. Let (xn) be a sequence in X such that xn → x. Consider the sequence of probability mea-
sures,

νn =
1
n

n−1∑
k=0

δTkxn .

By weak*-compactness, we can extract a convergent sub-sequence (nN). We claim that the limit
measure ν = limN νnN is T -invariant, whence equal to µ, which would finish the proof. To prove
invariance, note that

T∗νN − µN =
1
nN

nN−1∑
k=0

(
δTk+1x − δTkx

)
=

1
nN

(δTnNx − δx)→ 0,

in the weak*-topology. �
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The fact that the limit measure ν is T -invariant does not assume unique ergodicity, and the same
argument as in the proof above can be applied to prove the following classical fact.

Scholium 4.7 (Krylov-Bogliouboff). For every continuous map T : X → X, there exists at least one
T -invariant probability measure on X.

Example 4.3. Let (X, T) be as in Example 4.1. We claim that T is uniquely ergodic (Lebesgue
measure µ is the unique T -invariant probability measure) To prove this, suppose that ν is a T -
invariant probability measure on R/Z. We shall prove that its Fourier transform satisfies ν̂(n) = 0
for all n > 0, which means that ν = µ. Since T∗µ = µ, we have

ν̂(n)e2πinα = ν̂(n), for all n.

If ν̂(n) 6= 0, we must have e2πinα = 1, which clearly forces n = 0 since α is irrational. We are
done. As a corollary, we get that

lim
n

1
n

n−1∑
k=0

f(x+ kα) =

∫
X

f dµ, for all x ∈ X and f ∈ C(X).

4.3. Existence of ergodic measures

Let X be a compact metrizable space and let T : X → X be a continuous map. By the Scholium
above, there exists at least one T -invariant probability measure on X. In this subsection, we shall
prove that there exists in fact always at least one ergodic T -invariant probability measure. We begin
by formulating another characterization of ergodic measures.

Lemma 4.8. A T -invariant Borel probability measure µ on X is ergodic if and only if it cannot be written
on the form

µ = αµ1 + (1 − α)µ2,

for some 0 < α < 1 and two different T -invariant Borel probability measures µ1 and µ2 on X.

Proof. If µ is not ergodic, we can find a T -invariant Borel set B ⊂ Xwith 0 < µ(B) < 1, and thus

µ = µ(B)
µ(· ∩ B)
µ(B)

+ (1 − µ(B))
µ(· ∩ Bc)
µ(Bc)

,

where both measures on the right hand side are T -invariant (and clearly different). Conversely,
suppose that µ can be written as

µ = αµ1 + (1 − α)µ2,

for some 0 < α < 1, where µ1 and µ2 are T -invariant. Then µ1 and µ2 are absolutely continuous
with respect to µ. Their Radon-Nikodym derivatives dµ1

dµ and dµ2
dµ are clearly T -invariant, and

define non-constant T -invariant Borel functions on X, whence µ is not ergodic. �

Proposition 4.9. For every continuous map T : X→ X, there exists at least one ergodic T -invariant Borel
probability measure.

Proof. We shall show that there exists a T -invariant Borel probability measure on X which cannot
be written on the form

µ = αµ1 + (1 − α)µ2, (4.1)

for some 0 < α < 1 and two different T -invariant Borel probability measures µ1 and µ2. To do this,
let us fix a countable dense subset (fj) of C(X) (which exists by one of the exercises below). By
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another exercise, the set PT (X) of T -invariant Borel probability measures on X is weak*-compact.
Set

Mo =
{
ν ∈ PT (X) | sup

µ∈PT (X)
µ(fo) = ν(fo)

}
.

Since µ 7→ µ(f) is weak*-continuous for every f ∈ C(X) and PT (X) is weak*-compact and non-
empty,Mo is non-empty. Now inductively define for j > 1,

Mj =
{
ν ∈ PT (X) | sup

µ∈Mj−1

µ(fj) = ν(fj)
}

.

By the same argument,Mj is non-empty, so by weak*-compactness,

M∞ =
⋂
j

Mj,

is non-empty as well. We claim that no µ ∈ M∞ can be written on the form (4.1), and is thus
ergodic. Indeed, suppose that µ ∈M∞ can be written on this form. Then,

µ(fo) = αµ1(fo) + (1 − α)µ2(fo) = sup
ν∈PT (X)

ν(fo),

whence µ(fo) = µ1(fo) = µ2(fo), so µ1,µ2 ∈Mo as well. Also,

µ(f1) = αµ1(f1) + (1 − α)µ2(f1) = sup
ν∈Mo

ν(f1),

whence µ(f1) = µ1(f1) = µ2(f2), and thus µ1,µ2 ∈ M1 as well. We can continue like this, and
thus µ1(fj) = µ2(fj) for all j. Since (fj) is dense, we conclude that µ1 = µ2, which contradicts our
assumption that µ1 and µ2 are different. �

4.4. Skew products

Given an ergodic probability measure preserving system (X,µ, T) and a measurable map c :

X→ R/Z, we can form a new probability measure preserving system (X̂,µ⊗ λ, T̂) by

X̂ = X× R/Z and T̂(x, t) = (Tx, t+ c(x)), for (x, t) ∈ X̂,

where λ denotes the Lebesgue measure on R/Z. One readily checks that µ ⊗ λ is T̂ -invariant. In
what follows, we shall assume that X is compact, whence X̂, and that T : X → X and c : X → R/Z
are continuous, whence T̂ . Note that for all n > 1,

T̂n(x, t) = (Tnx, t+ c(x) + . . . + c(Tn−1x)), for (x, t) ∈ X̂.

Proposition 4.10 (Furstenberg). If T is uniquely ergodic and (X̂,µ⊗ λ, T̂) is ergodic, then T̂ is uniquely
ergodic.

Proof. Since (X̂,µ⊗ λ, T̂) is ergodic, there exists by Lemma 4.4 a µ⊗ λ-conull subset X̂gen such that

lim
n

1
n

n−1∑
k=0

f(T̂k(x, t)) =
∫
X

f dµ, for all (x, t) ∈ X̂gen and f ∈ C(X̂).

We claim that if (x, t) ∈ X̂gen, then (x, s) ∈ X̂gen for all s ∈ R/Z. Indeed, for all n,

1
n

n−1∑
k=0

f(T̂k(x, s)) =
1
n

n−1∑
k=0

fs−t(T̂
k(x, t)),
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where fu(x, t) = f(x, t+ u). Since fu ∈ C(X̂) and (x, t) ∈ X̂gen, we must have

lim
n

1
n

n−1∑
k=0

fs−t(T̂
k(x, t)) =

∫
X̂

fs−t dµdλ =

∫
X̂

f dµdλ,

since λ is invariant under translations, whence (x, s) ∈ X̂gen. We conclude that

X̂gen = Xµ × R/Z,

for some µ-conull Borel set Xµ ⊂ X. In particular, if we denote by π the projection from X̂ to X,
then X̂gen = π−1(Xµ) for some µ-conull subset Xµ ⊂ X.

By Proposition 4.9, it suffices to show that µ ⊗ λ is the unique T̂ -invariant Borel probability
measure on X̂. So, for the sake of argument, let us assume that there exists an ergodic T̂ -invariant
Borel probability measure ν different from µ⊗ λ. Then, by Corollary 4.5, we know that

0 = ν(X̂gen) = ν(π
−1(Xµ)) = π∗ν(Xµ) = µ(Xµ) = 1,

where the second to last identity follows from unique ergodicity of T , and the fact that π∗ν is a
T -invariant probability measure on X, whence equal to µ. �

4.5. Autocorrelations revisited and a theorem of Weyl

Recall that a sequence (an) of complex numbers is Wiener if its autocorrelation

θa(n) = lim
N

1
N

N−1∑
k=0

akan+k

exists for every n > 0. Let us now consider a sequence of the form axn = f(Tnx), where (X,µ, T) is
an ergodic probability measure preserving system and f : X → C is µ-integrable (or X is compact
and T : X → X is uniquely ergodic, with the unique T -invariant probability measure µ, and
f : X→ C is continuous). In either of these two cases, we ask whether the limits

lim
N

1
N

N−1∑
k=0

f(Tkx)f(Tn+kx) = lim
N

1
N

N−1∑
k=0

gn(T
kx),

where gn(x) = f(x)f(Tnx), exist for all n. By either applying Birkhoff’s ergodic theorem, or
Lemma 4.6, we can conclude that

θax(n) =

∫
X

f f ◦ Tn dµ, for µ-almost every x,

in the first case, and

θax(n) =

∫
X

f f ◦ Tn dµ, for all x ∈ X,

in the second case.

When we introduced autocorrelations in class, we discussed the ("linear phase")-case when
an = e2πinα for some α ∈ [0, 1). In this case the corresponding spectral measure equals δα. We
shall now address the (superficially similar) case

an = e2πin2α, with α /∈ Q. (4.2)

The theory that we have developed above will give that the spectral measure in this case is the
Lebesgue measure, so radically different from the "linear phase"-setting. This was first observed
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by Hermann Weyl.

To get the machine we have constructed going, we need to represent the sequence in (4.2) on
a "dynamical" form. In what follows, let X = R/Z and Tx = x + α (mod 1), where α /∈ Q. Set
c : X→ R/Z

c(x) = 2x+ α mod 1,

and define T̂ and X̂ as above. It is pretty straightforward to check that

T̂n(0, 0) = (nα,n2α), for n > 1,

so if we set f(x, t) = e2πit, then f ∈ C(X̂) and

f(T̂n(0, 0)) = e2πin2α.

More generally,
T̂n(x, t) = (x+ nα, t+ dnx+ n2α), for some dn > 1.

Hence, if we can show that T̂ is uniquely ergodic, then it follows from above that

θa(n) =

∫
X̂

f(x, t)f(x+ nα, t+ dnx+ n2αdµ(x)dλ(t) = 0,

for all n > 1, and θa(0) = 1; in other words, the corresponding spectral measure is the Lebesgue
measure.

It thus remains to show that T̂ is uniquely ergodic; or (since T is uniquely ergodic) - by Fursten-
berg’s observation above, that (X̂,µ⊗ λ, T̂) is ergodic. You are encouraged to prove this - it will be
useful to write T̂ in a slightly different form. Note that X̂ = (R/Z)2, and

T̂(x, t) =
(

1 0
2 1

)(
x

t

)
+

(
α

α

)
=: A

(
x

t

)
+ bα (4.3)

APPENDIX A. FOURIER ANALYSIS ON T

Definition A.1. A function γ : Z → C is called positive definite if for every N > 1 and for every
n1, . . . ,nN ∈ Z and c1, . . . , cN ∈ C we have

N∑
k,l=1

φ(nk − nl)ckcl > 0.

If µ is a bounded Borel measure on T, we define its Fourier transform µ̂ by

µ̂(n) =

∫
X

e−2πnx dµ(x), for n ∈ Z.

Theorem A.2 (Herglotz’s Theorem). Ifφ : Z→ C is positive definite, then there exists a unique bounded
positive measure θφ on T such that φ = θ̂φ.

Definition A.3. We refer to the measure θφ in Theorem A.2 as the spectral measure associated to
the positive definite function φ.

Proof. Since φ is positive definite, the function FN : T→ C

FN(x) =
1
N

N∑
m,n=1

φ(m− n)e2πi(m−n)x,
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is non-negative for every N > 1, whence the Borel measure dθN = FN(x)dλ(x), where λ denotes
the Lebesgue probability measure on T, is bounded and positive. Furthermore,

θN(T) =
1
N

N∑
m=1

φ(0) = φ(0), for all N,

so by narrow sequential compactness, we can extract a subsequence (Nk) such that θNk → θ for
some bounded positive Borel measure θ on T in the narrow topology. In particular, for every
n ∈ Z,

lim
k

∫
T
e−2πinx dθNk(x) =

∫
T
e−2πinx dθ(x).

It is not hard to check that the left hand side always converges toφ(n), whence
∫
T e

−2πinx dθ(x) =
φ(n) for all n. Since trigonometric polynomials are dense in C(T), we see that if θ ′ is any other
bounded positive measure on T such that φ(n) =

∫
T e

−2πinx dθ ′(x) for all n, then θ ′ = θ, whence
the notation θφ makes sense. �

A.1. Properties of spectral measures

Lemma A.4 (Wiener’s Lemma). If µ is a bounded and positive Borel measure on T, then

lim
N

1
2N+ 1

∑
|n|6N

|µ̂(n)|2 =
∑
x∈T

|µ({x})|2.

In particular, if limN 1
2N+1

∑
|n|6N |µ̂(n)|2 = 0, then µ is non-atomic.

Proof. Let ∆ = {(x, x) | x ∈ T} ⊂ T× T and note that

1
N

∑
|n|6N

e2πn(x−y) → χ∆(x,y), for all (x,y) ∈ T× T,

whence
1
N

∑
|n|6N

|µ̂(n)|2 =

∫
T

∫
T

1
N

∑
|n|6N

e2πn(x−y) dµ(x)dµ(y)

→ µ⊗ µ(∆) =
∑
x∈T

|µ({x})|2.

�

Lemma A.5 (Riemann-Lebesgue’s Lemma). If µ is a bounded Borel measure on T, which is absolutely
continuous with respect to the Lebesgue measure λ, then µ̂(n)→ 0 as n→∞.

Proof. Write µ = udλ with u ∈ L1(λ). If u ∈ L2(λ), then the assertion is trivial by Parseval’s
Theorem. Since L2(λ) is dense in L1(λ), we are done. �

APPENDIX B. AROUND THE THEOREM OF ARZELA AND ASCOLI

Let (X,dX) and (Y,dY) be metric spaces. Denote by C(X, Y) the space of continuous maps from
X to Y, equipped with the topology of uniform convergence on compact sets. This topology can
be described as follows. Fix f ∈ C(X, Y) and a compact set K ⊂ X. We say that a sequence (fn) in
C(X, Y) converge compactly to f if

lim
n

sup
x∈K

dY(f(x), fn(x)) = 0, for every compact set K ⊂ X.
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Furthermore, we define the (f,K)-modulus of continuityωf,K : [0∞)→ [0,∞) by

ωf,K(t) = sup
{
dY(f(x), f(x ′)) | x, x ′ ∈ X and dX(x, x ′) 6 t

}
, for t > 0.

Note that ωf,K(t) → 0 as t → 0. More generally, if A ⊂ C(X, Y), we define the (A,K)-modulus of
continityωA,K by

ωA,K(t) = sup
f∈A

ωf,K(t).

We say that A is totally bounded if for every x ∈ X, the set

Yx =
{
f(x) | f ∈ A

}
⊂ Y

is sequentially pre-compact, and equicontinuous if limt→0ωA,K(t)→ 0.

Theorem B.1 (Arzela-Ascoli). Suppose that (X,dX) is separable and (Y,dY) is complete. IfA ⊂ C(X, Y)
is totally bounded and equicontinuous, then it is sequentially pre-compact.

Proof. In class. �

The proofs of the following corollaries are left as exercises (see below).

Corollary B.2. Let β > 0, and fix Q > 0 and a function γ : (0,∞) → (0,∞). Then the set AQ,γ ⊂
C([0,∞),RN) defined by

AQ,γ =
{
f ∈ C([0,∞),RN) | |f(0)| 6 Q and for every T > 0, sup

06s<t6T

|f(s) − f(t)|

|s− t|β
6 γ(T)

}
is sequentially pre-compact.

Corollary B.3. Suppose thatM ⊂ P(C([0,∞),RN)) satisfies

lim
Q→∞ inf

µ∈M
µ
(
{f ∈ C([0,∞),RN) | |f(0)| 6 Q

})
= 1

and, for every T > 0,

lim
R→∞ inf

µ∈M
µ
(
{f ∈ C([0,∞),RN) | sup

06s<t6T

|f(s) − f(t)|

|s− t|β
6 R
})

= 1.

ThenM is sequentially pre-compact in in the narrow topology.

B.1. Besov saves the day

Let Φ : [0,∞) → (0,∞) and ω : (0,∞) → (0,∞) be strictly increasing functions, and suppose
that limt→0+ ω(t) = 0. Fix T > 0 and define for g ∈ C([0, T ],RN), the Besov norm

BT (g) =

∫T
0

∫T
0
Φ
( |g(s) − g(t)|
ω(|s− t|)

)
dsdt.

Proposition B.4. If BT (g) <∞, then

|g(s) − g(t)| 6 8
∫t−s

0
Φ−1

(4BT (g)
u2

)
dω(u), for all 0 6 s < t 6 T ,

where dω denotes the Stiltjes measures associated toω.

The proof of the following corollary is left as an exercise.
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Corollary B.5. Suppose thatM ⊂ P(C([0,∞),RN)) satisfies

lim
Q→∞ inf

µ∈M
µ
(
{f ∈ C([0,∞),RN) | |f(0)| 6 Q

}
= 0

and, for some α, r > 0, there exist, for every T > 0 a constant CT such that∫
|f(s) − f(t)|r dµ(f) 6 CT |s− t|

1+α, for all 0 6 s < t 6 T .

ThenM is sequentially pre-compact.

Let us now turn to the proof of Proposition B.4. We begin by showing that it suffices to consider
the case when T = t = 1 and s = 0. Given f ∈ C([0, 1],RN), we set

Af(s) =

∫ 1

0
Φ
( |f(s) − f(t)|
ω(|s− t|)

)
dt, for 0 6 s 6 1,

and

Bf =

∫ 1

0
Af(s)ds.

Lemma B.6. For every f ∈ C([0, 1],RN),

|f(1) − f(0)| 6 8
∫ 1

0
Φ−1

(4Bf
u2

)
dω(u).

Proof of Proposition B.4 assuming Lemma B.6. Given g ∈ C([0, T ],RN) and 0 6 s < t 6 T , define

f(τ) = g(s+ τ(t− s)) and ω(u) = ω((t− s)u), for 0 6 τ 6 1 and u > 0.

Apply Lemma B.6 to f andω, and note that f(1) = g(t) and f(0) = g(s). �

B.1.1. Proof of Lemma B.6

Fix f ∈ C([0, 1],RN) such that Bf <∞. We shall prove the following lemma.

Lemma B.7. For every so ∈ (0, 1) such that Af(so) 6 Bf, we have

|f(so) − f(0)| 6 4
∫ 1

0
Φ−1

(4Bf
u2

)
dω(u).

To see how Lemma B.6 follows from this lemma, write f̌(s) = f(1 − s), and note that Af̌(s) =
Af(1 − s) and Bf̌ = Bf. If Af(so) 6 Bf, then Af̌(1 − so) 6 Bf, whence, by the lemma above,

|f(1) − f(so)| = |f̌(1 − so) − f̌(0)| 6 4
∫ 1

0
Φ−1

(4Bf
u2

)
dω(u).

We conclude that

|f(1) − f(0)| 6 |f(1) − f(so)|+ |f(so) − f(0)| 6 8
∫ 1

0
Φ−1

(4Bf
u2

)
dω(u),

which finishes the proof of Lemma B.6.

Let us now turn to the proof of Lemma B.7. We shall need:

Lemma B.8. For every α,β ∈ (0, 1), there exists u ∈ (0,α) such that

Af(u) 6
2Bf
α

and
|f(β) − f(u)|

ω(|β− u|)
6 Φ−1

(2Af(β)
α

)
.
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Assuming this lemma, let us see how Lemma B.7 follows. Fix so ∈ (0, 1) such that Af(so) 6 Bf,
and define to ∈ (0, 1) such that ω(to) =

ω(so)
2 . Since ω(to) < ω(so) and ω is strictly increasing,

we see that to < so. Apply Lemma B.8 with α = to and β = so, to find 0 < s1 < to such that

Af(s1) 6
2Bf
to

and
|f(s1) − f(so)|

ω(|s1 − so|)
6 Φ−1

(2Af(so)
to

)
.

Now define 0 < t1 < s1 by ω(t1) =
ω(s1

2 , and use Lemma B.8 with α = t1 and β = s1 to find
0 < s2 < t1 such that

Af(s2) 6
2Bf
t1

and
|f(s2) − f(s1)|

ω(|s2 − s1|)
6 Φ−1

(2Af(s1)

t1

)
.

We can continue this construction to find a sequence so > to > s1 > t1 > s2 > . . ., where
ω(tn) =

ω(sn)
2 such that

Af(sn+1) 6
2Bf
tn

and
|f(sn+1) − f(sn)|

ω(|sn+1 − sn|)
6 Φ−1

(2Af(sn)
tn

)
.

Sinceω(tn) 6
ω(so)

2n , we see that tn → 0, and thus sn → 0. Furthermore,

ω(|sn − sn+1|) 6 ω(sn) = 2ω(tn) = 4(ω(tn) −
1
2
ω(tn)) 6 4(ω(tn) −ω(tn+1))

Since f is continuous, we conclude that

|f(so) − f(0)| =
∣∣ ∞∑
n=0

(
f(sn) − f(sn+1)

)∣∣
6

∞∑
n=0

( |f(sn) − f(sn+1)|

ω(|sn − sn+1|)

)
ω(|sn − sn+1|)

6 4
∞∑
n=0

Φ−1
(2Af(sn)

tn

)
(ω(tn) −ω(tn+1))

6 4
∞∑
n=0

Φ−1
( 4Bf
tntn−1

)
(ω(tn) −ω(tn+1))

6 4
∞∑
n=0

Φ−1
(4Bf
t2
n

)
(ω(tn) −ω(tn+1))

6 4
∞∑
n=0

∫tn
tn+1

Φ−1
(4Bf
u2

)
dω(u)

6 4
∫ 1

0
Φ−1

(4Bf
u2

)
dω(u),

which finishes the proof.

It remains to prove Lemma B.8. Set

I = {u ∈ [0, 1] | Af(u) 6
2Bf
α

}
and

J = {u ∈ [0, 1] |
|f(β) − f(u)|

ω(|β− u|)
6 Φ−1

(2Af(β)
α

)}
.
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By Markov’s inequality,

λ(I) > 1 −
α

2
and λ(J) > 1 −

α

2
,

where λ denotes the Lebesgue measure on [0, 1], whence

λ(I ∩ J) > 1 − α,

and thus I ∩ J intersects the interval (0,α), which finishes the proof.

EXERCISES

Exercise 1 (3 points). Let (X,d) be a metric space and let µ and ν be bounded positive Borel
measures on X. Fix a bounded positive Borel measure λ on X such that µ � λ and ν � λ, and
write dµ = udλ and dν = v dλ. Define the Hellinger affinity H(µ,ν) by

H(µ,ν) =
∫
X

√
uvdλ.

Show that H(µ,ν) is independent of the choice of λ, and that

µ ⊥ ν =⇒ H(µ,ν) = 0.

Exercise 2 (3 points). Suppose that (an) is a Wiener sequence and γa : No → C its auto-correlation.
Show that

γa(n) :=

{
γa(n) if n > 0
γa(−n) if n < 0

is a positive definite function on Z, and that the sequence of probability measures (θ
(a)
N ) on T

defined by ∫
T
f dθ

(a)
N =

1
N

∫
T
f(x)

∣∣∣N−1∑
n=0

ane
−2πinx

∣∣∣2 dx, for f ∈ C(T), (B.1)

converges narrowly to the spectral measure θγa associated to γa.

Exercise 3 (5 points). Let (X,d) be a metric space and let B0, . . . ,BN be a partition of X into Borel
sets. Let µ and ν be positive and bounded tight Borel measures on X. Construct a function

β : [0, 1)→ [0, 1), with lim
t→0

β(t) = 0,

such that for all small enough ε > 0, there are continuous functions f0, f1, . . . , fN : X → [0, 1] such
that

N∑
k=0

fk(x) = 1, for all x ∈ X,

with the following properties:
(i) If µ(Bk) = 0, then

∫
X fk dµ < ε.

(ii) If ν(Bk) = 0, then
∫
X fk dν < ε.

(iii) If µ(Bk)ν(Bk) > 0, then

β(ε) 6
∫
X

fk dµ 6 (1 + ε)
1
2µ(Bk) + β(ε),

and

β(ε) 6
∫
X

fk dν 6 (1 + ε)
1
2ν(Bk) + β(ε).
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Exercise 4 (10 points). Given a non-negative integer n, let Sn denote the sum of the digits in the
binary expansion of n. For instance,

S0 = 0, S1 = 1, S2 = 1, S3 = 2, S4 = 1, S5 = 2 . . . .

The Thue-Morse sequence is defined as an = (−1)Sn .
a) Show that S2n = Sn and S2n+1 = Sn + 1 for all n, whence

a2n = an and a2n+1 = −an, for all n. (B.2)

b) Show that the autocorrelation γ : N0 → R,

γ(m) = lim
N

1
N+ 1

N∑
n=0

anan+m exists for allm > 0,

and satisfies

γ(2m) = γ(m) and γ(2m+ 1) = −
1
2
(
γ(m) + γ(m+ 1)

)
, for allm > 0. (B.3)

c) Let θγ denote the spectral measure associated to γ. Show that θγ is both non-atomic and
singular with respect to the Lebesgue measure on T.

d) Let ξ ∈ C with |ξ| = 1 and let (εk) be a sequence of real-valued i.i.d random variables
with zero means and finite variances. Show that

lim
N→∞ 1

N+ 1

N∑
n=0

anξ
n = 0

and

lim
N→∞ 1

N+ 1

N∑
n=0

anεn = 0, almost surely.

Exercise 5 (3 points). Let µ be a Borel probability measure on on a metric space (X,d). Show that
for every x ∈ X there exists a countable set Sx ⊂ (0,∞) such that Br(x) is µ-Jordan measurable for
all r /∈ Sx, where Br(x) denotes the closed ball around x of radius r.

Exercise 6 (4 points). Let (X,d) be a metric space. Recall that the variation metric dVar between two
Borel probability measure µ and ν on X is defined by

dVar(µ,ν) = sup
{∣∣µ(B) − ν(B)∣∣ | B ⊂ X is Borel

}
.

Is (µ,ν) 7→ dVar(µ,ν) sequentially lower semi-continuous with respect to narrow convergence?

Exercise 7 (5 points). Let (X1,d1) and (X2,d2) be separable metric spaces, and let (X,d) denote
the metric space (X1 × X2,d1 + d2). Given Borel probability measures µ1 and µ2 on X1 and X2
respectively, a coupling µ of µ1 and µ2 is a Borel probability measure on X such that

µ1(B1) = µ(B1 × X2) and µ2(B2) = µ(X1 × B2)

for all Borel sets B1 ⊂ X1 and B1 ⊂ X2.
Let C(µ1,µ2) denote the set of all couplings of µ1 and µ2. Show that C(µ1,µ2) is sequentially

compact in the narrow topology, and deduce the following fundamental principle in the field of
optimal transport: If c : X1 × X2 → R is lower semicontinuous and bounded from below, then the
map

µ 7→
∫
X1

∫
X2

c(x1, x2)dµ(x1, x2)

attains a minimum in C(µ1,µ2).
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Exercise 8 (5 points). Let Y and Z be metrizable spaces with Y σ-compact (meaning that Y can be
exhausted by an increasing union of countably many compact sets). Suppose that ϕ : Y → Z is an
injective and continuous map. Show that:

(i) ϕ(Y) ⊂ Z is σ-compact, hence Borel measurable.
(ii) A :=

{
B ⊂ Y | ϕ(B) is Borel

}
is a σ-algebra.

(iii) Every closed subset of Y is contained in A.
Deduce from (i)-(iii) that the ϕ-image of every Borel set in Y is Borel measurable in Z, and show
that if ν is a Borel probability measure on Z, then µ(B) = ν(ϕ(B)), for B ⊂ Y Borel, is a Borel
probability measure on Y.

Remark B.9. Henri Lebesgue, in his original expose of integration theory, claimed that images of
Borel sets under continuous maps are always Borel measurable. Later, Mikhail Suslin showed that
this is not true without the hypothesis that the map is injective.

Exercise 9 (3 points). Letm denote the Lebesgue probability measure on [0, 1]. Define the sequence
(νn) of Borel probability measures on [0, 1] by

νn(f) =
1

n+ 1

n∑
k=0

f
(k
n

)
, for f ∈ C([0, 1]).

a) Prove the fundamental theorem in Riemann integration, namely that νn narrowly con-
verges tom.

b) For every ε > 0, there exists an open set U ⊂ [0, 1] such that m(U) < ε and νn(U) = 1 for
all n. In particular, νn(U) 9 m(U).

Exercise 10 (15 points). Prove Corollaries B.2, B.3 and B.5.

Exercise 11 (5 points). Let ε1, ε2, . . . be centered i.i.d. random variables with finite fourth moments
on some probability measure space (Ω,P), and set Sn = ε1+ . . .+εn (with the convention So = 0).
Define the sequence πn : Ω→ C([0, 1],R) by

πn(·, t) =
1√
n

n∑
i=1

(
Si−1(·) + n

(
t−

i− 1
n

)
εi(·)

)
χ( i−1

n , in
](t), for t ∈ [0, 1],

and set µn = (πn)∗P (the push-forward of P to a probability measure on C([0, 1],R). Show that
(µn) is tight.

Exercise 12 (3 points). Let µ be a Borel probability measure on R. Show that for every positive
integer N, we have ∣∣µ̂(ξ) − 1

∣∣ 6 N√2|µ̂(ξ/N) − 1|, for all ξ.

Exercise 13 (7 points). Let T : X → X be a measurable map which preserves a Borel probability
measure µ. Fix p > 1. Show that the map UT : Lp(X,µ)→ Lp(X,µ), f 7→ f ◦ T is well-defined, and
satisfies ‖UT f‖p = ‖f‖p for all f ∈ Lp(X,µ). Also show that (X,µ, T) is ergodic if and only if there
is no non-constant f ∈ Lp(X,µ) such that UT f = f, if and only if there is no non-constant solution
to U∗Tg = g, where U∗T : Lq(X,µ) → Lq(X,µ) denotes the transpose map ( where 1

p + 1
q = 1) [for

the last equivalence, you can use the next exercise].

Exercise 14 (3 points). Let (X, T ,µ) be an ergodic probability measure preserving system. Show
that if f ∈ Lp(X,µ) for some 1 < p <∞,

1
N

N−1∑
n=0

f ◦ Tn →
∫
X

f dµ, in the weak-topology.
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Exercise 15 (4 points). Show that the map T : R/Z → R/Z preserves the Lebesgue measure µ on
R/Z. Possible approach: Show first that µ(T−1(B)) = µ(B) for every interval B ⊂ T, then use magic from
your integration theory course.

Exercise 16 (5 points). Prove Rajchman’s Lemma: Let (fk) be a sequence of bounded measurable
functions on a probability measure space (X,µ) with

sup
k

‖fk‖∞ <∞ and 〈fj, fk〉L2(X,µ) = 0, for all j,k.

Then 1
n

∑n
k=1 fk(x)→ 0 µ-almost everywhere. Hint: Show that

∑
n>1

∥∥∥ 1
n2

n2∑
k=1

fk

∥∥∥2

2
<∞,

use Borel-Cantelli’s Lemma, and use a "sandwich"-argument.

Exercise 17 (5 points). A real number x ∈ [0, 1) is called 2-normal if the limits

di(x) := lim
N

|
{
n ∈ [1,N] | xn = i

}
|

N
, i=0,1,

where xn denotes the n’th digit in the binary expansion of x exists and equals 1/2 for i = 1, 2.
Show that Lebesgue almost every number in [0, 1) is 2-normal. Hint: Show that xn = i depending
on whether 2nx mod 1 ends up in [0, 1/2) or [1/2, 1), and use the ergodicity of the map x 7→ 2x (mod 1),
together with Birkhoff’s Ergodic Theorem.

Exercise 18 (3 points). Show that if X is compact and metrizable, and T : X → X is continuous,
then the set PT (X) of T -invariant Borel probability measures on X is weak*-compact.

Exercise 19 (4 points). Show that the system (X̂,µ⊗ λ, T̂) defined in (4.3) is ergodic.

Exercise 20 (4 points). Show that if X is a compact metrizable space, then C(X) is separable in the
uniform norm (Is the same true if the assumption that X is compact is dropped?).
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