
Introduction to multiple regression. Fall 2010

1 Least Squares Estimation - multiple regression.

Let y = {y1, · · · , yn}′ be a n×1 vector of dependent variable observations. Let β = {β0, β1}′
be the 2 × 1 vector of regression parameters, and ε = {ε1, · · · , εn}′ be the n × 1 vector of
additive errors. We construct the so-called design matrix X (dimension n× 2) as follows:

X =


1 x1
1 x2
. .
1 xn


We can now write the simple linear regression model in two ways:

yi = β0 + β1xi + εi, i = 1, · · · , n, (1)

or equivalently
y = Xβ + ε. (2)

The matrix formulation easily generalizes to multiple linear regression, involving predictor
variables x1, · · · , xp−1. We construct the n× p design matrix X:

X =


1 x11 x12 . x1,p−1
1 x21 x22 . x2,p−1
. . . . .
1 xn1 xn2 . xn,p−1


The multiple regression can be written as

yi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi, i = 1, · · · , n, (3)

or equivalently
y = Xβ + ε, (4)

where β = {β0, β1, · · · , βp−1}′.

We use Least-Squares to fit a regression line to the data {xi, yi}ni=1, where xi =
{xi,1, · · · , xi,p−1}. That is, we find the regression coefficient estimates β̂ that minimizes
the criterion

Q(β) = (y −Xβ)′(y −Xβ) =
n∑

i=1

(yi − xiβ)2.

Taking derivatives with respect to β, and setting these to 0, we obtain the normal equations:

dQ

dβ
= −2X ′(y −Xβ) = 0⇒
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(X ′X)β = X ′y (5)

To solve for β we apply the inverse of X ′X to both sides of equation (5) and obtain:

β̂ = (X ′X)−1X ′y (6)

.

2 Properties

2.1 The Hat-matrix

Note, the fitted values can be written as

ŷ = Xβ̂ = X(X ′X)−1X ′y,

where we denote the n× n matrix X(X ′X)−1X ′ by H, the ”Hat-matrix”. The matrix H is
an idempotent projection matrix:

HH = H ⇒

X ′e = X ′(y − ŷ) = X ′(y −Hy) = X ′(I −H)y = X ′y − (X ′X)(X ′X)−1X ′y = 0,

i.e. the residuals are orthogonal to all predictor variables. In addition,

e′ŷ = ((I −H)y)′Hy = y′(I −H)Hy = 0,

i.e. fitted values are orthogonal to the residuals.

2.2 Mean and Variance

E[β̂] = E[(X ′X)−1X ′y] = (X ′X)−1X ′Xβ = β.

I.e., the least-squares estimates are unbiased.

V [β̂] = V [(X ′X)−1X ′y] = (X ′X)−1X ′V (y)X(X ′X)−1,

since X is not random. V (y) = σ2I, since the errors are uncorrelated (and therefore so are
the y′s). It follows that

V [β̂] = σ2(X ′X)−1.
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2.3 Interpretation

Note, X ′X ∼ Cov(X), where the diagonal of the p × p matrix X ′X is the variances of the
individual predictor variables (assuming x’s are centered). Now, what would happen in
some of the predictor variables are closely related (e.g. weight and height). If individual x’s
are correlated (close to linearly dependent), the X ′X matrix is near-singular. To solve for β
we need to apply the inverse of X ′X to both sides of equation (5). If X ′X is near-singular
this is a highly unstable operation.

What does this mean? Well, consider the regression model in equation (3). If x1 and x2
are closely related predictor variables, then we have no way of distinguishing between them
in the regression model. Let’s take the extreme example x1 = x2. If this is the case, then
any combination of β1, β2 where β1 + β2 is constant is an equally good regression model.
This extreme case is an example of an ”unidentifiable” model - there is no unique best model.

The effect of this is seen in the variance of the least squares estimates. If X ′X is
near-singular, the determinant is close to 0 and the terms in the inverse (X ′X)−1 can
get very large. Therefore, the variance of the estimates β̂ is high whenever predictor
variables are correlated. For correlated predictor variables x1, x2 you would expect β̂1
and β̂2 to have high variance and be negatively correlated (since their sum β1+β2 ' constant).

In Lab 2, section 5 you can study this phenomenon via a simulation study.

2.4 Basic Inference

If we assume ε ∼ N(0, σ2), the derivation of the t-test and F-test in the multiple regression
case follow from the same line of thought as the simple case.

We thus have:

• The test statistics Fobserved = [(SST − SSE)/(p− 1)]/[SSE/(n− p)], where SST is the
total sum of squares

∑
i(yi−ȳ)2, and SSE is the error sum of squares in the p-parameter

multiple regression fit:
∑

i(yi − ŷi)2.

• Under the null, βj = 0 for all j = 1, · · · , p− 1, both SST/(n− 1) and SSE/(n− p) as
well as SSreg/(p− 1) = (SST − SSE)/(p− 1) provide estimates for the error variance
σ2.

• Under the null, we thus expect Fobserved to be close to 1. In fact, under the null, Fobserved

should come from an F-distribution with p− 1 and n− p degrees of freedom.

• We compare Fobserved to the 1 − α quantiles of the Fp−1,n−p distribution. If Fobserved

exceeds the 1−α quantile, we reject the null at the α level, and conclude that at least
1 of β1, · · · , βp−1 is different from 0.
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Similarly, for inference on a single regression coefficient:

• We define the test statistic tobserved = β̂j/SE(β̂j), where SE(β̂j) =
√
σ̂2diag((X ′X)−1)j

is the standard error of the estimate β̂j (Remember, V (β̂) = σ2(X ′X)−1).

• If the true βj = 0, tobserved should come from a t-distribution with n − p degrees of
freedom.

• If the true βj 6= 0, the test statistic will be inflated (positive or negative).

• We reject the null hypothesis if |tobserved| exceeds the 1 − α/2 quantile of the tn−p-
distribution.

Caveat: if x’s are correlated, then so are their estimates. In that case, testing each regression
coefficient separately with a t-test can be misleading. Mathematically, you can’t really tell
them apart.

3 Writing a Lab Report

Some general guidelines:

1. Perform spell check! Structure the report. Use paragraphs. Don’t use colloquial
expressions or slang.

2. The goal of the lap report is for you to show me (convince me) that you understood
why I asked you to do certain things. Explain what you see in the figures. Comment on
the results, interpret the models. Draw conclusions, what is the take-home message?

3. Don’t contradict your results, or try to guess what I want to hear. This never works.
If something went wrong with the lab, or you don’t understand exactly what you see
- explain as best you can in an honest fashion. If you contradict your results because
they’re not what you expected, it only makes it look as if you didn’t understand the
point of the lab.

4. Finally, work independently.

3.1 Structuring a lab report

In general, I want you to follow the same structure as a research paper. However, we will
skip the ”Methods” section in the lab reports, though I do expect you to include this in your
project reports.

I Introduction: Here you state the purpose of the lab, and if you have a main result that
stands out, a main conclusion, you briefly highlight this as well (1/2-1 page).
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II Methods: Skip this section in the labs. In general, a methods section should define the
methods used in a stand-alone fashion (i.e. completely independently of the software
implementation you used). Limitations, assumptions, and computational difficulties
should be stated clearly.

III Results: This is the meat of the report. Make sure it’s not a laundry list, or a diary
of your time spent in the lab. If you tried lots of different things, but only a fraction
of them ”worked”, you only need to include figures and tables relating to the methods
that worked. However, it is always good to include a paragraph discussing other things
you tried, and why you think they didn’t work (e.g. particular data transforms, say).
You can also use an Appendix section to discuss such things.
Pay careful attention to structure in this section. Separate different steps of the analysis
with subsections and paragraphs (e.g. a data processing section, an initial modeling
section, an inference section, etc).
Place graphs and tables in the portion of the report where they are discussed in the
text, not as separate pages or in the appendix. You can use the appendix for analysis
results that are not pertinent for the lab, but you still wish to discuss.
Graphs and tables should the labeled and have captions. The captions should explain
fully what is in the graph (table), and include at least one sentence with a ”value
statement” - i.e. what story is the graph telling? Example: ”Observation 12 appears
to be an influential outlier.”
Do not cut-and-paste software output into your report. Results from the software
package should be put into tables.
Only include a graph or table if you discuss it in the body of the report, and vice versa.
Be selective! Surely not all graphs you examined are equally important? Before you
start writing, sit down and think about the graphs and results that lead to the main
conclusion. These are the ones you should discuss in great detail and highlight in the
report. Supplementary materials should not be allowed to take away focus from the
main message!

IV Conclusion: Here is your chance to shine. Tell me what you think the main results are.
Were there any surprises? Tell me about them.
Did the lab work raise any concerns? E.g. perhaps you had an idea about applying
something we did in the lab to another type of data, and thinking about it, you’re not
sure that would work - can you tell me why? Perhaps you’re concerned about this data
set - was it too noisy, too many outliers?
Any ideas for future work - what kind of analyses would you recommend one undertakes
to analyze this data set further?
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