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1 RECAP

� Ultimate validation of a model is to test its predictive capacity

� Prediction performance is affected by both Bias and Estimation variance

� We combine the two into the criterion prediction MSE = Bias2 + Estimation Variance

� We can’t compute this in real life situations since we don’t know the true model (needed to compute
the bias)

� With training and test data we can separate model estimation from model validation (prediction)

� Training data: compute MSEtrain = RSS/n (the fit of the model on the data used to estimate
model parameters)

� Test data: compute pMSE = MSEtest (the fit of the model to new data not used for estimation).

� The pMSE is a substitute for the real prediction MSE as defined above.

� We select the model that minimizes the pMSE

� We usually don’t have separate training and test data, and use cross-validation to mimic this
scenario, and to estimate the prediction MSE

2 Model Selection

Usually, parsimonious, or simple models work best for prediction. Why is that? Well, it’s easier to
estimate parameters of a simple model with limited amounts of data. We limit the risk of including a
spurious relationships that do not generalize to future data. This preference for as simple an explanation
of the data as possible is sometimes referred to as Occam’s Razor - a simple model is ’safer’ in terms of
prediction performance and is also easier to interpret.

2.1 Caution

Most model selection procedures work with a global criterion based on e.g. RSS. Don’t forget to check
the model fit using diagnostic plots though! The selected model is not OK if you see trends or patterns
in the residuals and the presence of outliers can have a huge impact on the RSS.

3 Optimism and Model selection criteria

We review the setup form previous lectures:

Training data: (Xi, yi)
n
i=1, Xi = (xi1, xi2, . . . , xi,p−1)

Test data: (Xi, y
new
i )ni=1, Xi = (xi1, xi2, . . . , xi,p−1)
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The test data consist of new outcome data drawn from the same true model and at the same x-locations
as the training data.

The true model β∗ = (β∗0 , β
∗
1 , . . . , β

∗
p−1) is unknown to us. If the outcome is not related to some of

the x-variables, xj , the corresponding β∗j = 0. We can thus write

Training data: yi = Xiβ
∗ + εi, ε ∼ N(0, σ2)

Test data: ynewi = Xiβ
∗ + εnewi , εnew ∼ N(0, σ2)

1. We enumerate all models m = 1, . . . ,M . If we have p − 1 variables there are M = 2p−1 possible
subset models.

2. We fit each model m to the training data and obtain parameter estimates β̂(m) with corresponding
fitted values ŷ(m)i, i = 1, . . . , n

3. RSS(m) =
∑n
i=1(yi − ŷ(m)i)

2

4. MSE(m)train = 1
nRSS(m)

5. pMSE(m) = MSE(m)test = 1
n

∑n
i=1(ynewi − ŷ(m)i)

2

pMSE(m)−MSE(m) is called the optimism for model m. That is, because we fit the model m to
match the training data as best possible using the least squares criterion, the MSE(m) is an underesti-
mate of how well the model would perform on future data. We can estimate this optimism directly using
training and test data we create from our observed data set. We did this in lecture 8, using a technique
called cross-validation.

In this lecture we will try to estimate the expected value of the optimism, or gap between pMSE
and MSE directly. This is the basis for several commonly used model selection criteria in statistics, the
AIC, BIC and Mallow’s Cp.

4 Deriving Mallow’s Cp

Let us take a closer look at the gap between the pMSE-curve and the MSE-curve from training data.

The Prediction Error of model m is defined as

PE(m) = E[
1

n

n∑
i=1

(ynewi − ŷ(m)j)
2] =

1

n

n∑
i=1

E[ynewi − ŷ(m)i]
2︸ ︷︷ ︸

∗∗∗

The expectation is taken over the new test data and the training data. The prediction ŷ(m)i is a function
of the training data only. We expand the term *** above as follows:

∗ ∗ ∗ = E
[
ynewi − E(ynewi ) + E(ynewi )− E(ŷ(m)i) + E(ŷ(m)i)− ŷ(m)i

]2
=

= E
[
ynewi − E(ynewi )

]2︸ ︷︷ ︸
(1)

+E
[
E(ynewi )− E(ŷ(m)i)

]2︸ ︷︷ ︸
(2)

+E
[
E(ŷ(m)i)− ŷ(m)i

]2︸ ︷︷ ︸
(3)

+

+ 2E
[(
ynewi − E(ynewi )

)(
E(ynewi )− E(ŷ(m)i)

)]︸ ︷︷ ︸
(4)

+ 2E
[(
ynewi − E(ynewi )

)(
E(ŷ(m)i)− ŷ(m)i

)]︸ ︷︷ ︸
(5)

+

+ 2E
[(
E(ynewi )− E(ŷ(m)i)

)(
E(ŷ(m)i)− ŷ(m)i

)]︸ ︷︷ ︸
(6)

We will work through each of the 6 terms above.

(1) * E[ynewi − E(ynewi )]2 = σ2.

* The irreducible error.

* The noise or random scatter around the true model.
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(2) * E
[
E(ynewi )− E(ŷ(m)i)

]2
= bias2

* this is the local bias of model m at location xi

* if model m is adequate the bias is 0

(3) * E
[
E(ŷ(m)i)− ŷ(m)i

]2
= V [ŷ(m)i]

* the estimation variance of model m

* increases with the complexity of the model

(4) * This term is 0 since the constant
(
E(ynewi ) − E(ŷ(m)i)

)
can be pulled outside the outer

expectation and E
[
(ynewi − E(ynewi )

]
= 0

(5) * This term is 0 since ynewi and yi are uncorrelated

* (5) = E
[
(ynewi − E(ynewi )

]
E
[
E(ŷ(m)i)− ŷ(m)i

]
= 0

(6) * This term is 0 since the constant
(
E(ynewi ) − E(ŷ(m)i)

)
can be pulled outside the outer

expectation and E
[
E(ŷ(m)i)− ŷ(m)i

]
= 0

We summarize our findings:

PE(m) =
1

n

n∑
i=1

(σ2 + bias2(i,m) + V [ŷ(m)k]) = σ2 + ¯bias
2
(m) +

1

n

n∑
i=1

V [ŷ(m)i]

Example - linear model

What if E[yi] =
∑n
j=0 βjxij?

� β̂(m) = (X ′X)−1X ′y, where X is the n× p(m) design matrix

� If the model m with p(m) variables is adequate there is no bias

� V [ŷ] = σ2H

� V [ŷi] = σ2hii → 1
nV [ŷi] = σ2

n

∑
i hii = σ2

n Trace(H)

� Trace(H) = Trace(X(X ′X)−1X ′) = Trace((X ′X)−1(X ′X)) = Trace(Ip(m)) = p(m)

So, for a linear model with E[yi] =
∑n
j=0 βjxij we have

PE(m) = σ2
(
1 +

p(m)

n

)
4.1 The training error

What about the training error? What can we expect the RSS (or the training MSE) to be across multiple
data sets from the same underlying, true model?

TE(m) = E
[ 1

n

n∑
i=1

(yi − ŷ(m)i)
2
]

=
1

n

n∑
i=1

E
[
yi − ŷ(m)i

]2
Similar to the above, we expand the expression E

[
yi − ŷ(m)i

]2
into 6 terms but now term (5) is not

zero:
(5) = 2E

[
(yi − E(yi)(E(ŷ(m)i)− ŷ(m)i)

]
= 2E

[
yi(E[ŷ(m)i]− ŷ(m)i)

]
=

= 2E[yi]E[ŷ(m)i]− 2E[yiŷ(m)i] = −2Cov(yi, ŷ(m)i)

So, taken together we have that the expected training error is

TE(m) = PE(m)− 2

n

n∑
i=1

Cov(yi, ŷ(m)i).
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We have thus learnt that the training error is always less than the prediction error (TE(m) < PE(m)).
In addition, the training error (TE) is much smaller than the prediction error (PE) if yi and ŷi are highly
correlated. This is exactly what happens when we fit complex models to data: we match data to the
model closely by adding parameters to our model. That means that the gap between the training error
(TE) (expected MSE) and the prediction error (PE) (expected prediction MSE) increases with the
complexity, or size, of the model we fit. As you can see from the above

gap(PE, TE) =
2

n

n∑
i=1

Cov(yi, ŷ(m)i).
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Figure 1: Left: RSS-curve. MSE on training data. Middle: pMSE-curve. MSE on test data.

In Figure 1 we depict the MSE and pMSE for a data example. For large models (where the bias is
small) we see that the gap between the two curves increases with the size of the model.

Example: For a Least Squares linear models fit we can write ŷ = Hy and Cov(yi, ŷi) = σ2hii. We
can thus write

gap(PE, TE) =
2

n

n∑
i=1

Cov(yi, ŷ(m)i) = 2
σ2

n
p(m),

since

H(m) = X(X ′X)−1X ′ → 1

n

∑
i

hiiTrace(H)→

Trace(H) = Trace(X(X ′X)−1X ′) = Trace((X ′X)(X ′X)−1) = Trace(Ip(m)) = p(m)

4.2 Conclusion

Why did we bother with the above derivation? Well, in most cases we don’t actually have an independent
test data set so we can’t estimate the expected pMSE (the PE). However, we need it for model selection
since we have already established that the RSS does not work. Thus, we need to get at an estimate of

the PE. Since we have established that the gap between the expected MSE and pMSE is 2σ2

n p(m) and
we have a natural estimate for the expected training MSE in the MSE (RSS/(n-p)). Thus, our selection
criterion is ̂pMSE(m) = ̂MSE(m) +

2σ2

n
p(m)=̂

RSS(m)

n− p(m)
+

2σ2

n
p(m).

Many model selection criteria have this format:

Goodness-of-fit measure + modelsize-penalty.

The one we just derived is called Mallow’s Cp and take the form

Cp(m) = MSE +
2σ2

n
p(m),
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or
RSS(m) + 2σ2p(m).

To use this in practise we need to know σ2. We play in the best estimate for σ2 we have, namely σ̂2

obtained from the largest model fit to the data.

1. Enumerate all models m = 1, . . . ,M

2. Evaluate the MSE(m), RSS(m) for all models

3. Compute Cp(m) = RSS(m) + 2σ̂2p(m) where σ̂2 = RSS(M)/(n− p(M))

4. Pick the model that minimizes Cp

There are other commonly used model selection criteria that take on a similar form (and are derived
under somewhat similarly): the AIC and BIC where

AIC(m) = n logRSS(m) + 2p(m)

and
BIC(m) = n logRSS(m) + p(m) log(n).

Note that both these criteria are similar to Cp in that they compare the goodness of fit (a function of the
RSS) and the complexity of the model (the number of parameters p(m)). The AIC is likelihood based,
which for linear regression models makes Cp and AIC behave rather similarly. The BIC is Bayesian take
on model selection. What you should know is that, in general, the AIC is rather ”generous”, i.e. picks
larger models whereas the BIC is quite conservative in comparison (picks smaller models), especially for
small sample sizes. It has been shown that the AIC is overly generous asymptotically whereas the BIC
is consistent. However, for finite samples it is more complicated.

5 Demo 9

We will compare cross-validation, backward selection and all subset selection using Cp, AIC and BIC
using the South African heart disease data as our demo data. We start by reading the data into R.
We then use the R package leaps() to create an enumeration of all subset models (the matrix Models

below).

> SA <- data.frame(read.table("SA.dat", sep = "\t", header = T))

> yy <- SA[, 12]

> xx <- SA[, -12]

> library(leaps)

> rleaps <- regsubsets(xx, yy, int = T, nbest = 250, nvmax = 250,

+ really.big = T, method = c("ex"))

> cleaps <- summary(rleaps, matrix = T)

> Models <- cleaps$which

> Models <- rbind(c(T, rep(F, dim(xx)[2])), Models)

Let’s review 10-fold cross-validation. First, we create the 10 folds of data:

> K <- 10

> ii <- sample(seq(1, length(yy)), length(yy))

> foldsize <- floor(length(yy)/K)

> sizefold <- rep(foldsize, K)

> restdata <- length(yy) - K * foldsize

> if (restdata > 0) {

+ sizefold[1:restdata] <- sizefold[1:restdata] + 1

+ }

We cycle trough each fold of data, fit each of the models and compute the prediction errors:
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> Prederrors <- matrix(0, dim(Models)[1], K)

> iused <- 0

> Xmat <- as.matrix(cbind(rep(1, dim(xx)[1]), xx))

> for (k in (1:K)) {

+ itest <- ii[(iused + 1):(iused + sizefold[k])]

+ itrain <- ii[-c((iused + 1):(iused + sizefold[k]))]

+ iused <- iused + length(itest)

+ for (mm in (1:dim(Models)[1])) {

+ betahat <- solve(t(Xmat[itrain, Models[mm, ]]) %*% Xmat[itrain,

+ Models[mm, ]]) %*% t(Xmat[itrain, Models[mm, ]]) %*%

+ yy[itrain]

+ ypred <- Xmat[itest, Models[mm, ]] %*% betahat

+ Prederrors[mm, k] <- sum((yy[itest] - ypred)^2)

+ }

+ }

> PE <- apply(Prederrors, 1, sum)/length(yy)
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There are more than 1400 models in the above comparison: here are the top 5

> jj <- sort.list(PE)[1:5]

> print(as.matrix(Models[jj, ]))

(Intercept) age sbp adiposity obesity typea alcohol alcind tobacco tobind

6 TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

7 TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE

6 TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE

5 TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

7 TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE

chd famhist

6 TRUE TRUE

7 TRUE TRUE

6 TRUE FALSE

5 TRUE FALSE

7 TRUE TRUE

I also use the xtable() command in R to create a nicer table that works with LATEX(if you use
windows, make sure to put output like this into a proper table with a caption).

> z <- data.frame(as.matrix(cbind(Prederrors[jj, ], PE[jj])))

> colnames(z) <- c("Fold1", "Fold2", "Fold3", "Fold4", "Fold5",

+ "Fold6", "Fold7", "Fold8", "Fold9", "Fold10", "PE")

> row.names <- c(seq(1, 5))

> library(xtable)

> xtable(z, digits = c(0, rep(0, 10), 3), caption = "Prederrors in different folds and total",

+ label = "tab:CVldl")

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 PE
1 69 72 86 100 85 95 89 88 106 85 2.804
2 69 71 85 100 84 96 94 89 105 83 2.807
3 69 69 89 101 81 94 98 89 108 81 2.813
4 68 71 90 101 82 93 94 87 110 83 2.815
5 71 71 87 99 85 96 88 87 113 83 2.816

Table 1: Prederrors in different folds and total

In Table 1 you can compare the fold results and total prediction error results for the different models
(seen in the R output). The winning model is

> winmod <- Models[which.min(PE), ]

> print(winmod)

(Intercept) age sbp adiposity obesity typea

TRUE TRUE FALSE TRUE FALSE FALSE

alcohol alcind tobacco tobind chd famhist

TRUE FALSE FALSE TRUE TRUE TRUE
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Let’s compare this to the backward model selection results:

> mm <- lm(log(ldl) ~ log(age) + sbp + adiposity + log(obesity) +

+ typea + alcohol + alcind + tobacco + tobind + as.factor(chd) +

+ as.factor(famhist), data = SA)

> ss <- step(mm, trace = F)

> print(ss)

Call:

lm(formula = log(ldl) ~ adiposity + log(obesity) + alcohol +

tobind + as.factor(chd) + as.factor(famhist), data = SA)

Coefficients:

(Intercept) adiposity log(obesity)

-0.295887 0.019417 0.342913

alcohol tobind as.factor(chd)1

-0.003449 0.143639 0.154434

as.factor(famhist)2

0.071745
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Let’s now try using the model selection criteria Cp, AIC and BIC instead. We use the results from
rleaps() above (which computes Cp for us, as well as everything we need to compute AIC and BIC).

> tt <- apply(cleaps$which, 1, sum)

> BIC <- length(yy) * log(cleaps$rss/length(yy)) + tt * log(length(yy))

> AIC <- length(yy) * log(cleaps$rss/length(yy)) + tt * 2

> plot(tt, cleaps$cp, main = "Cp")

> plot(tt, AIC, main = "AIC")

> plot(tt, BIC, main = "BIC")

●

●

●●

●
●
●
●

●
●●

●

●●
●
●●●
●●●
●

●●
●●
●
●●●

●

●●●
●●●●
●●●
●●●●

●

●●●
●
●●●●
●●
●●●
●●
●●
●
●
●

●

●●●
●●●●●●
●
●●●
●●●●●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●●●
●●
●●●

●●
●●
●●
●●●●●●
●●●●
●
●●●●●
●●●
●●
●

●

●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●
●●●●
●●●●●●
●●
●●●●●
●●●
●●●●●
●●●●
●●●●●●
●●●●
●●
●
●

●

●
●●●●
●●●
●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●
●●●●●●●
●●●●
●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●
●●●●
●●
●

●●
●●
●●
●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●

●●●●
●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●
●
●●●●
●●●●●●
●●
●●
●
●

●●●●
●●
●
●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●
●
●●
●●●●●●●
●
●

●
●

●

●●●●●●
●

●
●●

●

●

2 4 6 8 10 12

0
50

10
0

15
0

Cp

tt

cl
ea

ps
$c

p

●

●

●●

●
●
●
●
●
●●

●

●●
●
●●●
●●●
●

●●
●●
●
●●●

●

●●●
●●●●
●●●
●●●●

●
●●●
●
●●●●●
●●
●●
●●
●●
●●
●

●

●●●
●●●●
●●
●
●●
●●●●●●●●
●●●●
●●●
●●●
●●●●●●●●
●●●●●●●●●
●●
●●●

●●

●●
●●
●●●●●
●●●●
●●
●●●●
●●●
●●
●●

●

●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●
●●●●●
●●
●●●●●
●●●
●●●●●
●●●●
●●●●●●
●●●●
●●
●
●

●

●
●●●
●●●●
●●
●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●
●●●●●●
●●●●
●●
●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●
●
●●●●
●●
●

●●
●●●
●
●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●

●●●●
●●●
●●●●
●●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●
●●●●●●●●
●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●
●●●

●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●●●●
●●●
●●
●●●●
●●●●●●
●●
●●
●
●

●●●
●
●●
●
●●

●●●●●●●●●
●●●●●●●●
●●●●

●●●●●●
●●
●●●●●●●●●●
●●
●●
●●●●●
●●●
●

●
●

●

●●●●●
●●

●

●●

●

●

2 4 6 8 10 12

32
0

34
0

36
0

38
0

40
0

42
0

44
0

AIC

tt

A
IC

●

●

●●

●
●
●
●
●
●●

●

●●
●
●●
●●●●
●

●●
●●
●
●●●

●

●●●
●●●●
●●●
●●●●

●
●●●
●
●●●●●
●●
●●
●●
●●
●●
●

●

●●
●●●●
●●●
●
●●
●●●●●●●●
●●●●
●●●
●●●
●●●●●●●
●●●●●●●●●
●●
●●●
●

●●

●●
●●
●●●●●
●●●●
●●
●●●●
●●●
●●
●●

●

●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●
●●●●
●●●●●●
●●
●●●●●
●●●
●●●●●
●●●●
●●●●●●
●●●●
●●
●
●

●

●
●●●
●●●●
●●
●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●
●●●●●
●●●●●
●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●
●
●●●●
●●
●

●●
●●
●●
●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●

●●●●
●●●
●●●●
●●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●

●●
●●●●●●
●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●
●●●

●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●
●●●●●
●●
●●●
●●●
●●●●●
●
●●
●

●

●●●
●
●
●
●
●●

●●●●●●●●●
●●●●●●●●
●●●●

●●●●●●
●
●●●●●●●●●
●●●●
●
●
●●●●●
●●●

●

●
●

●

●●●●●
●●

●

●●

●

●

2 4 6 8 10 12

34
0

36
0

38
0

40
0

42
0

44
0

BIC

tt

B
IC

Figure 2: Cp, AIC and BIC selection criteria

In Figure 2 we depict Cp, AIC and BIC as a function of model size for all models we investigate.
Notice how the lower envelope, which consists of the best models of each size, increases faster for large
models using BIC compared with Cp and AIC. BIC penalizes model size more severely than Cp and
AIC.

> rleaps <- regsubsets(xx, yy, int = T, nbest = 1, nvmax = dim(xx)[2] +

+ 1, really.big = T, method = c("ex"))

> cleaps <- summary(rleaps, matrix = T)

> tt <- apply(cleaps$which, 1, sum)

> BIC <- length(yy) * log(cleaps$rss/length(yy)) + tt * log(length(yy))

> AIC <- length(yy) * log(cleaps$rss/length(yy)) + tt * 2

> par(mfrow = c(1, 1))

> plot(tt, cleaps$cp - min(cleaps$cp), type = "l", main = "Cp-black,AIC-blue,BIC-red")

> lines(tt, AIC - min(AIC), col = "blue")

> lines(tt, BIC - min(BIC), col = "red")

> abline(h = 0, lty = 2)

It is easier to see this if we limit ourselves to the winning model of each size (see Figure 3).
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Figure 3: Cp, AIC and BIC selection criteria
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We summarize the selected models

> cpmod <- cleaps$which[cleaps$cp == min(cleaps$cp), ]

> aicmod <- cleaps$which[AIC == min(AIC), ]

> bicmod <- cleaps$which[BIC == min(BIC), ]

> print(cpmod)

(Intercept) age sbp adiposity obesity typea

TRUE TRUE FALSE TRUE FALSE FALSE

alcohol alcind tobacco tobind chd famhist

TRUE FALSE FALSE TRUE TRUE TRUE

> print(aicmod)

(Intercept) age sbp adiposity obesity typea

TRUE TRUE FALSE TRUE FALSE FALSE

alcohol alcind tobacco tobind chd famhist

TRUE FALSE FALSE TRUE TRUE TRUE

> print(bicmod)

(Intercept) age sbp adiposity obesity typea

TRUE FALSE FALSE TRUE FALSE FALSE

alcohol alcind tobacco tobind chd famhist

TRUE FALSE FALSE TRUE TRUE FALSE
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5.1 Random subsets of data

Let us repeat the model selection on several random subsets of data to try to discover which variables are
most frequently selected. I start by choosing a splitting fraction for the data and the number of random
splits to perform.

> frac <- 0.5

> K <- 1000

> modsizecp <- rep(0, K)

> modsizeaic <- rep(0, K)

> modsizebic <- rep(0, K)

> PEcpK <- rep(0, K)

> PEaicK <- rep(0, K)

> PEbicK <- rep(0, K)

> modselcp <- rep(0, dim(SA)[2] - 1)

> modselaic <- rep(0, dim(SA)[2] - 1)

> modselbic <- rep(0, dim(SA)[2] - 1)

> for (kk in (1:K)) {

+ ii <- sample(seq(1, dim(SA)[1]), round(dim(SA)[1] * frac))

+ yy <- SA[ii, 12]

+ xx <- as.matrix(SA[ii, -12])

+ yyt <- SA[-ii, 12]

+ xxt <- as.matrix(SA[-ii, -12])

+ rleaps <- regsubsets(xx, yy, int = T, nbest = 1, nvmax = dim(SA)[2],

+ really.big = T, method = c("ex"))

+ cleaps <- summary(rleaps, matrix = T)

+ tt <- apply(cleaps$which, 1, sum)

+ BIC <- length(yy) * log(cleaps$rss/length(yy)) + tt * log(length(yy))

+ AIC <- length(yy) * log(cleaps$rss/length(yy)) + tt * 2

+ cpmod <- cleaps$which[cleaps$cp == min(cleaps$cp), ]

+ aicmod <- cleaps$which[AIC == min(AIC), ]

+ bicmod <- cleaps$which[BIC == min(BIC), ]

+ mmcp <- lm(yy ~ xx[, cpmod[2:length(cpmod)] == T])

+ mmaic <- lm(yy ~ xx[, aicmod[2:length(aicmod)] == T])

+ mmbic <- lm(yy ~ xx[, bicmod[2:length(bicmod)] == T])

+ PEcpK[kk] <- sum((yyt - cbind(rep(1, dim(xxt)[1]), xxt[,

+ cpmod[2:length(cpmod)] == T]) %*% mmcp$coef)^2)/length(yyt)

+ PEaicK[kk] <- sum((yyt - cbind(rep(1, dim(xxt)[1]), xxt[,

+ aicmod[2:length(aicmod)] == T]) %*% mmaic$coef)^2)/length(yyt)

+ PEbicK[kk] <- sum((yyt - cbind(rep(1, dim(xxt)[1]), xxt[,

+ bicmod[2:length(bicmod)] == T]) %*% mmbic$coef)^2)/length(yyt)

+ modsizecp[kk] <- sum(cpmod)

+ modsizeaic[kk] <- sum(aicmod)

+ modsizebic[kk] <- sum(bicmod)

+ modselcp[cpmod[2:length(cpmod)] == T] <- modselcp[cpmod[2:length(cpmod)] ==

+ T] + 1

+ modselaic[aicmod[2:length(cpmod)] == T] <- modselaic[aicmod[2:length(cpmod)] ==

+ T] + 1

+ modselbic[bicmod[2:length(cpmod)] == T] <- modselbic[bicmod[2:length(cpmod)] ==

+ T] + 1

+ }

The above is a loop that cycles over splitting the data, model selection and prediction on the left-out
part of the data several times. The PE vectors store the prediction errors associated with the selected
models using each of the criteria (Cp, AIC, BIC). The vectors modesize stores the selected models’ sizes
and modsel is a vector which for each variable counts up the number of times it is selected.

We summarize our findings as follows:
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> modseltabs <- cbind(names(SA)[-12], modselcp, modselaic, modselbic)

> print(modseltabs)

modselcp modselaic modselbic

[1,] "age" "294" "315" "41"

[2,] "sbp" "99" "108" "8"

[3,] "adiposity" "995" "996" "958"

[4,] "obesity" "260" "272" "69"

[5,] "typea" "205" "215" "56"

[6,] "alcohol" "888" "894" "557"

[7,] "alcind" "71" "81" "6"

[8,] "tobacco" "110" "114" "12"

[9,] "tobind" "728" "747" "266"

[10,] "chd" "933" "940" "738"

[11,] "famhist" "343" "364" "86"

For a final report, you should put this is a proper table:

> z <- data.frame(as.matrix(cbind(modselcp, modselaic, modselbic)))

> colnames(z) <- c("Cp", "AIC", "BIC")

> row.names(z) <- c(names(SA)[-12])

> library(xtable)

> xtable(z, digits = c(0, rep(0, 3)), caption = "Random splits results",

+ label = "tab:seltable")

Cp AIC BIC
age 294 315 41
sbp 99 108 8

adiposity 995 996 958
obesity 260 272 69

typea 205 215 56
alcohol 888 894 557
alcind 71 81 6

tobacco 110 114 12
tobind 728 747 266

chd 933 940 738
famhist 343 364 86

Table 2: Random splits results

In Table 2 we see that some variables stand out as almost always selected (adiposity, alcohol, chd

using Cp and AIC, adiposity and chd using BIC). Several other variables are selected fairly frequently
as well, e.g. the smoking indicator tobind.

We also compare the average model size and average prediction error over the random splits.

> print(c("mean PE for cp, aic and bic"))

[1] "mean PE for cp, aic and bic"

> print(c("PEcp=", round(mean(PEcpK), 4), " PEaic=", round(mean(PEaicK),

+ 4), " PEbicK=", round(mean(PEbicK), 4)))

[1] "PEcp=" "3.015" " PEaic=" "3.014" " PEbicK=" "3.0676"

> print(c("mean model size for cp, aic and bic"))

[1] "mean model size for cp, aic and bic"
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> print(c("sizecp=", round(mean(modsizecp), 4), " sizeaic=", round(mean(modsizeaic),

+ 4), " sizebic=", round(mean(modsizebic), 4)))

[1] "sizecp=" "5.926" " sizeaic=" "6.046" " sizebic=" "3.797"

> pes <- c(round(mean(PEcpK), 4), round(mean(PEaicK), 4), round(mean(PEbicK),

+ 4))

> siz <- c(round(mean(modsizecp), 4), round(mean(modsizeaic), 4),

+ round(mean(modsizebic), 4))

> z <- data.frame(as.matrix(rbind(pes, siz)))

> colnames(z) <- c("Cp", "AIC", "BIC")

> row.names(z) <- c("Prediction Error", "Model size")

> xtable(z, digits = c(0, rep(3, 3)), caption = "Random splits results: PE and model size",

+ label = "tab:seltable2")

Cp AIC BIC
Prediction Error 3.015 3.014 3.068

Model size 5.926 6.046 3.797

Table 3: Random splits results: PE and model size

In Table 3 we can see that BIC picks smaller models than Cp and AIC, whereas the prediction errors are
quite comparable. Results vary quite a lot between random splits which a simple mean summary does
not reveal. We therefore also check the results using boxplots.

> par(mfrow = c(1, 2))

> boxplot(as.data.frame(cbind(modsizecp, modsizeaic, modsizebic)))

> boxplot(as.data.frame(cbind(PEcpK, PEaicK, PEbicK)))
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Figure 4: Cp, AIC and BIC selection criteria - model sizes and prediction errors

As you can see in Figure 4, model sizes differ between BIC and the other two criteria, whereas prediction
error distributions overlap. However, this is not a fair comparison either since in fact, each random split
has its own characteristics. We should compare prediction errors for each random split (cf. t-test and
paired t-test).
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> par(mfrow = c(1, 1))

> boxplot(as.data.frame(cbind(modsizeaic - modsizecp, modsizebic -

+ modsizecp, modsizebic - modsizeaic)), names = c("AIC-CP",

+ "BIC-CP", "BIC-AIC"), main = "Model sizes")

> abline(h = 0, lty = 2)

> boxplot(as.data.frame(cbind(PEaicK - PEcpK, PEbicK - PEcpK, PEbicK -

+ PEaicK)), names = c("AIC-CP", "BIC-CP", "BIC-AIC"), main = "PE")

> abline(h = 0, lty = 2)
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Figure 5: Cp, AIC and BIC selection criteria. Left: difference in model size. Right: difference in
prediction error.

In Figure 5 we see from the pairwise comparisons that prediction errors don’t differ much on average
between the different selection criteria, but you might have a better prediction error using BIC over AIC
for one random split and the reverse for another. Note, on other data sets and other random splits this
may not be so and in fact one criterion may perform better than another. In general, for small sample
sizes BIC tends to be overly conservative, whereas for large sample sizes Cp and AIC tend to produce
unnecessarily large models.

> plot(PEcpK, PEaicK, xlab = "PE with Cp", ylab = "")

> points(PEcpK, PEbicK, pch = 2, col = 2)

> abline(0, 1)

Finally, in Figure 6 we summarize the random splits with a scatter plot.
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Figure 6: Cp, AIC and BIC selection criteria. Prediction errors: AIC vs Cp (o) and BIC vs Cp (triangle)
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