Notes on bootstrap Fall 200%
How to generate data and set up confidence intervals.

Bootstrap can be used to construct CI in nonlinear regression models, or when the error distri-
bution is non-normal. Here’s a few notes on bootstrap.

1 Generating data ﬂﬁﬁé@ Wﬁg Q&M@@

In class we talked about parametric and non-parametric procedures. a4
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1.1  Parametric bootstrap

Let’s say you have a data set consisting of n data objects (x;, yi)-1 where x; may be a vector
of multiple explanatory variable observations.

Lok b” ¢ Fit your model to the data (y; = 8y + Zf;ll Bjij). Record the coefficient estimates ,é’j,
@e&i&uﬁﬂa} J=0,--,p—1
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e5h tutn * Generate a new set of residuals (M), from distribution .
Lodn as % is for example N(0,6%) (with 62 estimated from the model fit). In the lab you can also
O ‘ S simulate errors from ty where you choose the degrees of freedom: set e; to & * t; where
NLS ti ~ tay.
D Create the bootstrap data set (x;,3?)1, where y? = fo + S~ fiz,, 4 b
ié@»f*;“'%?@@e} ¢ Lreate the bootstrap data set (z;,y7), where y? = fo + 251 Bz + € |
1.2 Non-parametric bootstrap
Let’s say you have a data set consisting of n data objects (z;, Yi)ie1 where x; may be a vector
of multiple explanatory variable observations.
&?\V&ﬁi g\ . —1 . A
"’i"‘{’ ) * Fit your model to the data (y; = Gy + 2521 Bizij). Record the coefficient estimates G;,
o e J=0, - p—-1
e |
f e Standardize the residuals (€l = (e;/VI = hig )iy
® Draw new residuals e? by resampling from é; (draw n residuals el from (&), with re-
placement).
L » Create the bootstrap data set (g, gf)le where y? = Go + ;’;1 /:S)j.’lfij + ef

Note, a second variant of non-parametric bootstrap is to resample the data pairs (zi,y) directly,
without specifying a model.



1.3 The principle

The idea behind bootstrap is to create a data set for which we know the true model, and can
thus investigate (or estimate) the sampling distribution of estimators of interest directly. In the
above examples, for bootstrap data y? the true model 293] j=0,-,p—1L The principle
underlying bootstrap is thus X X
i ~B _abi= b
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By estimating, or observing, the sampling distribution of ;3;’ (or the pivotal element ?%Z?;H)
3 ‘j

across multiple bootstrap data sets, we get an idea about the sampling distribution of ﬁj from
the real data.

2 Bootstrap confidence intervals

There are several approaches to constructing bootstrap confidence intervals.

The normal-theory interval assumes that the statistic T (e.g. a regression coefficient estimate)
is normally distributed, and uses the bootstrap estimate of sampling variance, and perhaps of
bias, to construct a 100(1 - a)-percent confidence interval of the form

(T — B*) £ 21_a/2SE(D),

where z refers to the normal distribution quantiles (e.g., 1.96 for a 95-percent confidence interval,
where a = .05).
Here, B* is the bias estimate obtained from the bootstrap: oy (T — T%/B, and SE(T) =

\/ S B (T —T*)/(B — 1) is the bootstrap estimated standard error of statistics T (where T =
ST/ B).

An alternative approach, called the bootstrap percentile interval, is to use the empirical quantiles
of T to form a confidence interval: [T°(.025),T 5(.0975)], where the end-points of the interval
correspond to the 2.5% and 97.5% percentiles of the bootstrap statistic values.

2.1 Pivotal method

The confidence intervals based on
(T — B*) % 21_0/pSE(T)

assume that the bootstrap 7% have the same sampling distribution as T'. However, this is not true
if we use the non-pivotal elements. We should instead use the t-statistic gt = (1* —T)/SE ().
We reformulate the confidence intervals as

(T~ B*) + q1-apSE(T),

where q;_, /2 percentile of 6°.
If the SE of the estimates T is unknown (like in non-linear regression) we need a second level of
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bootstrap to estimate SFE(T %), For each bootstrap sample b, we generate a second set of boot-
strap samples w,u = 1,--. U, Each bootstrap data u provides an estimate 7%®) We compute
SE(T?) =/ S (T — oy /(U 1). Usually we can get away with a smaller value for [/
than B, e.g. U = 25 and B = 1000,

In class, we used the most simple pivotal method where we assume SE(T) is known. In lincar

~ b R
regression models SE(f3;) is 6 ./ (X'X);;. Bach pivotal element is thus % For lab 3b, you
]
can use this method since you are only working with linear regression models.

/ 2.2 If you’re curious: More on the Percentile method

The percentile method is very easy to use. We simple generate bootstrap data and compute
the corresponding estimates 7°. The confidence interval is obtained from the lower and upper
percentiles of the bootstrap estimates.

However, when the distribution of T is skewed we can get poor coverage of the confidence
intervals generated with the percentile methods. There’s been work to alleviate this problem
using a bias-corrected and accelerated bootstrap method proposed by Brad Efron.

e Start by computing the proportion of 7% that is below the original T: P.

e Compute the corresponding normal quantile ¢~1(P). For example, if 50% of the T < T,
¢71(5)=0. InR, simple take P and use the function qnorm(P) ). The value z = ¢~1(P)
is called the correction factor.

T AT —~T)3
o Compute 4 = 6{%;’:?; v_f‘)g}g;z
Mowiz=] 2

* Using A we compute
2= Zi-a/2

- CL(Z - zl«—a/‘z)

ay = (/5(2“{*

and
2+ 2102

1- CL(’Z + Zl«—cr/?)

as = ¢(z +

® Pick giower as the largest integer < B x a;, and Qupper and the smallest integer > B as.
Note that if the correction factors z = 0 and g — 0, Giower = /2 and Gupper = 1 — /2.
That is, if the corrections are 0 we will use the regular percentiles of 7% to set up our
confidence interval.

e Finally, the confidence interval is obtained as
!Tb (qmwer)’ T&(Qltppc??”)}

For lab 3b, you can use the standard percentile method. That is, use the percentiles of the
bootstrap estimates to form the confidence intervals. Be aware however that the coverage of
these intervals may not be accurate, and feel free to explore the bias-corrected accelerated

methods in your project. /'
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