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1 Generalized linear models

This lecture we will discuss how you fit logistic regression models to data. Along the way, we will learn
about weighted least squares (WLS) and nonlinear regression models (NLM).

� Linear model: assumptions and key results

– y = Xβ + ε sufficient model

– E(ε) = 0, symmetric

– V (ε) = σ2, constant error variance

– Uncorrelated errors, or slightly stronger independent observations yi

– no outliers

– May also assume ε ∼ N(0, σ2) -> t-test, F-test

– Closed for LS solution β̂ = (X ′X)−1X ′y, σ̂2 = RSS(β̂)/(n− p)

� Nonlinear model:

– y = f(x;β) + ε, where form of f assumed known

– E(ε) = 0, symmetric

– V (ε) = σ2, constant error variance

– Uncorrelated errors, or slightly stronger independent observations yi

– no outliers

– May also assume ε ∼ N(0, σ2) -> F-test, approx. t-test

– Generally no closed form solution: solve for β̂ using iterative least squares

– Caution: starting values and convergence issues, exact confidence intervals for β̂ may be
difficult to construct

� Generalized linear model:

– y ∼ fY (x;β), where the distribution fY assumed known, e.g. Gaussian, Poisson, Binomial.

– The fY induces a known Expectation-Variance relationship; E(yi) = b′(θi), V = φb′′(θi),
where b() is a function specified by the distribution fY . θ is called the canonical parameter
for which the likelihood takes on the most simple form (see below).
yi ∼ Poisson(µi)→ E(yi) = µi, V (yi) = µi
yi ∼ Binomial(mi, πi)→ E(yi) = miπi, V (yi) = miπi(1− πi)

– yi are assume drawn independently from fY (xi, β)

– We assume β and the mean parameter µ are related with the known link function such that:
E(yi) = µi and g(µi) = ηi = xiβ). ηi is called the linear predictor.

– Analogously to the model sufficiency of a linear model, we assume that the link function is
correct.
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– and no outliers...

The theory for generalized linear models (GLM) is based on maximum likelihood estimation for
exponential family distributions. Such distributions can be written as:

f(y|θ, φ) = exp
[yθ − b(θ)

φ
+ c(y, φ)

]
The parameter θ is the mean parameter, which we will assume is observation specific in the GLM setting
(θi = θ(xi)) and a function of the regression parameters β. φ is a scale parameter, analogue of σ2 in
the normal linear model. c(y, φ) is a normalizing constant to make fY a probability density. The key
component we work with is (yθ − b(θ)), which is the analogue of the RSS in linear regression.
Here are some examples:

Normal f(y) = 1
2πσ2 exp(− 1

2σ2 (y − µ)2), µ = xβ
log(f(y)) = 1

σ2 (yµ− µ2/2)− 1
2 (y2/σ2 + log(2πσ2)

→ θ = µ = xβ, φ = σ2 and b(θ) = θ2/2
Since θ = g(µ) = µ, the link function g() is the identity.

Poisson f(y|µ) = e−µµy

y!

log(f(y)) = y log(µ)− µ− log(y!)
→ θ = xβ = log(µ), µ = eθ, φ = 1 and b(θ) = µ = eθ

The link function g(µ) = log(µ) = θ = xβ

Binomial f(y|m,π) =
(
m
y

)
πy(1− π)m−y

log(f(y)) = y log( π
1−π ) +m log(1− π) + log(

(
m
y

)
)

→ θ = π
1−π , π = eθ

1+eθ
, φ = 1 and b(θ) = m log(1 + eθ)

The link function g(µ) = log( π
1−π ) = θ = xβ, the logit link

1.1 Properties of exponential families

If we assume fY has the form of equation (1), the log-likelihood can be written as

l(θ, φ|y) =
∑
i

(yiθi − b(θi)
φ

+ c(yi, φ)
)

If we want to maximize this likelihood, we take the derivative with respect to θ and set it to 0. This is
called the score function or equation:

U(θi) =
dl

dθi
=
yi − b′(θi)

φ
.

One can actually show that the

E[score] = 0 → E[
yi − b′(θi)

φ
] = 0 → E[yi] = b′(θi)

and similarly from the second derivative of the likelihood one can show that

V (yi) = φb′′(θi).

It is thus the b() function in the fY that specifies the mean-variance relationship of the distribution.
(Check this for the Poisson and Binomial examples above).

2 Iterative weighted least squares

How to we fit GLMs to data? We have two problems that need to be addressed; (1) Usually, E(yi) =
µi = g−1(θi = xiβ) is nonlinear in β
(2) Since V (yi) depends on the mean E(yi) we have non-constant variance.

Problem (2) is the easiest one to address: we will simply use weighted least squares. Problem (1) is
more complicated. We will use an iterative least squares procedure for this. Together, this results in the
Iterative (re)weighted least squares algorithm.
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2.1 Weighted least squares

Let us say that V (yi) = σ2
i , not constant. We can write this for the observation vector as V (y) = σ2V ,

where V is then a relative variance matrix. If it diagonal, we are simply allowing for different error
variance. If it contains non-diagonal elements, we are allowing for some correlation between observations.
If we for now ignore this variance structure and use least squares we obtain the solution β̂ = (X ′X)−1X ′y
which is unbiased even when V is not the identity and with variance

V (β̂) = σ2(X ′X)−1(X ′V X)(X ′X)−1

Let us now try using weighted least squares instead. We minimize∑
i

wi(yi − xiβ)2 =
∑
i

(w
1/2
i (yi − xiβ))2 = ||W 1/2y −W 1/2Xβ||2 = ||̃(y)− (̃X)β||2

where ỹ = W 1/2y and X̃ = W 1/2X are transformed variables. We solve the least squares problem in the
transformed system and obtain

β̂ = (X̃ ′X̃)−1X̃ ′ỹ = (X ′WX)−1X ′Wy

Now, if V (y) = σ2V and we use weights W = V −1

V (β̂) = σ2(X ′WX)−1

which one can show is the best (minimum) variance estimator (unbiased) that we can find. So we should
use weights wi inversely proportional to the observation variance.

Of course, in practise we won’t know the variances, σ2
i . However, there is an easy way to estimate

them. Let us assume we first fit a model using ordinary least squares. We obtain residuals, ei. Now, one
of the diagnostic plots we have used to check for constant error variance is to plot |ei| or e2i versus the
fitted values ŷi or an x-variable. We will now use the tool to estimate the non-constant error variance
instead. Under the model assumption E[εi] = 0 and V [εi] = E[ε2i ] = σ2

i . We will use e2i as a new
response variable and use either the fitted values ŷi or x-variables, or transformations thereof, as the pre-
dictors. We make a second regression for e2i and use the fitted values from this second model as estimates
σ̂i. We the use these as weights in a weighted least squares fit: wi = 1/σ̂2

i . If necessary, we can iter-
ate this process a couple of times until convergence (usually this procedure converges in just a few cycles).

We now know how to incorporate the non-constant variance. For GLMs we will know how the variance
depends on the mean parameter, V (yi) = φb′′(θi), e.g. V (yi) = πi(1 − πi) when y is Binomial. In an
iterative scheme, given an estimate π̂i we can compute an estimate of V (yi) and therefore the weights,
wi = 1/V (yi) = 1/(π̂i(1− π̂i)) in the Binomial case.

2.2 Nonlinear regression

We are now ready to address the second problem, that the mean function is non-linear in the regression
parameters β.

In nonlinear model, y = f(x;β) + ε, ε ∼ N(0, σ2). We estimate β by minimizing the nonlinear least
squares:

min
β

∑
i

(yi − f(xi;β)2 = ||y − f(x;β)||2.

We take the derivative of the NLS with respect to parameter βj and set it to 0:

∂NLS

∂βj
= −2

∑
i

(yi − f(xi;β)
∂f(xi;β)

∂βj
= 0, ∀ j

We denote the gradients ∂f(xi;β)
∂βj

= (∇f)j . Re-arranging the above expression we can write:

∑
i

yi
∂f(xi;β)

∂βj
=
∑
i

f(xi;β)
∂f(xi;β)

∂βj
, ∀ j
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or, stacking these for all j and writing in a matrix form:

(∇f)T y = (∇f)T f, (1)

where both f and ∇f may depend on β in a complex fashion.

Solving equation (2) may not be easy, and generally does not lead to a closed-form expression for β.
The solution is instead obtained through a sequence of linearized version of the nonlinear problem.

We write y = f(x;β) + ε. We linearize f near a point β0:

f(x;β) ' f(x;β0) +
∑
j

(βj − β0
j )
∂f

∂βj
|β0 , (2)

where ∂f
∂βj
|β0 is the gradient evaluated at β0. The nonlinear surface f is thus approximated by the

tangent plane at β0. We denote ∂f
∂βj
|β0 = Z0

j and f(x;β0)−
∑
j β

0
jZ

0
j = W 0, then we can write

f(x;β) 'W 0 + Z0
j β.

We think of Z0
j as the ”new x-variables” and W 0 as a known intercept in a regression model. We thus

update the β by regression y on Z0, i.e. assume a model approximation

(y −W 0) = Z0β + ε.

This is a linear model so we can solve for β using least squares:

β̂ = ((Z0)TZ0)−1(Z0)T (y −W 0).

This gives us a new points β0 = β̂ to linearize f around. We repeat this process until convergence. Note,
this algorithm can be quite sensitive to the chosen starting value β0. You should try a few different
starting points to make sure you are not converging to a local optimum.

Inference for non-linear models shares some similarities with linear models. Since the errors are
additive and normally distributed, nested models can be compared using the F − test. Also, AIC and
BIC can also be used for model selection since they are also based on just residual sums of squares.
Testing and confidence intervals for parameter βj is more complicated for nonlinear models. The reason

is that since β̂ is no longer linear in y, β̂ does not in general follow a normal distribution and the pivot
(β̂j−βj)
se(β̂j)

is no longer t-distributed. In addition, the standard error se(β̂j) may not be known. We got a

simple expression for this when we had a closed for solution for β in the linear model: V (β̂) = σ2(X ′X)−1

and so se(β̂j) = σ̂(X ′X)−1jj . Since the nonlinear regression fit was obtained through iterations of least
squares fit, we use the last linearization to obtain and estimate of the standard error. The final set of
gradients (treated as x-variables in the final iteration) are collected into a matrix

Fij =
∂f(xi; β̂

final)

∂βj
, F = Fij .

We approximate

V (β̂final) = σ̂2(FTF )−1, se(β̂j) = σ̂
√

(FTF )−1jj .

From this we can construct confidence intervals:

CI[βj ] = [β̂j ± tn−p(1− α/2)σ̂
√

(FTF )−1jj ].

Are there any problems with this approximation? (1) The linear approximation at the final iteration
may be a poor approximation, and then the CI baed on it can be misleading. If the f is very nonlinear
near β̂final, then perhaps the CI should be asymmetric. (2) Columns of F can be correlated which would
lead to instability in the estimates of β (collinearities).
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We can check the linear approximation at the final iteration use the profile function,

τ(βj) = sign(βj − β̂j)
√
F (βj), F (βj) =

RSS(βj)−RSS(β̂j)

σ̂2
.

That is, we compute the RSS near the fit β̂, changing the jth estimate to βj and keeping other βs fixed

at there estimate β̂. If
√
F (βj) is close to linear in βj , then RSS(βj) is near quadratic in βj and thus

the linear approximation is quite good. If this is the case, we trust the CIs above. If the profile function
indicates that the f is not linear in βj near the solution, we can’t trust the above CIs. We can instead
use the profile of the likelihood to construct intervals (for details see Inference class). What you do is

interpolate the profile (or the likelihood) near β̂j until the likelihood ratio to the left and to the right
hits the level χ2

1(1 − α) and read off the corresponding values of βj that then constitute the upper and
lower end of the interval. This is an approximate confidence interval but allows for asymmetry which
the t-test does not. A second alternative is to resampling techniques like bootstrap (which we will cover
in a future lecture if time permits).

We will work with NLS using a radioactive decay data set. We have data of radioactive counts from
blood samples observed at times (days) after an injection of a radioactive substance.

> library(stats)

> time <- c(0, 1, 2, 3, 4, 7, 9, 11, 14, 16, 18, 21, 24, 29, 32,

+ 35, 38, 46)

> count <- c(5149, 5435, 5358, 5462, 4755, 4457, 4538, 4378, 4189,

+ 4195, 3743, 3855, 3569, 3045, 3091, 3064, 2729, 2477)

> dataf <- data.frame(cbind(count, time))

> names(dataf) <- c("count", "time")

We start by plotting the data:

> par(mfrow = c(1, 1))

> plot(dataf$time, dataf$count, xlab = "time", ylab = "count")
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Figure 1: Decay count vs time.

In Figure 1 we see some evidence of a curvature in the data. A common model for radioactive counts is
exponential decay. We attempt a NLS fit, yi = a+ be−c∗ti + εi, where yi is the radioactive intensity and
ti is the time. a is the background radiation and b an indication of the dose of the substance at onset. c
is decay rate parameter.

> m1 <- nls(count ~ a + b * exp(-cc * time), data = dataf, start = list(a = 2000,

+ b = 3000, cc = 0.02))

> m1s <- summary(m1)

> print(m1s)
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Formula: count ~ a + b * exp(-cc * time)

Parameters:

Estimate Std. Error t value Pr(>|t|)

a 8.577e+02 1.108e+03 0.774 0.451089

b 4.532e+03 1.058e+03 4.282 0.000655 ***

cc 2.232e-02 8.323e-03 2.681 0.017092 *

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 185.4 on 15 degrees of freedom

Number of iterations to convergence: 4

Achieved convergence tolerance: 2.762e-07

The starting values I picked here were informed. I know that the half-life of the radioactive substance if
40 days. Thus a + b/2 = a + bec∗40 and thus c = log(2)/40. I pick a as close to the minimum observed
count and b as the maximum count minus a.
I try out a couple of different starting values and observe that I get convergence to the same final model.
(Try this out at home.)

We check the residual diagnostics.

> par(mfrow = c(2, 2))

> ma <- m1s$p[1, 1] + m1s$p[2, 1] * exp(-m1s$p[3, 1] * dataf$time)

> plot(dataf$time, dataf$count, xlab = "time", ylab = "count",

+ main = "data")

> lines(dataf$time, ma)

> qqnorm(m1s$res)

> qqline(m1s$res)

> plot(ma, m1s$res, main = "residuals on fitted")

> plot(dataf$time, m1s$res, main = "residuals on time")
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Figure 2: Diagnostics - NLS.

In Figure 2 we examine the fit and the residuals. The model looks like a good fit overall, but with a
slight indication that the error variance is non-constant (in fact, count data is usually modeled as Poisson
which has a variance linearly depended on the mean).

We can use subset models to test hypotheses of interest, e.g. that the background radiation a = 0.
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> m2 <- nls(count ~ b * exp(-cc * time), data = dataf, start = list(b = 3000,

+ cc = 0.05))

> m2s <- summary(m2)

> print(m2s)

Formula: count ~ b * exp(-cc * time)

Parameters:

Estimate Std. Error t value Pr(>|t|)

b 5.356e+03 7.801e+01 68.66 < 2e-16 ***

cc 1.734e-02 8.904e-04 19.47 1.45e-12 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 181.7 on 16 degrees of freedom

Number of iterations to convergence: 4

Achieved convergence tolerance: 3.787e-06

We use an F-test to compare the two models:

> print(anova(m1, m2))

Analysis of Variance Table

Model 1: count ~ a + b * exp(-cc * time)

Model 2: count ~ b * exp(-cc * time)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 15 515521

2 16 528080 -1 -12559 0.3654 0.5545

The test supports the hypothesis that the background radiation is 0.

Another issue with the original fit is that we didn’t restrict the parameters a and b to be positive.
We can guaranties this by doing a re-parametrization.

> m3 <- nls(count ~ exp(a) + exp(b) * exp(-cc * time), data = dataf,

+ start = list(a = log(2000), b = log(3000), cc = 0.05))

> m3s <- summary(m3)

> print(m3s)

Formula: count ~ exp(a) + exp(b) * exp(-cc * time)

Parameters:

Estimate Std. Error t value Pr(>|t|)

a 6.754238 1.292369 5.226 0.000102 ***

b 8.418909 0.233543 36.049 5.48e-16 ***

cc 0.022316 0.008323 2.681 0.017092 *

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 185.4 on 15 degrees of freedom

Number of iterations to convergence: 5

Achieved convergence tolerance: 6.904e-07

The overall fit (RSS) does not change, but this can help with interpretation.

Can we trust the t-tests in the model summary above? We check the profile function of the a, b and
c estimates:
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> pf <- profile(m1, alphamax = 0.05)

> par(mfrow = c(1, 3))

> plot(pf)

For the rate parameter, c the profile function indicates that the CIs and t-test based on the linear
approximation works well (see Figure 3). For a and b we should be a bit concerned and perhaps use a
profile method or try a re-sampling based approach (see upcoming lecture).

> print(confint(m1))

2.5% 97.5%

a -9.049410e+03 2.185836e+03

b 3.270914e+03 1.431937e+04

cc 5.075709e-03 4.116787e-02
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Figure 3: Profile plots.

2.3 IWLS

We are now ready to construct an algorithm to fit a generalized linear model to the data. We will
incorporate the weighted least squares to deal with the non-constant variance and an iterative approach
to handle the nonlinearity in β.

0 We have E(yi) = µi, g(µi) = ηi = xiβ. We linearize the link function g(µ) near a points µ0:

g(µ) ' g(µ0) + (µ− µ0)dg(µ)dµ |µ0

We denote η0 = g(µ0) the starting point of the linear predictor, and dg(µ)
dµ = dη

dµ |η0

1 We denote the initial values β0 → η0i = xiβ
0 → µ0

i = g−1(η0i )

2 ”Working values”Z0 = η0 + (y−µ0) dηdµ |0, a linear approximation of g() near η0 with µ replaced by

the data y (so kind of linearizing the data).

The ”working weights”, (W 0)−1 =
(
dη
dµ |0

)2
V0, where V0 = b′′(θ0) = dµ

dθ 0
is the variance of y

assuming the current β0 (known for each distribution family). The working weights are thus
inversely proportional to V (Z0)
So the weights that we use are inversely proportional to the observation variance.

3 Update the estimate by regression Z0 on X using weights W 0.
This gives us βnew → ηnew = xβnew → replace η0 with this in step [1] and iterate until convergence.

One can show that the IWLS is the same as maximizing the loglikelihood (or a Newton-Rhapson
approach to finding the zero-crossing of the derivative of the loglikelihood).
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3 Validation and Inference

For linear and nonlinear regression models with additive gaussian errors, the F-test and t-test are our
main preliminary investigative tools. Here, the RSS will be replaced with the residual deviance, which
is just -2 times the maximized loglikelihood. For a model m we denote the corresponding deviance by
D(m). The quantity D(m)/φ is called the scaled deviance (RSS/σ2 in linear models), and under the
normal error assumption is distributed as χ2

n−p (if the model is adequate). This also holds true, asymp-
totically (large n), in the GLM case.

D(m)
φ ∼ χ2

n−p if the model m is adequate.

Instead of the goodness-of-fit F-test, we have the χ2-test. If the observed D(m)/φ exceeds χ2
n−p(1−α)

we reject the model m’s adequacy at level α. If this happens, you should try transforming the xs, other
link functions, or perhaps switch to another distribution family (e.g. if the Binomial model doesn’t work,
try a Beta-Binomial).

The dispersion factor φ is assumed known in Binomial and Poisson models (equal to 1). It can also

be estimated from the data as φ̂ = D(m)/(n− p) (compare σ̂2 = RSS/(n− p)). If φ̂ is much larger than
1, we say that our data is overdispersed (compared with a standard Binomial or Poisson model.). If this

happens we have two options; (1) a quick fix - inflating statistics with the factor φ̂; or (2) pick a model
that allows for overdispersion.

3.1 ANODEV - analysis of deviance

The F-test used to compare nested models in linear regression is here replaced with ANODEV (analysis
of deviance). Assume we have two models, m0 and m1 and m0 is a simplified version of m1 (nested).
The number of parameters are p0 and p1 respectively, and the deviance is D(m0) and D(m1). Under the
null hypothesis that m0 is sufficient,

D(m0)−D(m1)

φ
∼ χ2

p1−p0 .

We thus reject the model m0 is the scaled difference of deviances exceeds χ2
p1−p0(1− α).

If we see evidence of overdispersion, or we are using a model where the dispersion factor φ is not
known or given by the mean parameter, we can estimate φ̂ = D(m1)/(n − p1). We can then use an
approximate F-test (approximate unless the data is normally distributed) where

D(m0)−D(m1)

φ̂(p1−p0)
∼ Fp1−p0,n−p1 if m0 is sufficient.

3.2 Subset selection

We can use backward selection based on ANODEV (χ2 or F-test as above) or AIC or BIC. We can also
use AIC and BIC to compare all subset models (see previous lecture).

3.3 z-test and CIs

As in NLS, the final β̂ comes from a local linearization. The standard package outputs will provide you
with standard errors estimated as

se(β̂j) =
√

(X ′W finalX)−1jj φ,

where W final denotes the final weight function in the IWLS. The z-score is computed as

β̂j

se(β̂j)
.

The z − scores can be very misleading if;
(a) there is overdispersion (φ̂ is much greater than the assumed φ = 1 of Poisson and Binomial models).

One fix-it solution is to inflate all the se’s by a factor

√
φ̂ (we still use a z-test after since the t-test came
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from the normal error assumption, this fix-it just deals with the se estimate);

(b) as in the NLS case the final local linearization around β̂ may be a poor representation of the loglike-
lihood, so the z-based CI may not be accurate. We can check this using profile functions as in NLS: the
profile is given by

τ(βj) =

√
D(βj)−D(β̂j)

φ
.

If the profile appears linear in βj we can use the z-based interval. If not, we can use the approximate
profile confidence intervals or use re-sampling based methods like bootstrap.

4 Demo 12

We will revisit the radioactive decay data. We will now analyze two traces, for a healthy and a patient
with an illness. The hypothesis is that the disease alters the rate at which blood cells are regenerated
and replaced and thus the decay rate for the two traces may differ.

> library(stats)

> library(MASS)

> time <- c(0, 1, 2, 3, 4, 7, 9, 11, 14, 16, 18, 21, 24, 29, 32,

+ 35, 38, 46)

> count <- c(5149, 5435, 5358, 5462, 4755, 4457, 4538, 4378, 4189,

+ 4195, 3743, 3855, 3569, 3045, 3091, 3064, 2729, 2477)

> count2 <- c(5121, 5263, 4930, 5266, 4521, 4434, 4590, 4290, 4005,

+ 4123, 3659, 3785, 3538, 3159, 2946, 2956, 2643, 2500)

> dataf <- data.frame(cbind(count, count2, time))

> names(dataf) <- c("count", "count2", "time")

We start by reanalyzing trace 1 with GLM instead of NLS.

> gg <- glm(count ~ time, data = dataf, family = poisson)

> gs <- summary(gg)

> print(gs)

Call:

glm(formula = count ~ time, family = poisson, data = dataf)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.1583 -2.2911 -0.0216 2.1166 5.3168

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.584416 0.005528 1552.79 <2e-16 ***

time -0.017220 0.000290 -59.39 <2e-16 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3844.9 on 17 degrees of freedom

Residual deviance: 117.1 on 16 degrees of freedom

AIC: 303.35

Number of Fisher Scoring iterations: 3

> plot(dataf$time, dataf$count)

> lines(dataf$time, gg$fit, col = "green")

The fit in Figure 4 is almost identical to the NLS fit. That is not so strange since the counts are quite
hight and for large mean values a Poisson is well approximated by a normal distribution.
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Figure 4: GLM fit to count data

Using the z-test, both coefficients are significant, but remember this may be misleading if the profile
is nonlinear, or the scale factor far from 1 (overdispersion).

The goodness of fit test comes next:

> c("1-P(X2>Dev)=", 1 - pchisq(gg$dev, df = gs$df[2]))

[1] "1-P(X2>Dev)=" "0"

The Poisson model is rejected. There is evidence of overdispersion.

> par(mfrow = c(2, 2))

> plot(gg)
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Figure 5: Diagnostics of the Poisson model

For now, let us continue without addressing this particular issue:

> c("Z-interval")
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[1] "Z-interval"

> c("(Intercept)", round(gs$coef[1, 1] - 1.96 * gs$coef[1, 2],

+ 8), round(gs$coef[1, 1] + 1.96 * gs$coef[1, 2], 8))

[1] "(Intercept)" "8.57358047" "8.5952517"

> c("(time)", round(gs$coef[2, 1] - 1.96 * gs$coef[2, 2], 8), round(gs$coef[2,

+ 1] + 1.96 * gs$coef[2, 2], 8))

[1] "(time)" "-0.01778797" "-0.01665133"

We are concerned that the z-interval are misleading, not only because of the overdispersion but also
because of the linear approximation in the last iteration not being very accurate. We can use the profile
function to examine this.

> plot(profile(gg))
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Figure 6: Profile functions for the Poisson fit

The confint function in R uses the profile to construct asymmetric CIs for the parameter estimates.
As the profiles here indicate a linear approximation is adequate, the two confidence intervals almost
completely agree.

> print(confint(gg))

2.5 % 97.5 %

(Intercept) 8.57356662 8.59523749

time -0.01778852 -0.01665189

The estimated dispersion factor is estimated as

> c("phi-hat=", round(sum(residuals(gg, "pearson")^2)/gg$df.r,

+ 5))

[1] "phi-hat=" "7.32128"
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We now analyze the two traces jointly:

> A <- as.factor(c(rep(0, length(time)), rep(1, length(time))))

> Time <- rep(time, 2)

> Count <- c(count, count2)

> Dataf <- data.frame(cbind(Count, Time, A))

> names(Dataf) <- c("Count", "Time", "A")

> gg2 <- glm(Count ~ A * Time, data = Dataf, family = poisson)

> gs2 <- summary(gg2)

> par(mfrow = c(1, 1))

> plot(Time, Count)

> points(time, count, col = "red")

> points(time, count2, col = "green")

> lines(Time[A == 0], gg2$fit[A == 0], col = "red")

> lines(Time[A == 1], gg2$fit[A == 1], col = "green")

> print(gs2)

Call:

glm(formula = Count ~ A * Time, family = poisson, data = Dataf)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.6690 -1.8172 -0.2573 2.1118 5.3168

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.6172256 0.0123974 695.082 < 2e-16 ***

A -0.0328095 0.0078745 -4.167 3.09e-05 ***

Time -0.0178210 0.0006496 -27.436 < 2e-16 ***

A:Time 0.0006013 0.0004119 1.460 0.144

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 7366.39 on 35 degrees of freedom

Residual deviance: 215.75 on 32 degrees of freedom

AIC: 587.86

Number of Fisher Scoring iterations: 3

The patient*time interaction is not significant based on the z-test, and if anything, the z-test is too
generous since the data is overdispersed. The interaction is unlikely to be needed. Also, notice that the
curves are almost parallel (Figure 7).

The dispersion in the joint model is estimated as

> c("Dev/df=", round(gg2$dev/gs2$df[2], 5))

[1] "Dev/df=" "6.74225"

which is much greater than 1.

We ignore this for now, and construct profile intervals (which assumes φ = 1 since the likelihood
assumes this).

> print(confint(gg2))

2.5 % 97.5 %

(Intercept) 8.5929076634 8.641504762

A -0.0482436118 -0.017376192

Time -0.0190948693 -0.016548656

A:Time -0.0002060413 0.001408709
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Figure 7: Poisson - two traces

The confidence intervals indicate that we can drop the patient*time interaction. There is no change in
rate of decay, only an offset in the onset radioactive level.

> gg2b <- update(gg2, . ~ . - A:Time)

> anova(gg2b, gg2)

Analysis of Deviance Table

Model 1: Count ~ A + Time

Model 2: Count ~ A * Time

Resid. Df Resid. Dev Df Deviance

1 33 217.88

2 32 215.75 1 2.131

We update the model, dropping the interaction. Using ANODEV, this test compares the increase in
deviance to a χ2 distribution on 1 degrees of freedom.

> c("Pvalue", round((1 - pchisq(2.131, 1)), 6))

[1] "Pvalue" "0.144347"

The outcome of the test is that we can drop the interaction.

Can we drop the patient label alltogether?

> gg2c <- update(gg2, . ~ . - A - A:Time)

> anova(gg2c, gg2)

Analysis of Deviance Table

Model 1: Count ~ Time

Model 2: Count ~ A * Time

Resid. Df Resid. Dev Df Deviance

1 34 239.21

2 32 215.75 2 23.462

> c("Pvalue", round((1 - pchisq(23.462, 1)), 6))

[1] "Pvalue" "1e-06"
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No, the ANODEV does not support dropping the patient factor.

What happens when we take overdispersion into account? We use the approximate F-test:

> FF <- (gg2c$dev - gg2$dev)/(2 * (gg2$dev/gs2$df[2]))

> c("F-statistic=", round(FF, 6))

[1] "F-statistic=" "1.739939"

> c("Pvalue", round((1 - pf(FF, 2, gs2$df[2])), 6))

[1] "Pvalue" "0.191728"

This test does support dropping the patient factor completely. The z-test is clearly too generous since
we have overdispersion, but on the other hand the F-test is an ad-hoc approximation.

We explore using a different model, the negative binomial model, which allows for count data to have
excess variance compared with a Poisson (variance proportional to µ2).

> gg3 <- glm.nb(Count ~ A * Time, data = Dataf)

> gs3 <- summary(gg3)

> print(gs3)

Call:

glm.nb(formula = Count ~ A * Time, data = Dataf, init.theta = 848.7122187,

link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.80537 -0.86712 -0.09973 0.89403 2.02243

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.6151856 0.0316410 272.279 <2e-16 ***

A -0.0321781 0.0200241 -1.607 0.108

Time -0.0176904 0.0014757 -11.988 <2e-16 ***

A:Time 0.0005607 0.0009338 0.600 0.548

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for Negative Binomial(848.7122) family taken to be 1)

Null deviance: 1320.445 on 35 degrees of freedom

Residual deviance: 35.575 on 32 degrees of freedom

AIC: 472.04

Number of Fisher Scoring iterations: 1

Theta: 849

Std. Err.: 241

2 x log-likelihood: -462.036

If we use the negative binomial model to construct confidence intervals we get the following results:

> print(confint(gg3))

2.5 % 97.5 %

(Intercept) 8.55335429 8.677201728

A -0.07137420 0.007017876

Time -0.02057498 -0.014803658

A:Time -0.00126578 0.002387179
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This model also suggests that the patient factor can be dropped from the model.

> gg3c <- update(gg3, . ~ . - A - A:Time)

> anova(gg3, gg3c)

Likelihood ratio tests of Negative Binomial Models

Response: Count

Model theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)

1 Time 755.8674 34 -465.4930

2 A * Time 848.7122 32 -462.0363 1 vs 2 2 3.456692 0.1775779

The ANODEV based on the negative binomial agrees with the findings so far.

What if we use backward AIC selection for the Poisson model?

> step(gg2)

Start: AIC=587.86

Count ~ A * Time

Df Deviance AIC

<none> 215.75 587.86

- A:Time 1 217.88 587.99

Call: glm(formula = Count ~ A * Time, family = poisson, data = Dataf)

Coefficients:

(Intercept) A Time A:Time

8.6172256 -0.0328095 -0.0178210 0.0006013

Degrees of Freedom: 35 Total (i.e. Null); 32 Residual

Null Deviance: 7366

Residual Deviance: 215.8 AIC: 587.9

This doesn’t simplify the model at all. The AIC is less conservative than the Poisson ANODEV.

> step(gg3)

Start: AIC=470.04

Count ~ A * Time

Df Deviance AIC

- A:Time 1 35.937 468.40

<none> 35.575 470.04

Step: AIC=468.4

Count ~ A + Time

Df Deviance AIC

<none> 35.58 468.40

- A 1 38.82 469.63

- Time 1 1303.99 1734.80

Call: glm.nb(formula = Count ~ A + Time, data = Dataf, init.theta = 838.6941628,

link = log)

Coefficients:

(Intercept) A Time

8.60121 -0.02285 -0.01685
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Degrees of Freedom: 35 Total (i.e. Null); 33 Residual

Null Deviance: 1308

Residual Deviance: 35.58 AIC: 470.4

The backward selection using AIC and the negative binomial retains the patient factor as a main effect,
but it is a close call. The conclusion we can draw from this is that it is very important to check the
approximations and assumptions, especially overdispersion.
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Let us revisit the heart disease data:

> SA <- data.frame(read.table("SA.dat", sep = "\t", header = T))

> SA$ldl <- log(SA$ldl)

> SA$age <- log(SA$age)

> SA$famhist <- SA$famhist - 1

> gg <- glm(chd ~ ldl + age + sbp + alcohol + alcind + tobacco +

+ tobind + famhist + typea + adiposity + obesity, "binomial",

+ data = SA)

> print(summary(gg))

Call:

glm(formula = chd ~ ldl + age + sbp + alcohol + alcind + tobacco +

tobind + famhist + typea + adiposity + obesity, family = "binomial",

data = SA)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8419 -0.7773 -0.4187 0.8838 2.9126

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.145033 2.687598 -4.519 6.22e-06 ***

ldl 1.357091 0.419875 3.232 0.00123 **

age 1.826944 0.618120 2.956 0.00312 **

sbp 0.008857 0.006660 1.330 0.18358

alcohol 0.006813 0.006553 1.040 0.29851

alcind -0.296096 0.362703 -0.816 0.41429

tobacco 0.075608 0.035945 2.103 0.03543 *

tobind 0.490360 0.435641 1.126 0.26033

famhist 0.762985 0.284905 2.678 0.00741 **

typea 0.039715 0.015028 2.643 0.00822 **

adiposity -0.006932 0.037065 -0.187 0.85165

obesity -0.057064 0.054408 -1.049 0.29426

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 401.21 on 311 degrees of freedom

Residual deviance: 308.57 on 300 degrees of freedom

AIC: 332.57

Number of Fisher Scoring iterations: 5

The dispersion factor for the heart disease data is

> sum(residuals(gg, "pearson")^2/gg$df.r)

[1] 1.163297

which is not too far from 1. It does not look as if the heart disease data is overdispersed. Can we trust
the z-based intervals? We check the profiles of the model.

> plot(profile(gg))

The profile plots (Figure 8) look very good. We can conclude that the z-based tests and confidence
intervals are appropriate.

> confint(gg)
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Figure 8: Profile plots - heart disease

2.5 % 97.5 %

(Intercept) -17.675838891 -7.10763982

ldl 0.552234715 2.20404982

age 0.649943149 3.08246218

sbp -0.004070564 0.02218714

alcohol -0.006136452 0.01973955

alcind -1.008749380 0.41775682

tobacco 0.008139853 0.15009617

tobind -0.343916831 1.37601499

famhist 0.207476326 1.32697467

typea 0.010983782 0.07010697

adiposity -0.079821827 0.06637729

obesity -0.166818265 0.04902196

We will now try all subset selection. The program randomsplitsBin.R performs random splits over
a fraction of the data and compute prediction errors. We start by applying this to one random split only.

> frac <- 2/3

> ii <- sample(seq(1, dim(SA)[1]), round(dim(SA)[1] * frac))

> yy <- SA[ii, 10]

> xx <- as.matrix(SA[ii, -10])

> yyt <- SA[-ii, 10]

> xxt <- as.matrix(SA[-ii, -10])

> library(leaps)

> rleaps <- regsubsets(xx, yy, int = T, nbest = 100, nvmax = dim(SA)[2],

+ really.big = T, method = c("ex"))
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> cleaps <- summary(rleaps, matrix = T)

> tt <- apply(cleaps$which, 1, sum)

> BICvec <- rep(0, dim(cleaps$which)[1])

> AICvec <- BICvec

> y <- SA[, 10]

> x <- as.matrix(SA[, -10])

> data1 <- as.data.frame(cbind(y, x))

> for (zz in (1:dim(cleaps$which)[1])) {

+ gg <- glm(y ~ x[, cleaps$which[zz, 2:dim(cleaps$which)[2]] ==

+ T], "binomial", subset = ii, data = data1)

+ AICvec[zz] <- gg$dev + 2 * tt[zz]

+ BICvec[zz] <- gg$dev + tt[zz] * log(length(yy))

+ }

> plot(tt, AICvec, xlab = "modelsize", ylab = "AIC")

> plot(tt, BICvec, xlab = "modelsize", ylab = "BIC")
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Figure 9: AIC and BIC

In Figure 10 we compare AIC and BIC values for different subset models. The winning models are
obtained as

> print(aicmod <- cleaps$which[AICvec == min(AICvec), ])

(Intercept) age sbp adiposity obesity typea

TRUE TRUE FALSE FALSE TRUE TRUE

alcohol alcind tobacco tobind famhist ldl

FALSE FALSE TRUE FALSE TRUE TRUE

> print(bicmod <- cleaps$which[BICvec == min(BICvec), ])

(Intercept) age sbp adiposity obesity typea

TRUE TRUE FALSE FALSE FALSE FALSE

alcohol alcind tobacco tobind famhist ldl

FALSE FALSE TRUE FALSE FALSE FALSE

We try using the selected models for prediction on the test data.

> mmaic <- glm(y ~ x[, aicmod[2:length(aicmod)] == T], "binomial",

+ subset = ii)
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> mmbic <- glm(y ~ x[, bicmod[2:length(bicmod)] == T], "binomial",

+ subset = ii)

> ppaic <- predict(mmaic, as.data.frame(x[-ii, ]), "response")

> ppbic <- predict(mmbic, as.data.frame(x[-ii, ]), "response")

> print(PEaicK <- sum(yyt != round(ppaic[-ii]))/length(yyt))

[1] 0.2596154

> print(PEbicK <- sum(yyt != round(ppbic[-ii]))/length(yyt))

[1] 0.3365385

> source("randomsplitsBin.R")

> rr <- randomsplitsBin(SA, 10, 2/3, 100)

> print(rr$modseltab)

modselaic modselbic

[1,] "age" "100" "97"

[2,] "sbp" "28" "2"

[3,] "adiposity" "13" "4"

[4,] "obesity" "36" "5"

[5,] "typea" "92" "49"

[6,] "alcohol" "16" "1"

[7,] "alcind" "5" "0"

[8,] "tobacco" "80" "34"

[9,] "tobind" "29" "14"

[10,] "famhist" "91" "42"

[11,] "ldl" "96" "72"

> boxplot(cbind(rr$PEa, rr$PEb), names = c("AIC", "BIC"), main = "Prediction errors")

> boxplot(cbind(rr$modsizea, rr$modsizeb), names = c("AIC", "BIC"),

+ main = "Modelsizes")
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Figure 10: Prediction errors and modelsizes
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