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1 Classification and Regression Trees

The linear models we have covered so far are ideal if the model is additive, and can be refined to include
interactions. CART is a popular method that is ideal for interaction models where the outcome or re-
sponse takes on a near constant value for a particular combination of x-values. Note, CART can also be
generalized to models that are near linear for each x-value combination (called MARS) but we will work
with the basic CART model here.

CART models (Classification and Regression Trees) are easy and intuitive way to summarize the
data. CART is like a parlour game of "Twenty Questions”. The questions you can ask are related to
thresholds on the variables: e.g. "Is the observed value of variable z; less than or equal to 2, or greater
than 27”7. This kind of question is called a ”split”. Depending on which side of the split an observation
i falls, we will attribute a constant fitted value. There will be one fitted value for all the observations
for which the answer to the above question is "yes”, and similarly for all the observations for which the
answer is "no”. The gain of the split is measured in terms of RSS if our outcome is numerical, and
deviance (-2*loglikelihood) or misclassification error if the outcome is categorical.

I will outline CART for the numerical response case. Here, before the split the RSS is
> wi—9)*
i=1

After the split, let’s say n; observations answered “yes”, and ns observations answered "no”. The RSS

has now been reduced to
Sowi—m)+ Y (yi— )
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where

For each branch we can now ask a new question to refine the predictions. Again, this leads to a reduction
in RSS.

The combination of splits, e.g.
{X1 <2pn{X5 > 5} n{Xs < 2.3},

constitute a rectangle in, here, 3 dimensional space. This example rectangle corresponds to asking 3
questions. For each rectangle we calculate the mean value of the observations for which the answer to
each question is ”yes”. That is the corresponding prediction.

The results of the splits are illustrated using a "Tree”, where each split is a node and the branches
correspond to the different answers. The length of the branches are drawn proportional to the reduc-
tion in RSS. At the bottom of the tree we have the so-called "leaves” (a high-dimensional rectangle) for



which we calculate the predicted value from the mean of the observations corresponding to ”yes” answers.

Let us now discuss how to choose the split. There are two choices to be made for each split: the
variable j to split on, and where to split (2 in the above example). For each question you intend to ask,
you only worry about the current question, not the future ones. Thus, you need to identify which of the
total of p variables to ask about, and then perform a search for the optimal threshold. Optimality here
refers to minimizing the RSS we obtain after the split. This is a greedy search since we only look at
the optimal decision locally (the current question). Once we make a decision on a split we focus on the
next question. We will ask one question for the "yes” from the first question, and a potentially different
question for the "no”. We search for the optimal variable and threshold separately for each.

1.1 Validation and model selection

How many questions should we ask? If we ask questions until every observation has its own rectangle
we are clearly over-fitting. On future data, it is not plausible that the same detailed questions will
summarize the data well. To evaluate this we perform cross-validation. We cut the bottom branches of
the tree (pruning) until the cross-validation error increases.

As we did in regression, we can use random splits to analyze the stability of the tree model. By
counting the number of times a variable is picked to be part of the tree model, and how high up in the
tree it occurs, your get a measure of variable importance.

1.2 CART for classification

CART can also be used for categorical outcome data. Instead of letting each leaf represent a mean
value for y; : i in leaf, we apply a majority voting scheme. If the majority of the observations in a leaf
correspond to category A, we vote A.

1.3 More about CART

There are extensions of CART called MARS (for linear models in each rectangle) and subsampling of
variables for each split (Random Forests). Random Forests and the tree models averaged over random
splits (called Bagging) are among the best off-the-shelf classifiers. You can learn more about these
methods in the Multivariate class.

2 Demo 14

I will analyze a data set consisting of wines from two different regions in Australia. For each wine we
have data on color, hue, alcohol content, etc. I will use the package tree (), mainly because it’s easier to
access which variables are used in the model. The rpart() package is the more commonly used CART
program, with better validation methods included. Also, the demos use CART for 0/1 response data,
but you can just as easily use it for numerical response. The only thing below you have to change is the
prediction and the collection of performance statistics since it is set to compute misclassification errors
below (replace it with pMSE everywhere).

library(tree)

wine <- read.table("wine2.txt", header = T)

treel <- tree(as.factor(class) ~ alcohol + malicacid + alcalinity +
phenols + flavanoids + proanthocyanins + colorintensity +
hue, data = wine)

+ + Vv v VvV

v

par(mfrow = c(1, 1))
plot(treel)
> text (treel)

v

Here is the same code for the rpart () package:

> library(rpart)
wine <- read.table("wine2.txt", header = T)
> tree2 <- rpart(as.factor(class) ~

v

alcohol + malicacid + alcalinity +
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Figure 1: (tree) CART for the wine data.

+ phenols + flavanoids + proanthocyanins + colorintensity +
+ hue, data = wine)

> par(mfrow = c(1, 1))
> plot (tree2)
> text (tree2)

alcohol»=12.81
T

alcalinity< 21.25

malicacid>=1.49
0 1 1

Figure 2: (rpart) CART for the wine data.

> cvtreel <- cv.tree(treel, K = 10)
> plot(cvtreel)
> print(cvtreel)

$size
[1] 54321

$dev
[1] 47.78051 47.02670 53.27639 55.07763 181.10916



$k
[1] -Inf 5.09952 12.96154 23.35838 125.95541

$method
[1] "deviance"

attr(,"class")
[1] "prune" "tree.sequence"
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Figure 3: CV deviance for tree (CART)

In Figure [3] I depict the cross-validated deviance. Pick the tree with the smallest deviance.

> mim <- min(cvtreel$dev)

> sizesel <- max(2, max(cvtreel$size[cvtreel$dev == mim]))
> ptreel <- prune.tree(treel, best = sizesel)

> plot(ptreel)

> text(ptreel)

In Figure (4] the pruned tree is shown. I can use this for prediction:

> predtree <- predict.tree(ptreel, newdata = wine, type = "class")
> print(table(wine$class, predtree))

predtree
0 1
059 0
1 9 62

Note, this is the training error.

Using rpart () the validation is done using the plotcp command.

> plotcp(tree2)
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Figure 4: Pruned tree
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Figure 5: rpart validation plot. Pick the smallest tree such that the mean relative error is below the min
error + its standard error (horizontal dashed line).



Returning to tree() and its generated model, let us try repeated splitting of the data into training
and testing to see how the model performs.

> B <- 100

> Nbrleaves <- matrix(0, B, 1)
> UsedMatrix <- matrix(0, B, 8)
> UsedFirst <- matrix(0, B, 8)
> MSEMatrix <- matrix(0, B, 2)
> for (bb in (1:B)) {

+

+ + + + + ++F+++FFFFE A+ FE A+ o+

}

iie <- sample(seq(1, dim(wine)[1]), 50)

trdata <- wine[-iie, ]

tedata <- winel[iie, ]

treel <- tree(as.factor(class) ~ alcohol + malicacid + alcalinity +
phenols + flavanoids + proanthocyanins + colorintensity +
hue, data = trdata)

cvtreel <- cv.tree(treel, K = 10)

mim <- min(cvtreel$dev)

sizesel <- max(2, max(cvtreel$size[cvtreel$dev == mim]))

ptreel <- prune.tree(treel, best = sizesel)

Nbrleaves[bb] <- length(unique(ptreel$where))

predtree <- predict.tree(ptreel, newdata = tedata, type = '"class")

rlabels <- tedatal, 1]

MSEMatrix[bb, 1] <- sum(rlabels != predtree)/length(predtree)

predtree <- predict(treel, newdata = tedata, type = '"class')

MSEMatrix[bb, 2] <- sum(rlabels != predtree)/length(predtree)

UsedMatrix[bb, as.real (summary(ptreel)$used) - 1] <- UsedMatrix[bb,
as.real (summary (ptreel)$used) - 1] + 1

UsedFirst[bb, as.real (summary(ptreel)$used)[1] - 1] <- UsedFirst[bb,
as.real (summary (ptreel)$used) [1] - 1] + 1

The above code stores the used variables (both in terms of overall appearance, and also if they get
picked as the first variable used in the tree).

> boxplot (MSEMatrix[, 1] - MSEMatrix[, 2], main = "PE-CV - PE-full")
> abline(h = 0)
> print(c(mean(MSEMatrix[, 1]), mean(MSEMatrix[, 2])))

[1] 0.0898 0.0966

In Figure [0] I show the prediction error difference using a pruned tree and full tree. Above I also sum-
marize the mean misclassification error rate for the pruned tree models and the full tree models.

> sizetrees <- apply(UsedMatrix, 1, sum)
> hist(sizetrees, main = "Size trees'")
> print(c("NbrLeaves", fivenum(Nbrleaves)))

(1]

"NbrLeaves" "2" non non ngn ngn

> modtab <- apply(UsedMatrix, 2, sum)/B
> print (cbind(names (wine) [-1], modtab))

(1,1
2,1
(3,]
4,]
(5,1
(6,1
7,1
(8,]

modtab
"alcohol" "0.98"
"malicacid" "0.16"
"alcalinity" "0.11"
"phenols" "0.04"
"flavanoids" "0.13"
"proanthocyanins" "O"
"colorintensity" "0.18"
"hue" "o"
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Figure 6: Prediction error (Pruned tree - full tree)
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Figure 7: Size of pruned trees

> modfirst <- apply(UsedFirst, 2, sum)/B
> print (cbind (names (wine) [-1], modfirst))

(1,1
[2,]
(3,1
4,1]
(5,]
(6,1
(7,1
(s,]

"alcohol"
"malicacid"
"alcalinity"
"phenols"
"flavanoids"
"proanthocyanins"
"colorintensity"
"hue"

modfirst
"0.96"
IIOII

IIOII

IIOII

IIOII

IIOII
"0.04"
IIOII



Let’s also try CART on the heart disease data.

> library(tree)
> SA <- read.table("SA.dat", header = T)

> treel <- tree(as.factor(chd) ~ log(age)
typea + alcohol + as.factor(alcind)
as.factor(famhist) + log(ldl), data
c(1,

+
+

> par(mfrow =
> plot(treel)
> text(treel)

1))

log(age) 5 3.44986
T

SA, minsize = 5)

tobaccg < 1.43

typea < 68.5

I
obesi 22,058

log(dIiy <h 25668
ooi(WF

Figure 8: Heart disesase - full tree

> cvtreel <- cv.tree(treel, K = 10)
> plot(cvtreel)
> print(cvtreel)

$size
[1] 43 42 41 39 38 37 34 32 31 29 28 26 24 21 20 19 18 14 13 7 6 4 3 2

$dev

[1] 862.9800 804.
[9] 672.5868 637.
[17] 585.7963 573.

[25]

$k
(1]
(8l

[15]

422.5035

—Inf
5.438701
6.401576

$method

[1]

attr
(1]

"deviance"

(,"class")
||prune n

D O

7202 804.7202 795.7206 709
5689 608.9491 610.9610 600
8722 508.7562 508.7562 470

.566689 4.575312 4.708744
.487169 5.876211 5.973693
.578206 6.734171 6.791491
[22] 10.983953 12.

883866 14.535413 41.383382

"tree.sequence"

.9599 706.5886 695.7419
.4204 604.9403 606.8965
.9363 433.7639 432.4491

5.178277 5.268063 5.
6.212506 6.250428 6.
7.343314 7.360236 9.

+ sbp + adiposity + obesity +
+ tobacco + as.factor(tobind) +

694.0227
582.4419
421.1345

334298
350974
718246

1



> mim <- min(cvtreel$dev)

> sizesel <- max(2, max(cvtreel$size[cvtreel$dev == mim]))
> ptreel <- prune.tree(treel, best = sizesel)

> plot(ptreel)

> text(ptreel)

410 97 7.3 6.7 6.3 6.0 54 53 46
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log(age) 5 3.44986
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Figure 9: Heart disesase - CV deviance and pruned tree.

> predtree <- predict.tree(ptreel, newdata = SA, type = "class")
> print (table(SA$chd, predtree))

predtree

0 1
0205 O
1107 O

The error rate is not so good for the heart disease data (which we know from trying logistic regression).

Let’s try random splits of the data to check model stability and variable importance, as well as
prediction performance.

> B <- 100

> NbrLeaves <- matrix(0, B, 1)

> UsedMatrix <- matrix(0, B, 11)

> UsedFirst <- matrix(0, B, 11)

> MSEMatrix <- matrix(0, B, 2)

> for (bb in (1:B)) {

+ iie <- sample(seq(1, dim(SA)[1]), 50)

trdata <- SA[-iie, ]

tedata <- SA[iie, ]

treel <- tree(as.factor(chd) ~ log(age) + sbp + adiposity +
obesity + typea + alcohol + as.factor(alcind) + tobacco +
as.factor(tobind) + as.factor(famhist) + log(ldl), data = trdata,
minsize = 2)

cvtreel <- cv.tree(treel, K = 10)

mim <- min(cvtreel$dev)

sizesel <- max(2, max(cvtreel$size[cvtreel$dev == mim]))

ptreel <- prune.tree(treel, best = sizesel)

NbrLeaves [bb] <- length(unique(ptreel$where))

+ + + + + + + + + + +



+ + + + 4+ + + + + +

}

predtree <- predict.tree(ptreel, newdata = tedata, type = "class")

rlabels <- tedatal, 10]

MSEMatrix[bb, 1] <- sum(rlabels != predtree)/length(predtree)

predtree <- predict(treel, newdata = tedata, type = "class')

MSEMatrix[bb, 2] <- sum(rlabels != predtree)/length(predtree)

UsedMatrix[bb, as.real(summary(ptreel)$used) - 1] <- UsedMatrix[bb,
as.real (summary (ptreel)$used) - 1] + 1

UsedFirst[bb, as.real(summary(ptreel)$used)[1] - 1] <- UsedFirst[bb,
as.real (summary (ptreel)$used) [1] - 1] + 1

The mean prediction error and summmary of the selected tree sizes are

> print (mean (MSEMatrix[, 1]))

[1] 0.3576

> sizetrees <- apply(UsedMatrix, 1, sum)
> print(fivenum(sizetrees))

[1]11125

> print (fivenum(NbrLeaves))

[1] 22236

> modtab <- apply(UsedMatrix, 2, sum)/B
> print (cbind(names (SA) [-10], modtab))

(1,1
[2,]
(3,1
[4,]
(5,]
(6,1
(7,1
(s,]
(9,1
[10,]
[11,]

modtab
"age" "0.73"
"sbp" "0.01"
"adiposity" "O"
"obesity" "0.01"
"typea" "0.22"
"alcohol" "o
"alcind" "o
"tobacco" "0.44"
"tobind" "o"
"famhist" "0.02"
"1d1" "0.16"

> modfirst <- apply(UsedFirst, 2, sum)/B
> print (cbind(names (SA) [-10], modfirst))

[1,]
[2,]
[3,]
(4,]
(5,]
(6,1]
(7,1
[8,]
[9,]
[10,]
[11,]

modfirst
"age" "0.67"
"sbp" "o"
"adiposity" "O"
"obesity" "o"
lltypeall IIOII
"alcohol" "o"
"alcind" "o"
"tobacco" "0.33"
"tobind" "o"
"famhist" "o
n 1d1 n n O n

10



Let’s try using CART to predict cholesterol.

> treel <- tree(1dl ~ log(age) + sbp + adiposity + obesity + typea +

+ alcohol + alcind + tobacco + tobind + as.factor(chd) + as.factor(famhist),
+ data = SA, minsize = 5)

> par(mfrow = c(1, 1))

> plot(treel)

> text(treel)

adiposity < 24.025
T

adiposity|< 21.605 as.factor(chd):a

adippsity]< 21.715
3.289 adiposity < 30.42 alcohol < 6.105

.54 p®sity < 39.53

85 m%ﬁpceogol 6&1}95! 3 besity § 24.14&factor(famhist):a
sbp 3.4047 8/
3_11152’;1503 77284 34 4.4adiposity < 35104 (pge) < 3.6499

Figure 10: Heart disesase - predicting ldl - full tree

> cvtreel <- cv.tree(treel, K = 10)
> plot(cvtreel)
> print(cvtreel)

$size
[1] 20 19 16 15 13 12 1110 7 5 3 2 1

$dev
[1] 1215.506 1192.125 1174.227 1144.154 1084.992 1074.909 1076.300 1093.349
[9] 1093.349 1112.158 1109.147 1116.858 1271.342

$k
[1] -Inf 13.86829 15.87540 16.56961 18.73548 20.05683 22.42151
[8] 29.72475 29.77289 30.93403 49.81390 60.39189 277.02590

$method
[1] "deviance"

attr(,"class")
[1] "prune" "tree.sequence"

> mim <- min(cvtreel$dev)

> sizesel <- max(2, max(cvtreel$size[cvtreel$dev == mim]))
> ptreel <- prune.tree(treel, best = sizesel)

> plot(ptreel)

> text(ptreel)

> predtree <- predict.tree(ptreel, newdata = SA)
> print (sum((SA$1dl - predtree) "2)/length(predtree))

11
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Figure 11: Heart disesase - ldl outcome - CV deviance and pruned tree.

[1] 2.07075

Let’s try random splits of the data to check model stability and variable importance, as well as
prediction performance.

> B <- 100

> NbrLeaves <- matrix(0, B, 1)

> UsedMatrix <- matrix(0, B, 11)

> UsedFirst <- matrix(0, B, 11)

> MSEMatrix <- matrix(0, B, 2)

> for (bb in (1:B)) {

+ iie <- sample(seq(l, dim(SA)[1]), 50)

trdata <- SA[-iie, ]

tedata <- SA[iie, ]

treel <- tree(ldl ~ log(age) + sbp + adiposity + obesity +
typea + alcohol + as.factor(alcind) + tobacco + as.factor(tobind) +
as.factor(chd) + as.factor(famhist), data = trdata, minsize = 2)

cvtreel <- cv.tree(treel, K = 10)

mim <- min(cvtreel$dev)

sizesel <- max(2, max(cvtreel$size[cvtreel$dev == mim]))

ptreel <- prune.tree(treel, best = sizesel)

NbrLeaves[bb] <- length(unique(ptreel$where))

predtree <- predict.tree(ptreel, newdata = tedata)

rlabels <- tedatal, 12]

MSEMatrix[bb, 1] <- sum((rlabels - predtree)"2)/length(predtree)

predtree <- predict(treel, newdata = tedata)

MSEMatrix[bb, 2] <- sum((rlabels - predtree)"2)/length(predtree)

UsedMatrix[bb, as.real(summary(ptreel)$used) - 1] <- UsedMatrix[bb,
as.real (summary(ptreel)$used) - 1] + 1

UsedFirst[bb, as.real (summary(ptreel)$used)[1] - 1] <- UsedFirst[bb,
as.real (summary (ptreel)$used) [1] - 1] + 1

+ + + + + ++F+F+FFFF A+ O+

}

The mean prediction error and summmary of the selected tree sizes are

> print(c(mean(MSEMatrix[, 1]), mean(MSEMatrix[, 2])))

[1] 3.714802 4.288631

12



> sizetrees <- apply(UsedMatrix, 1, sum)
> print(fivenum(sizetrees))

[1] 11359
> print (fivenum(NbrLeaves))
[1] 2 3 5 819

> modtab <- apply(UsedMatrix, 2, sum)/B
> print (cbind(names (SA) [-12], modtab))

modtab
[1,] "age" "0.36"
[2,] "sbp" "0.16"
[3,] "adiposity" "0.94"
[4,] "obesity"  "0.35"
[5,]1 "typea" no.2"
[6,] "alcohol" "0.58"
[7,] "alcind" "o"
[8,]1 "tobacco" "0.17"
[9,]1 "tobind" "0.01"
[10,] "chd" "0.49"
[11,] "famhist" "0.2"

> modfirst <- apply(UsedFirst, 2, sum)/B
> print (cbind(names (SA) [-12], modfirst))

modfirst
[1,] "age" "o"
[2,] "sbp" "o
[3,] "adiposity" "0.86"
[4,] "obesity" "0.14"
[5’] "typea" non
[6,] "alcohol" "o
[7,] "alcind"  "O"
[8,] "tobacco" "o"
[9,] "tobind" "0
[10,] "chd" "o
[11,] "famhist" "O"
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