
MSG500/MVE190

Linear Models - Lecture 15

Rebecka Jörnsten
Mathematical Statistics

University of Gothenburg/Chalmers University of Technology

December 13, 2012

1 Regularized regression

In ordinary least squares we assume that y = Xβ+ε, where X is the n×p design matrix, errors are uncor-
related and have constant error variance σ2. If the x-variables are correlated, the estimated coefficients
β̂ have high estimation variance and are correlated. This means that it is difficult to get a direct inter-
pretation of the x-variable effect on the response y. We called this phenomenon ”the collinearity problem”.

The source of the problem lies in the numerically unstable matrix inverse operation we perform to
estimate β:

β̂ = (X ′X)−1X ′y.

When the x’s are correlated, the X ′X matrix is near singular (since columns are near perfectly corre-
lated). Numerical instability of the inverse is something we encounter when x’s are correlated, but also
when the number of predictors (p) is large compared with the sample size n. Indeed, the inverse cannot
be computed if p > n.

What can we do to fix the problem?

1.1 Principal component regression

Let us take a closer look at the design matrix X. The singular value decomposition of X is

X = UDV ′, whereU ′U = I andV ′V = I.

The covariance matrix Cov(X) is proportional to X ′X = V D2V ′.
In Figure 1 I depict a data set where p = 2 and x1 and x2 are generated from a multivariate normal with

covariance matrix Σ =

(
1.5 1
1 1

)
. As you can see, the x-variables are correlated. I compute the SVD

of the matrix and depict the right component direction V : V1, V2 (the principal component directions).
The first component V1 comprises the direction in the data with maximum variance, which is the first
element of the diagonal matrix D. The second component V2 comprises the direction with the second
more variance, orthogonal to direction V1.

> library(MASS)

> x <- mvrnorm(250, mu = c(0, 0), Sigma = matrix(c(1.5, 1, 1, 1),

+ 2, 2))

> plot(x)

> prx <- prcomp(x)

> print(prx$sdev^2/sum(prx$sdev^2))

[1] 0.93025595 0.06974405

> abline(0, prx$rot[2, 1]/prx$rot[1, 1], col = 2)

> abline(0, prx$rot[2, 2]/prx$rot[1, 2], col = 3)

1

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−3 −2 −1 0 1 2

−
2

−
1

0
1

2

x[,1]

x[
,2

]

Figure 1: Rotating the coordinate system. 1st PC = red, 2nd PC = green

We can reexpress the data X in the new coordinate system comprised by the principal component
direction. That means, we rotate the data so that the red line above is the new x1 axis and the green is
the new x2 axis. The new x-variables in the rotated coordinate system are denoted X̃. Mathematically,
we construct the as X̃ = XV .

The new variables X̃ are ”ideal” in some sense for doing regression; (1) they are uncorrelated so we
don’t have the numerical instabilities of the original x-data; (2) they are ordered in terms of decreasing
spread. In the new coordinate system we have

X̃ : X̃ ′X̃ = V ′X ′XV = V ′V D2V ′V = D2

and so V (x1) = d21 > V (x2) = d22 > · · · .

In the new coordinate system we have

y = X̃β̃ + ε.

We use least squares to solve for β̃:
ˆ̃
β = (X̃ ′X̃)−1X̃ ′y.

In the new coordinate system, it follows that β̃ = V ′β, so we can always go from one model to the other
using the PC directions in V .

What are the properties of the PC regression estimates?

V (
ˆ̃
β) = σ2(X̃ ′X̃)−1 = σ2D−2.

So, the PC regression coefficient estimate are uncorrelated. In addition, their precision is the order of

the PCs. The first coefficient estimate
ˆ̃
β1 is the most precise, etc.

How do we use PC regression in practise? We can choose to select the top K PC variables a priori
(before we see y) as the ones we can estimate with highest precision. However, the PC decomposition
did not take y into account. It is therefore not at all guaranteed that the PCs with largest variance are
the ones related to y. We can therefore use standard F -tests or model selection approaches to select
between the PCs in the new coordinate system. (There is also the alternative to consider rotations of
the coordinate system that enhances the correlation between y and the new coordinates X̃ - this is called
Partial Least Squares (PLS).)

2

What are the pro’s and con’s of PC regression? Well, it is simple to use. The new coordinate are
uncorrelated so the numerical performance of selection etc is better. However, we have lost the direct
interpretation since each PC coordinate tends to involve all the x-variables. Recently, sparse PCA was
presented (Zou, Hastie, Tibshirani, 2004: http://www.stanford.edu/ hastie/Papers/sparsepc.pdf).
This allows you to explore a whole spectrum of rotation based methods. At one extreme, we use the
original X, which may have collinearity issues. At the other extreme, we use X̃ = PC(X), which are
uncorrelated but difficult to interpret. Between these extremes we have X̃ = sparsePC(X), where each
PC component x̃j involves only a subset of x-variables, and as a result cannot be guaranteed to be com-
pletely uncorrelated with other x̃k. The more sparse you make the PCs, the more collinearity remains
and the easier to interpret the models. The less sparse you make them, the more uncorrelated the x̃ are,
and each x̃ can now involve more x’s and so the models are more difficult to interpret.

Let’s try this out on the heart disease data.

> SA <- read.table("SA.dat", header = T)

> SA$famhist <- SA$famhist - 1

> ii <- sample(seq(1, dim(SA)[1]), 200)

> mm <- lm(ldl ~ age + sbp + adiposity + obesity + typea + alcohol +

+ alcind + tobacco + as.factor(tobind) + as.factor(chd) + as.factor(famhist),

+ data = SA, subset = ii)

> print(summary(mm))

Call:

lm(formula = ldl ~ age + sbp + adiposity + obesity + typea +

alcohol + alcind + tobacco + as.factor(tobind) + as.factor(chd) +

as.factor(famhist), data = SA, subset = ii)

Residuals:

Min 1Q Median 3Q Max

-3.4995 -1.1611 -0.1929 0.8509 6.5493

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.623119 1.270696 0.490 0.624440

age -0.015561 0.012855 -1.211 0.227602

sbp 0.003066 0.006014 0.510 0.610759

adiposity 0.109680 0.032128 3.414 0.000785 ***

obesity 0.023437 0.052892 0.443 0.658190

typea 0.003121 0.012498 0.250 0.803078

alcohol -0.013047 0.005676 -2.298 0.022635 *

alcind -0.012443 0.302454 -0.041 0.967227

tobacco -0.003835 0.033456 -0.115 0.908861

as.factor(tobind)1 0.690793 0.329182 2.099 0.037196 *

as.factor(chd)1 0.730676 0.298585 2.447 0.015319 *

as.factor(famhist)1 0.287189 0.259048 1.109 0.269005

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.717 on 188 degrees of freedom

Multiple R-squared: 0.3225, Adjusted R-squared: 0.2829

F-statistic: 8.136 on 11 and 188 DF, p-value: 1.427e-11

> selmm <- step(mm, trace = F)

> print(summary(selmm))

Call:

lm(formula = ldl ~ adiposity + alcohol + as.factor(tobind) +

as.factor(chd), data = SA, subset = ii)

3

Residuals:

Min 1Q Median 3Q Max

-3.5136 -1.1473 -0.1425 0.8808 7.2094

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.436500 0.422031 3.404 0.000807 ***

adiposity 0.107613 0.015182 7.088 2.43e-11 ***

alcohol -0.012557 0.005058 -2.483 0.013886 *

as.factor(tobind)1 0.572534 0.302032 1.896 0.059491 .

as.factor(chd)1 0.684710 0.269206 2.543 0.011752 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.703 on 195 degrees of freedom

Multiple R-squared: 0.3088, Adjusted R-squared: 0.2946

F-statistic: 21.78 on 4 and 195 DF, p-value: 7.175e-15

I first fit the model to a training data of size 200. I then use stepwise model selection to eliminate some
of the variables. I use these two models for prediction on the test data:

> pmm <- predict(mm, newdata = SA[-ii, -12])

> pselmm <- predict(selmm, newdata = SA[-ii, -12])

> print(sum(SA$ldl[-ii] - pmm)^2/length(pmm))

[1] 1.721037

> print(sum(SA$ldl[-ii] - pselmm)^2/length(pselmm))

[1] 0.5961549

Since this is a random exercise you may get slightly different results at home, but in general I expect the
prediction error to be better for the selected model rather than the more complex one using all variables.

We will now use PC regression to analyze the data. The package elasticnet allows you to compute
both regular and sparse PCA. I first standardize the variables, since PCA is easily dominated by the
scale of individual variables otherwise.

> library(elasticnet)

Loaded lars 0.9-8

> SA2 <- SA

> standardize <- function(x) {

+ x <- (x - mean(x))/sd(x)

+ }

> SA2 <- apply(SA2, 2, standardize)

> SA2 <- as.data.frame(SA2)

> names(SA2) <- names(SA)

As you can see below, fitting the model to standardized data makes no difference in regression since
this only means that the coefficients will be scaled accordinly:

> mm <- lm(ldl ~ age + sbp + adiposity + obesity + typea + alcohol +

+ alcind + tobacco + as.factor(tobind) + as.factor(chd) + as.factor(famhist),

+ data = SA2, subset = ii)

> print(summary(mm))

Call:

lm(formula = ldl ~ age + sbp + adiposity + obesity + typea +

alcohol + alcind + tobacco + as.factor(tobind) + as.factor(chd) +

4

as.factor(famhist), data = SA2, subset = ii)

Residuals:

Min 1Q Median 3Q Max

-1.7358 -0.5759 -0.0957 0.4221 3.2486

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.468744 0.154920 -3.026 0.002828 **

age -0.113570 0.093820 -1.211 0.227602

sbp 0.032815 0.064363 0.510 0.610759

adiposity 0.430298 0.126047 3.414 0.000785 ***

obesity 0.048468 0.109380 0.443 0.658190

typea 0.015506 0.062094 0.250 0.803078

alcohol -0.149085 0.064863 -2.298 0.022635 *

alcind -0.002699 0.065613 -0.041 0.967227

tobacco -0.008483 0.074000 -0.115 0.908861

as.factor(tobind)0.561641714195945 0.342649 0.163282 2.099 0.037196 *

as.factor(chd)1.38193602756419 0.362432 0.148105 2.447 0.015319 *

as.factor(famhist)1.13576838927991 0.142452 0.128494 1.109 0.269005

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8516 on 188 degrees of freedom

Multiple R-squared: 0.3225, Adjusted R-squared: 0.2829

F-statistic: 8.136 on 11 and 188 DF, p-value: 1.427e-11

The spca() function computes K principal components. The option para allows you to control the
sparsity. Below, I compute the ordinary PCs.

> newx <- spca(SA2[, -12], K = 3, para = c(0, 0, 0), type = c("predictor"))

> print(newx)

Call:

spca(x = SA2[, -12], K = 3, para = c(0, 0, 0), type = c("predictor"))

3 sparse PCs

Pct. of exp. var. : 27.5 13.5 11.3

Num. of non-zero loadings : 11 11 11

Sparse loadings

PC1 PC2 PC3

age -0.460 0.083 -0.189

sbp -0.310 0.010 0.145

adiposity -0.450 0.361 0.191

obesity -0.361 0.365 0.376

typea 0.000 -0.052 0.273

alcohol -0.170 -0.530 0.353

alcind -0.116 -0.525 0.433

tobacco -0.330 -0.242 -0.420

tobind -0.280 -0.325 -0.345

chd -0.304 -0.070 -0.259

famhist -0.194 0.036 0.127

In the new coordinate system, I fit the full model. Notice that the results in terms of R2 is identical
to the original fit, but which variables that are selected differs quite a lot. Notice, it is not the first PCs
that are the most correlated with y necessarily as the stepwise model selection demonstrates.

> newx <- spca(SA2[, -12], K = 11, para = rep(0, 11), type = c("predictor"))

> SA3 <- SA2

> SA3[, -12] <- as.matrix(SA2[, -12]) %*% t(newx$load)

5

> names(SA3) <- c("pc1", "pc2", "pc3", "pc4", "pc5", "pc6", "pc7",

+ "pc8", "pc9", "pc10", "pc11", "ldl")

> mm <- lm(ldl ~ pc1 + pc2 + pc3 + pc4 + pc5 + pc6 + pc7 + pc8 +

+ pc9 + pc10 + pc11, data = SA3, subset = ii)

> print(summary(mm))

Call:

lm(formula = ldl ~ pc1 + pc2 + pc3 + pc4 + pc5 + pc6 + pc7 +

pc8 + pc9 + pc10 + pc11, data = SA3, subset = ii)

Residuals:

Min 1Q Median 3Q Max

-1.7358 -0.5759 -0.0957 0.4221 3.2486

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02207 0.06087 -0.363 0.71730

pc1 0.11670 0.07465 1.563 0.11966

pc2 0.18392 0.07331 2.509 0.01296 *

pc3 0.09603 0.07610 1.262 0.20858

pc4 0.17088 0.09162 1.865 0.06371 .

pc5 0.08590 0.10623 0.809 0.41976

pc6 0.22047 0.08455 2.608 0.00985 **

pc7 0.13369 0.08014 1.668 0.09693 .

pc8 -0.32729 0.06387 -5.124 7.38e-07 ***

pc9 -0.10389 0.06445 -1.612 0.10866

pc10 -0.04857 0.07417 -0.655 0.51337

pc11 -0.01539 0.09398 -0.164 0.87008

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8516 on 188 degrees of freedom

Multiple R-squared: 0.3225, Adjusted R-squared: 0.2829

F-statistic: 8.136 on 11 and 188 DF, p-value: 1.427e-11

> selmm <- step(mm, trace = F)

> print(summary(selmm))

Call:

lm(formula = ldl ~ pc2 + pc4 + pc6 + pc7 + pc8 + pc9, data = SA3,

subset = ii)

Residuals:

Min 1Q Median 3Q Max

-1.8616 -0.5766 -0.0973 0.4370 3.6279

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01305 0.06054 -0.216 0.8296

pc2 0.17459 0.06976 2.503 0.0132 *

pc4 0.15793 0.07070 2.234 0.0266 *

pc6 0.19048 0.07394 2.576 0.0107 *

pc7 0.11713 0.07006 1.672 0.0962 .

pc8 -0.31248 0.04721 -6.619 3.48e-10 ***

pc9 -0.11635 0.05663 -2.054 0.0413 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8515 on 193 degrees of freedom

6

Multiple R-squared: 0.3047, Adjusted R-squared: 0.2831

F-statistic: 14.09 on 6 and 193 DF, p-value: 2.758e-13

Let’s try sparse PCA instead. Below, I ask spca to generate new coordinate that involve fewer
x-variables per component (controlled by para).

> newx <- spca(SA2[, -12], K = 11, para = rep(3, 11), type = c("predictor"))

> print(newx)

Call:

spca(x = SA2[, -12], K = 11, para = rep(3, 11), type = c("predictor"))

11 sparse PCs

Pct. of exp. var. : 16.0 13.6 8.2 9.1 8.7 8.0 7.1 7.3 5.1 4.9 1.6

Num. of non-zero loadings : 6 6 4 2 2 1 2 1 4 2 2

Sparse loadings

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

age -0.024 0.000 0.000 0.000 0.000 0 0.000 0 0.000 1.000

sbp 0.000 0.000 0.000 0.000 0.000 -1 0.000 0 0.000 0.000

adiposity -0.411 0.064 0.149 0.000 0.000 0 0.000 0 0.000 0.000

obesity -0.830 0.134 0.313 0.000 0.000 0 0.000 0 0.000 -0.021

typea 0.000 0.000 0.000 -0.995 -0.103 0 0.000 0 0.000 0.000

alcohol -0.093 -0.610 0.000 0.000 0.000 0 -0.411 0 0.673 0.000

alcind 0.000 -0.703 0.319 0.000 0.000 0 0.000 0 -0.639 0.000

tobacco -0.363 -0.193 -0.882 0.000 0.000 0 0.000 0 -0.223 0.000

tobind -0.042 -0.275 0.000 0.000 0.000 0 0.912 0 0.299 0.000

chd 0.000 0.000 0.000 0.000 0.000 0 0.000 1 0.000 0.000

famhist 0.000 0.000 0.000 -0.103 0.995 0 0.000 0 0.000 0.000

PC11

age 0.000

sbp 0.000

adiposity -0.902

obesity 0.432

typea 0.000

alcohol 0.000

alcind 0.000

tobacco 0.000

tobind 0.000

chd 0.000

famhist 0.000

Which x-variables contribute to each component?

> SA3 <- SA2

> SA3[, -12] <- as.matrix(SA2[, -12]) %*% t(newx$load)

> names(SA3) <- c("pc1", "pc2", "pc3", "pc4", "pc5", "pc6", "pc7",

+ "pc8", "pc9", "pc10", "pc11", "ldl")

> mm <- lm(ldl ~ pc1 + pc2 + pc3 + pc4 + pc5 + pc6 + pc7 + pc8 +

+ pc9 + pc10 + pc11, data = SA3, subset = ii)

> print(summary(mm))

Call:

lm(formula = ldl ~ pc1 + pc2 + pc3 + pc4 + pc5 + pc6 + pc7 +

pc8 + pc9 + pc10 + pc11, data = SA3, subset = ii)

Residuals:

Min 1Q Median 3Q Max

-1.7358 -0.5759 -0.0957 0.4221 3.2486

Coefficients:

7

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.022072 0.060869 -0.363 0.717296

pc1 0.177926 0.070451 2.526 0.012378 *

pc2 0.149085 0.064863 2.298 0.022635 *

pc3 0.047169 0.071865 0.656 0.512399

pc4 0.262358 0.113226 2.317 0.021575 *

pc5 -0.049810 0.107671 -0.463 0.644179

pc6 0.091491 0.069817 1.310 0.191643

pc7 0.017476 0.072191 0.242 0.808982

pc8 -0.380351 0.098401 -3.865 0.000153 ***

pc9 0.038246 0.065750 0.582 0.561474

pc10 -0.008483 0.074000 -0.115 0.908861

pc11 0.010445 0.065006 0.161 0.872524

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8516 on 188 degrees of freedom

Multiple R-squared: 0.3225, Adjusted R-squared: 0.2829

F-statistic: 8.136 on 11 and 188 DF, p-value: 1.427e-11

> selmm <- step(mm, trace = F)

> print(summary(selmm))

Call:

lm(formula = ldl ~ pc1 + pc2 + pc4 + pc8, data = SA3, subset = ii)

Residuals:

Min 1Q Median 3Q Max

-1.60378 -0.54248 -0.07835 0.41333 3.13306

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01767 0.05989 -0.295 0.76826

pc1 0.16330 0.06455 2.530 0.01220 *

pc2 0.15364 0.05709 2.691 0.00773 **

pc4 0.25372 0.08875 2.859 0.00472 **

pc8 -0.37762 0.04896 -7.713 6.16e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8435 on 195 degrees of freedom

Multiple R-squared: 0.3106, Adjusted R-squared: 0.2964

F-statistic: 21.96 on 4 and 195 DF, p-value: 5.604e-15

Try this at home: use PC regression and predict on the test data. Which degree of sparsity works
best? Does this beat the prediction performance of the stepwise selection model in the original coordinate
system?

8

1.2 Ridge regression

We have that

V (β̂) = σ2(X ′X)−1 = σ2V D−2V ′ = σ2

p∑
k=1

d−2k vkv
′
k.

The above expression is called the spectral decomposition of the estimation covariance matrix. If we look
at the total MSE(β̂) for all coefficients we have (since β̂ are unbiased)

MSE(β̂) = Trace(V (β̂)) = σ2Trace((X ′X)−1) = σ2

p∑
k=1

d−2k .

This total MSE is large if any of the eigen values of X ′X, d2ks are small. When does this happen?
Whenever there are x’s that are correlated so that the information in X is redundant. In the figure
above, you see that the second direction V2 has a small eigen value d22.

In least squares estimation we have that

E[β̂] = β, and V (β̂) = σ2(X ′X)−1.

The question we now ask if we can reduce the variance by allowing for some bias, and then obtain a lower
total MSE (since MSE is bias-squared + variance). The source of the high variance is the numerical
instability of the inverse operation on X ′X. We stabilize this by adding something to the diagonal of
X ′X before taking the inverse (you probably recognize this ”fix” from linear algebra). The resulting
model is called ridge regression.

β̂R = (X ′X + rI)−1X ′y.

Above, I have added the constant r to the diagonal element of X ′X. What are the properties of β̂R?

E[β̂R] = (X ′X + rI)−1X ′Xβ = (X ′X + rI)−1(X ′X + rI − rI)β = β − r(X ′X + rI)−1β.

The bias of this estimator is thus r(X ′X + rI)−1β, which depends on β and is thus larger for large β.
The bias is controlled by r and is 0 when r is 0. The estimation variance is

V (β̂R) = σ2(X ′X + rI)−1X ′X(X ′X + rI)−1,

which decreases with r. Put this all together and we have

MSE(β̂R) = Trace(V (D2 + rI)−1V ′[σ2V D2V ′ + r2ββ′]V (D2 + rI)−1V ′) =

= Trace(V (D2 + rI)−1[σ2D2 + r2β̃β̃′](D2 + rI)−1V ′) =

p∑
k=1

σ2d2k + r2β̃2
k

(d2k + r)2
≤

p∑
k=1

σ2d,k for some r,

where β̃ = V β.
In Figure 2 we see an example of the MSE dependency on r. For some sample sizes, true β and choices

of r, the ridge estimator can have smaller MSE than the LS estimator. It can be especially beneficial for
small n and high collinearity. You can choose r via cross-validation.

1.3 Shrinkage estimators

Another way of looking at this is to approach the regularization of the inverse X ′X from a model penalty.
First, let’s try to figure out what r is actually doing to the fit. We start with the special case when x’s
are uncorrelated. Then, X ′X = D2 and we have

(X ′X + rI) = (D2 + rI) = diag(d21 + r, d22 + r, · · · , d2p + r)

and you since β̂R = (X ′X + rI)−1X ′y you see that r has the largest impact on the coefficients j whose

x-variables have small spread dj . Essentially, the coefficient estimate β̂j you would get from LS is shrunk
by a factor that depends on r. We can write general shrinkage estimators as

β̂S =
β̂LS
1 + c

,

9

0.0 0.2 0.4 0.6 0.8 1.0

1.
05

2
1.

05
4

1.
05

6
1.

05
8

r

pM
S

E

Figure 2: MSE of ridge estimator (solid) as a function of r, with MSE of least squares as dotted horizontal
line.

where c > 0. The bias of β̂S is cβ/(1 + c) and variance V (β̂LS)/(1 + c)2, which is less that the estimation
variance of the LS estimator.
If the xs are correlated, then

X ′X + rI = V D2V ′ + rV V ′ = V (D2 + rI)V ′

and now the shrinkage factor has the largest effect in the PC directions k with the smallest d2k.

The idea behind shrinkage is that by not allowing β̂S to get too big, we cover ourselves from risk of
poor estimates having a huge impact on prediction. We just make every estimate smaller, which increases
the bias but suppresses the variance. With appropriate choices of shrinkage, the pMSE may be reduced
compared with ordinary LS.

1.4 Penalized regression

The least squares criterion is written as

min
β

(y −Xβ)′(y −Xβ) = ||y −Xβ||2 =

n∑
i=1

(yi − xiβ)2.

The penalized least squares problem related to ridge regression can be written as

min
β

(y −Xβ)′(y −Xβ) subject to||β||2 ≤ τ.

The constraint ||β||2 = β′β =
∑p
j=1 β

2
j . What the problem states is that we want to minimize LS but we

don’t want the sum of the estimates coefficients (squared) to be too large, i.e. we penalize the magnitudes

of the β̂s. This constraint can be achieved if all βs are small or perhaps if one is big but the rest are very
small, and of course anything in between these extremes.

How do we solve such constrained optimization problems? We use Lagrangian methods, replacing the
constraint with an added penalty

min
β

(y −Xβ)′(y −Xβ) + λβ′β.

We solve this penalized LS problem for different values of λ until the constraint β′β ≤ τ is fulfilled. If
λ = 0, we solve the LS problem. If the constraint is fulfilled for this solution we are done. If not, we
increase λ and solve again. If the constraint is fulfilled we’re done, otherwise we increase λ again. The

10

optimal solution to the constrained optimization problem is the one with the smallest λ that leads to a
solution that satisfies the constraint.

How do we solve the penalized LS problem? Let’s take the derivative with respect to each βj and set
it to 0. The derivative looks like

−2X ′(y −Xβ) + 2λβ = 0

which we can solve for β:
β̂ = (X ′X + λI)−1X ′y = β̂R.

So, the ridge estimator is actually identical to the penalized regression estimate with a constraint on the
sum of squares of the regression coefficients.

We can graphically represent what this constrained optimization routine does: In Figure 3 I illus-

−2 0 2 4 6

−
2

0
2

4
6

beta1

be
ta

2

Figure 3: Ridge regression penalty (red circles) and likelihood contour (elipsoid)

trate this for a problem with p = 2 parameters. I depict the penalty function in red for various values
of τ and compare with the likelihood (RSS) contours as a function of different values of β1 and β2,
where RSS(β1, β2) =

∑
i(yi − β1xi1 − β2xi2)2. Note that to be inside the red constraint region, for

some values of τ , the LS solution is not allowed and is instead shrunk toward the origin. Look for the
values on the red circle that’s the deepest inside the RSS contour plot - those are the regularized solutions.

Having formulated the penalized regression problem as above, we see that it is possible to explore
other type of constraints. This is currently a ’hot topic’ in statistical research. The LASSO estimator
uses the constraint shown in Figure 4 which you can see is diamond shaped. Mathematically, we can
write this penalized regression problem as

min
β

(y −Xβ)′(y −Xβ) + λ

p∑
j=1

|βj |,

i.e. we penalize the sum of absolute values of the coefficients. The impact this type of penalty is seen in
Figure 4. For some τ , it is possible that the solution inside the constraint region (diamond) that’s the
deepest inside the RSS contour (i.e. fits the data the best subject to satisfying the constraint) occurs at
one point of the diamond. In that case, some of the β’s are 0. In the above example, for the second
largest diamond the solution occurs for β1 = 0 so variable 1 is dropped from the model.

Of course, one can try any type of constraint region to encourage model fits of a certain kind. Below,
I use a square constraint region. In Figure 5 I illustrate a square constraint region. This will encourage
the βs to be equal.

11

−2 0 2 4 6

−
2

0
2

4
6

beta1

be
ta

2

Figure 4: Lasso regression penalty (red circles) and likelihood contour (elipsoid)

−2 0 2 4 6

−
2

0
2

4
6

beta1

be
ta

2

Figure 5: Oscar regression penalty (red circles) and likelihood contour (elipsoid)

In Figure 6 I illustrate what the regularization does to the regression coefficient estimate. I plot the
regularized estimate as a function of the LS estimate (which is indicated by the black 45degree line in
the plot). Ridge-regression is the red line, which as you see has a slope less than 1. That means, each
ridge coefficient is a reduced LS coefficient by a shrinkage factor. For large β we get a large bias (gap
between the black and red curves) and no β is ever set to 0. The green curve is the LASSO estimator.
As you see, some βs are just set to 0 whereas others are shrunk by a constant factor by deducting a
value from the estimate. Thus, the bias is constant and not larger for large β which is a huge benefit,
and since some β are set to 0 we get both reduced estimation variance and variable selection. This is
why the LASSO models have become so popular.

2 Demo 15

We try regularized regression on the heart disease data. The package lars include the LASSO models.

> library(lars)

> xx <- as.matrix(cbind(rep(1, dim(SA)[1]), as.matrix(SA[, -12])))

> colnames(xx) <- c("int", names(SA)[-12])

12

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

beta

re
g−

be
ta

Figure 6: Regularized estimates of β as a function of the LS estimator. Red is ridge, green is lasso.

> yy <- SA[, 12]

> ll <- lars(xx[ii,], yy[ii], intercept = F)

> print(summary(ll))

LARS/LASSO

Call: lars(x = xx[ii,], y = yy[ii], intercept = F)

Df Rss Cp

0 0 5120.7 1537.2339

1 1 4228.0 1236.3665

2 2 1034.2 154.8502

3 3 850.1 94.4032

4 4 767.6 68.4159

5 5 692.7 45.0121

6 6 691.8 46.6825

7 7 606.3 19.6774

8 8 584.7 14.3801

9 9 559.8 7.9224

10 10 559.1 9.6657

11 11 554.2 10.0169

12 12 554.2 12.0000

> print(ll)

Call:

lars(x = xx[ii,], y = yy[ii], intercept = F)

R-squared: 0.892

Sequence of LASSO moves:

adiposity obesity sbp tobind int chd typea famhist alcohol tobacco age

Var 4 5 3 10 1 11 6 12 7 9 2

Step 1 2 3 4 5 6 7 8 9 10 11

alcind

Var 8

Step 12

As you can see, the lars output tells you which variables are added to the model as the size of the
constraint region is increased (i.e. the constraint is relaxed by reducing the lagrange multiplier λ above).
Here, the first variable to enter is adiposity. The summary function gives you the RSS for each λ cor-
responding to a constraint region where one more variable is added to the model. For each such model

13

you also get the Mallow’s Cp, which can be used for model selection. Pick the λ that minimizes the Cp.
This may correspond to a model where some βs are set to 0.

In Figure 7, I use the lasso plot provided with the lars package. To read this plot, you read the x-axis
from left to right. This corresponds to the volume of the constraint region. To the left, we start with
the diamond having volume 0, which sets all β to 0. As we go to the right, we increase the volume of the
diamond, and more and more variables are allowed to enter the model. Values for λ corresponding to a
new variable entering the model are represented by vertical lines. Look for model separated by a large
gap between such lines. This indicates a region of stability in terms of model selection, i.e. you need to
increase the volume of the diamond a lot for the next variable to enter. Such gaps are candidates for
selected models for prediction.

> plot(ll)

* * * * *
**

*
*

**

* *

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

40

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

* * * * * ** * * **

* *

* * *
* * **

* *
**

* *

*

*

*
*

*
** * * **

* *

* *

* * *
** * * **

* *

* * * * * ** * *
** * *

* * * * * ** * *

** * *

* * * * * ** * * ** * ** * * * * ** * * ** * ** * * *
*

**
* *

**
* *

* * * * * **
* * ** * *

* * * * * ** * * ** * *

LASSO

2
7

9
3

4

0 1 2 4 7 9 11

Figure 7: LARS trace for heart disease data.

We can now use the selected models for prediction. Below, I use the command which.min() to
identify the β solution corresponding to the diamond constraint that results in the minimum Cp. I then
use this to predict the test data. I then compute the prediction error of the model with no shrinkage (LS
solution) and the selected model. In general, using regularization provides better predictions.

> selll <- ll$beta[which.min(ll$Cp),]

> pll <- xx[-ii,] %*% selll

> print(sum(SA$ldl[-ii] - xx[-ii,] %*% ll$beta[dim(ll$beta)[1],

+])^2/length(pll))

[1] 1.721037

> print(sum(SA$ldl[-ii] - pll)^2/length(pll))

[1] 1.256441

Recently, Zou, Hastie and Tibshirani (2004) http://http://www.stanford.edu/ hastie/Papers/elasticnet.pdf

proposed the elastic net which is implemented in an R package. This method uses a combination of the
both the ridge and lasso penalties

min
β

(y −Xβ)′(y −Xβ) + λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj |.

14

This helps when x’s are competing to be in the model. LASSO tends to pick just one of two correlated
x-variables to be in the model, and it is often quite by chance that one gets selected over another. By
adding the ridge-penalty to the lasso problem we also encourage correlated x’s to enter together (and at
the same time) into the model. Of course, we have to pick the λ1 and λ2 carefully to balance the two
constraints. In the elastic net package you only have to pick λ2 as the function examines many values of
λ1 automatically.

> library(elasticnet)

> xx <- as.matrix(cbind(rep(1, dim(SA)[1]), as.matrix(SA[, -12])))

> colnames(xx) <- c("int", names(SA)[-12])

> yy <- SA[, 12]

> ll <- enet(xx[ii,], yy[ii], intercept = F)

> print(summary(ll))

Length Class Mode

call 4 -none- call

actions 13 -none- list

allset 12 -none- numeric

beta.pure 156 -none- numeric

vn 12 -none- character

mu 1 -none- numeric

normx 12 -none- numeric

meanx 12 -none- numeric

lambda 1 -none- numeric

L1norm 13 -none- numeric

penalty 13 -none- numeric

df 13 -none- numeric

Cp 13 -none- numeric

sigma2 1 -none- numeric

> print(ll)

Call:

enet(x = xx[ii,], y = yy[ii], intercept = F)

Cp statistics of the Lasso fit

Cp: 1529.993 1230.737 154.984 94.869 69.031 45.762 47.434 20.583 15.325 8.912 10.657 11.017 13.000

DF: 1 2 3 4 5 6 7 8 9 10 11 12 13

Sequence of moves:

adiposity obesity sbp tobind int chd typea famhist alcohol tobacco age

Var 4 5 3 10 1 11 6 12 7 9 2

Step 1 2 3 4 5 6 7 8 9 10 11

alcind

Var 8 13

Step 12 13

> plot(ll)

In Figure 8 I show an example of a the elastic net applied to the heart disease data. In the above
code I used the default setting of enet() where λ2 = 0 so the solution is identical to the LASSO.

> selll <- ll$beta[which.min(ll$Cp),]

> pll <- xx[-ii,] %*% selll

> print(sum(SA$ldl[-ii] - xx[-ii,] %*% ll$beta[dim(ll$beta)[1],

+])^2/length(pll))

[1] 1.721037

> print(sum(SA$ldl[-ii] - pll)^2/length(pll))

[1] 1.256441

15

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

40

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

ag
e

to
ba

cc
o

to
bi

nd
ad

ip
os

ity
ag

e
to

ba
cc

o
to

bi
nd

ad
ip

os
ity

ag
e

to
ba

cc
o

to
bi

nd
ad

ip
os

ity
ag

e
to

ba
cc

o
to

bi
nd

ad
ip

os
ity

ag
e

to
ba

cc
o

to
bi

nd
ad

ip
os

ity
ag

e
to

ba
cc

o
to

bi
nd

ad
ip

os
ity

ag
e

to
ba

cc
o

to
bi

nd
ad

ip
os

ity
ag

e
to

ba
cc

o
to

bi
nd

ad
ip

os
ity

ag
e

to
ba

cc
o

to
bi

nd
ad

ip
os

ity
ag

e
to

ba
cc

o
to

bi
nd

ad
ip

os
ity

ag
e

to
ba

cc
o

to
bi

nd
ad

ip
os

ity
ag

e
to

ba
cc

o
to

bi
nd

ad
ip

os
ity

Figure 8: Elastic net for heart disease data.

Below, I now add the ridge-penalty.

> ll <- enet(xx[ii,], yy[ii], intercept = F, lambda = 0.4)

> print(summary(ll))

Length Class Mode

call 5 -none- call

actions 13 -none- list

allset 12 -none- numeric

beta.pure 156 -none- numeric

vn 12 -none- character

mu 1 -none- numeric

normx 12 -none- numeric

meanx 12 -none- numeric

lambda 1 -none- numeric

L1norm 13 -none- numeric

penalty 13 -none- numeric

df 13 -none- numeric

Cp 13 -none- numeric

sigma2 1 -none- numeric

> print(ll)

Call:

enet(x = xx[ii,], y = yy[ii], lambda = 0.4, intercept = F)

Sequence of moves:

adiposity obesity sbp int age typea tobind chd famhist alcind tobacco

Var 4 5 3 1 2 6 10 11 12 8 9

Step 1 2 3 4 5 6 7 8 9 10 11

alcohol

Var 7 13

Step 12 13

> plot(ll)

From Figure 9 you can see that some of the ”paths” (the trajectories of the coefficients as a function
of the constraint volume on the x-axis) are more parallel than for the LASSO solution and correlated
variables tend to enter the model at the same time (adiposity and obesity). Try this at home for other
values of λ2 and check with the code below if you can beat LASSO in terms of prediction performance.

16

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

al
co

ho
l

to
ba

cc
o

ch
d

ag
e

ob
es

ity
al

co
ho

l
to

ba
cc

o
ch

d
ag

e
ob

es
ity

al
co

ho
l

to
ba

cc
o

ch
d

ag
e

ob
es

ity
al

co
ho

l
to

ba
cc

o
ch

d
ag

e
ob

es
ity

al
co

ho
l

to
ba

cc
o

ch
d

ag
e

ob
es

ity
al

co
ho

l
to

ba
cc

o
ch

d
ag

e
ob

es
ity

al
co

ho
l

to
ba

cc
o

ch
d

ag
e

ob
es

ity
al

co
ho

l
to

ba
cc

o
ch

d
ag

e
ob

es
ity

al
co

ho
l

to
ba

cc
o

ch
d

ag
e

ob
es

ity
al

co
ho

l
to

ba
cc

o
ch

d
ag

e
ob

es
ity

al
co

ho
l

to
ba

cc
o

ch
d

ag
e

ob
es

ity
al

co
ho

l
to

ba
cc

o
ch

d
ag

e
ob

es
ity

Figure 9: Elastic net for heart disease data

> selll <- ll$beta[which.min(ll$Cp),]

> pll <- xx[-ii,] %*% selll

> print(sum(SA$ldl[-ii] - xx[-ii,] %*% ll$beta[dim(ll$beta)[1],

+])^2/length(pll))

[1] 261.7089

> print(sum(SA$ldl[-ii] - pll)^2/length(pll))

[1] 1.277788

2.1 Caveats

Remember, when you do this at home you may get different results since the training and test data are
selected randomly. Also note, to set up CIs for LASSO coefficient estimates you have to use bootstrap
since we don’t have a closed form solution for the standard errors.

17

	Regularized regression
	Principal component regression
	Ridge regression
	Shrinkage estimators
	Penalized regression

	Demo 15
	Caveats

