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1 RECAP

The regression model is used to summarize the relationship or association between the dependent variable
y and the independent variable x:

yi = β0 + β1xi + εi.

We fit this model to the data (xi, yi)
n
i=1 using Least Squares, i.e. we find β0 and β1 that minimize

Q(β0, β1) =

n∑
i=1

(yi − (β0 + β1xi))
2

Fitting a model using least squares makes sense if the 5 basic assumptions hold for the data:

1. The models is sufficient for the data. Does it look like a line fits through the mass of the y − x
data cloud? If not, try transforming x and/or y.

2. The random scatter appears to be symmetric around the model (mean 0 errors, symmetric distri-
bution around 0). If not, try data transformations or consider a different fitting criterion.

3. Uncorrelated errors. Thinks about the study design. Is time involved? Are data generated by
following individuals over time? Are observations clustered or grouped (same school, same hospital,
different cities)? If so, you need to use time series or mixed effects models, not standard regression
modeling.

4. Constant error variance. If the scatter appears to be larger for some ranges of x and/or y the error
variance is non-constant. If so, the Least Squares criterion is not optimal for fitting since you let
poor quality observations influence the fit as much as better quality ones. Try data transformations
to suppress the non-constant variance or use a Weighted Least Squares criterion instead (more
later).

5. No outliers. Since all observations contribute to the fit, look for observations whose x−y relationship
seems to differ from the bulk of the data. These observations may severely hamper finding a good
model for the rest of the data. Look for extremes in x and/or y and remove these from the data.
Note, a data transformation may make these outlying observations fit more with the rest of the
data. Try that first.

Some other problems to look out for: groups in the data, missing values, omitted variables, extrapo-
lation, causal interpretation.

2 More about Least Squares

Q =

n∑
i=1

(yi − (β0 + β1xi))
2 −→ minimize w.r.t. β0, β1
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We take the derivative w.r.t. β0 and set it equal to 0:

dQ

dβ0
=

n∑
i=1

−2(yi − (β0 + β1xi)) = 0

and the same with β1:

dQ

dβ1
=

n∑
i=1

−2xi(yi − (β0 + β1xi)) = 0

We manipulate the above expressions into the so-called normal equations:

n∑
i=1

yi = nβ0 + (

n∑
i=1

xi)β1

n∑
i=1

xiyi = (

n∑
i=1

xi)β0 + (

n∑
i=1

x2
i )β1

We first solve for β0:

β̂0 = ȳ − β1x̄, ȳ =

n∑
i=1

yi/n, x̄ =

n∑
i=1

xi/n

and then for β1, plugging in the above solution for β0:

n∑
i=1

xiyi =

n∑
i=1

xi(ȳ − β1x̄) + β1

n∑
i=1

x2
i

β̂1 =

∑n
i=1 xiyi −

1
n (

∑n
i=1 xi)(

∑n
i=1 yi)∑n

i=1 x
2
i − 1

n (
∑n
i=1 xi)

2

which after some manipulation we can write as

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
' COV (x, y)

COV (x, x)
= Corr(x, y)

√
V (y)

V (x)

Take a look at this last expression. The solution for the slope β1 consists of two parts: the relationship
summary between x and y as captures by the correlation between x and y, and a scale factor related to
the spreads of x and y as captured by their variances. If we first standardize the data so that the standard
deviation1 of x and y are both 1, then the slope of the regression model is equal to the correlation.
What does this tell us?

� regression is a linear relationship summary (since that’s what the correlation measures)

� If y and x are standardized the slope is between -1 and 1

This last point is often misinterpreted as follows: Let’s say you let a group of students take a
standardized test and then you let them re-take it a few months later. You plot the standardized first
test scores against the standardized second test scores in a scatter plot and fit a regression model to
the data. The slope will be less than 1 by definition (see above). This is one interpretation: ”students
that did poorly the first time around did better the second time around so they must have gotten scared
about the first result and studied more. students that did well the first time around go lazy and did
worse the second time around”. Now, this interpretation is wrong. What we see here is what’s called
the ”regression toward the mean” effect. If you are the best there’s nowhere to go but down, and if you
were the worst there’s nowhere to go but up! Mathematically, we see this effect reflected in the slope
less than 1.
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2.1 Looking at the slope estimate

We have

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

=

=

∑n
i=1(xi − x̄)∑n
i=1(xi − x̄)2

yi =

n∑
i=1

kiyi.

That is, the slope estimate is just a weighted average of y values. The weights ki = (xi−x̄)∑n
i=1(xi−x̄)2 are large

for observations yi whose x-values are far from the average x̄, i.e. the extreme x-values contribute most
to the regression slope estimate. This makes sense if you think about eye-balling an estimate of a slope.
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Figure 1: Left: regression line, extreme x-values are highlighted. Right: the weights ki as a function of x

In Figure 1 you see the regression model fit and the observations that contribute most to the fit (extreme
x-values). Note that the weights ki can be ”pre-computed”, i.e. I don’t even need to know the value of yi
to determine its weight in the estimate of β1. This is another definition of a linear model, linear refering
to the weights not depending on y. In fact, in statistics we think of models where the regression can be
computed like this (weights that are not depending on y) as linear.

Some properties

We have β̂1 =
∑
i kiyi. It follows that

E[β̂1] = E[
∑
i

kiyi] =
only y is random

∑
kiE[yi] =

∑
i

ki(β0 + β1xi)

Now,
∑
i ki = 0 and

∑
i kixi = 1 (prove this to yourself) so

E[β̂1] = β1

That is, β̂1 is an unbiased estimate of the slope parameter β1. (We can prove this for β̂0 as well - try it
yourself.)

How about the variance of the slope estimate? We assume that the error has variance V (ε) = σ2.
Since y = β0 + β1x+ ε and only ε is random, it follows that V (y) = σ2 as well.

V [β̂1] = V [
∑
i

kiyi] =
uncorrelated errors

∑
i

k2
i V [yi] =

constant variance

∑
i

k2
i σ

2

Now, plug in the expression for the weight ki above and we get

V [β̂1] =
∑
i

(xi − x̄)2

(
∑
j(xj − x̄)2)2

σ2 =
σ2∑

j(xj − x̄)2

3



The expression for the estimation variance of β̂1 can be interpreted this way: there are 3 sources of
error in the slope estimate:

1. V [β̂1] increases with the noise level in the data σ2. The less noise we have, the easier it is to
estimate the relationship.

2. V [β̂1] decreases with the sample size n since V [β̂1] = σ2

(n−1)V (x) . The more data we have, the easier

it is to estimate the model parameters.

3. V [β̂1] decreases with increasing spread in x (V (x)). The more spread we have in x, the easier it is
to detect the y − x relationship (we get a chance to see how y is affected by x - if x doesn’t vary,
how could we see the effect of it on y?).
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Figure 2: Sources of error variance of β̂1. Red line is the true model. Black lines are estimated models
from 50 different data sets. (a)-(b) the noise level σ. (c)-(d) the sample size. (e)-(f) the spread in x.

As you can see in Figure 2, the impact of these three sources of error in the estimation is easily demon-
strated using simulated data. Check the source code for the lecture notes and play around
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with sample size, noise level and spread in x and see what happens to the slope estimates.

2.2 More properties and diagnostics

� The fitted values are defined as ŷi = β̂0 + β̂1xi. These are values that lie on the regression line.

� The deviation between the observation yi and its fitted value ŷi is called the residual and is defined
as ei = yi − ŷi.

� If your model includes an intercept (β0), then the residuals sum to 0:
∑
i ei = 0.

� In addition,
∑
i xiei = 0. What this means is that the residuals and the explanatory variable x

are uncorrelated, meaning that we ”used up” all the linear information in x about y by fitting the
Least Squares regression model to the data. This is also referred to as an orthogonal projection
(see Figure 3).
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Figure 3: The estimated regression model (solid black) and the residuals (vertical, dashed). The fitted
values as red asterisks. Note that the residuals are ortogonal to the x-axis (orthongonal projection)

While the scatter plot (the x− y points in Figure 3) is a useful tool for data exploration, the residual
plot is a better diagnostic tool (used to spot problems with the fit, checking the 5 basic assumptions). We
thus plot just the residuals versus x in Figure 4. We use the residual plot to check the basic assumptions.

1. Check that there are no trends or patterns in the residual plot (checking basic assumption 1)

2. Check that the residuals are evenly distributed symmetrically around the horizontal line at 0
(checking basic assumption 2)

3. You cannot check basic assumption 3 (uncorrelated errors) with residual plots in general

4. Check that the residuals have about the same spread around the horizontal line at 0 (contant error
variance). Another plot that’s useful here is to plot the residuals against the fitted values to see if
the error variance is a function of the expected value of y. (checking basic assumption 4).

5. Look for extreme values in the residual plot - observations that were not captured by the model
(outliers). You won’t catch all outliers this way - observations that are so extreme they drive the
fit (extreme x AND y values) may actually have small residual values (more later). (checking basic
assumption 5).
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Figure 4: Residual plot. The residuals in Figure 3 plotted against x. The horizontal line at 0 can be
used to gauge the goodness of fit of the model.

Fitted values and leverage

The fitted values ŷi are uncorrelated with the residuals:
∑
i ŷiei = 0 (do the math to check this). It

follows from the fact that the fitted values are just a function of the xi’s and x and the residuals e are
uncorrelated. What does this mean? This means that the fitted values ŷ is the part of y explainable
from x, whereas the residuals (orthogonal to x) is the unexplainable part.

Now, we can write the fitted values as follows:

ŷi = β̂0 + β̂1xi = ȳ + β̂1(xi − x̄) = ȳ + (
∑
j

kjxj)(xi − x̄),

where I used the definition of the weight kj =
xj−x̄∑
i(xi−x̄)2 from before. We manipulate this expression

further to obtain

ŷi =
∑
j

(
1

n
yj + kj(xi − x̄)yj) =

∑
j

(
1

n
+ kj(xi − x̄))yj =

∑
j

hijyj .

That is, the fitted values are also a weighted average of y-values just like the slope estimate was. Here,
the weights hij tell us how much observation yj contribute to the fitted value at observation i: ŷi.
Not, if x is constant all hij = 1

n . That means, if all the x values are equal the fitted value is simply
ŷi = ȳ, the mean of y. That makes sense. If x is constant there is no additional information in x about
y so the best guess for y is the mean value.

Now, the weight hii, the amount observation yi contributes to its own fitted value, is called the
leverage. It is defined as

hii =
1

n
+

(xi − x̄)2∑
k(xk − x̄)2

.

Some things to note about the leverage:

� hii is on the order 1/n

� hii is large is xi is extreme, i.e. far from x̄.

� if hii >> hij , the fitted value ŷi is dominated by its own value yi.
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Figure 5: Left: regression line, extreme x-values are highlighted. Right: the leverage hii function of xi

In Figure 5 I show a data set with extreme x-values highlighted. The corresponding leverages is shown
in the right panel.

Leverage can be used to identify potentially problematic observations. In Figure 6 we revisit the
outlier discussion from Lecture 1. In panel (b) we see an observation with high leverage, but little
influence on the fit since the y-value is not extreme. Panel (c) shows a high-leverage observation with
an extreme y-value. Since high-leverage observations influence the fitted values a lot, the regression line
is drawn toward this extreme y-value. Panel (d) is an outlier with low leverage since its x-value is not
extreme. Outliers of type (b) do not show up as large residuals, but can be detected with a leverage plot
like Figure 5 (b). Outliers of type (c) may not show up in the residual plot either, but outliers of type
(d) will.

We can conclude that the leverage and residual plot are not sufficient to diagnose problems with the
fit. Some other diagnostic plots are needed.

� Impact on the slope: We can plot the value of the slope estimate when an observation i is excluded
and compare with the slope estimate when it is included. Outliers of type (c) will show up in this
diagnostic plot since their presence alter the slope estimate a lot.

� Impact on the Least Squares criterion: We can plot the value of theQ (sum of the squared deviations
between observations and model) when we exclude observation i. If excluding i lowers the least
squares criterion by a large amount we have detected an outlier of type (d).

� The Cook’s distance: We can combine the above (impact on slope, leverage) into one measure -
called the Cook’s distance. This will allow us to identify outliers of type (b), (c) or (d) (more later).

In Figure 7 I show the impact on the slope estimate by dropping observation i and the impact on the
Least Squares cost-function Q.
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Figure 6: No outliers. (a) No outliers present, (b) Extreme observation in x, (c) outlier in y, (d) outlier
in y for a non-extreme x-value
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Figure 7: Left: Impact on slope estimate by dropping observation i. Right: Impact on Sum of Squares
criterion Q by dropping observation i.
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3 Demo 2

Let’s revisit the Television data from Lecture 1.

> TVdat <- read.table("TV.dat", sep = "\t")

> print(dim(TVdat))

[1] 40 5

> print(names(TVdat))

[1] "life" "ppTV" "ppDr" "flife" "mlife"

> print(row.names(TVdat))

[1] "Argentina" "Bangladesh" "Brazil" "Canada"

[5] "China" "Colombia" "Egypt" "Ethiopia"

[9] "France" "Germany" "India" "Indonesia"

[13] "Iran" "Italy" "Japan" "Kenya"

[17] "KoreaNorth" "KoreaSouth" "Mexico" "Morocco"

[21] "Myanmar (Burma)" "Pakistan" "Peru" "Philippines"

[25] "Poland" "Romania" "Russia" "South Africa"

[29] "Spain" "Sudan" "Taiwan" "Tanzania"

[33] "Thailand" "Turkey" "Ukraine" "United Kingdom"

[37] "United States" "Venezuela" "Vietnam" "Zaire"

> plot(TVdat$ppD, TVdat$ppT, xlab = "people per Dr", ylab = "people per TV")

> id <- identify(TVdat$ppD, TVdat$ppT, row.names(TVdat), pos = T)

●

●

●●● ●
●

●

●●

●

●●

●●

●●

●●
●

●

●

●●●●●
●

●

●

●
●●●●●●

●

0 10000 20000 30000

0
10

0
20

0
30

0
40

0
50

0
60

0

people per Dr

pe
op

le
 p

er
 T

V

Bangladesh

Ethiopia

Myanmar (Burma)

Sudan

Figure 8: People per TV vs People per Dr

> plot(log(TVdat$ppD), TVdat$ppT)

> id <- identify(log(TVdat$ppD), TVdat$ppT, row.names(TVdat), pos = T)

> plot(log(TVdat$ppD), log(TVdat$ppT))

> id <- identify(log(TVdat$ppD), log(TVdat$ppT), row.names(TVdat),

+ pos = T)

> mm <- lm(log(TVdat$ppT) ~ log(TVdat$ppD))

> lines(sort(log(TVdat$ppD)[is.na(TVdat$ppT) == F]), mm$fit[sort.list(log(TVdat$ppD)[is.na(TVdat$ppT) ==

+ F])])
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Figure 9: People per TV vs People per Dr: logs on ppDr to even out the spread in x
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Figure 10: People per TV vs People per Dr: logs on ppTV to suppress non-constant variance. Regression
line

> library(xtable)

> xtable(summary(mm), caption = "Regression summary", label = "tab:ch4")

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.3417 0.9933 -4.37 0.0001

log(TVdat$ppD) 0.9527 0.1388 6.86 0.0000

Table 1: Regression summary

3.1 Residuals and Leverage

> induse <- seq(1, dim(TVdat)[1])[is.na(TVdat$ppT) == F]

> plot(log(TVdat$ppD)[induse], mm$res)

> abline(h = 0)

> id <- identify(log(TVdat$ppD)[induse], mm$res, row.names(TVdat)[induse],

+ pos = T)

> lmi <- lm.influence(mm)

> plot(log(TVdat$ppD)[induse], lmi$hat, ylab = "leverage")

> id <- identify(log(TVdat$ppD)[induse], lmi$hat, row.names(TVdat)[induse],

+ pos = T)

> plot(induse, lmi$coef[, 2], ylab = "Impact on Slope")

> abline(h = 0)
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Figure 11: Residual and Leverage plot for the Television regression model

> id <- identify(induse, lmi$coef[, 2], label = row.names(TVdat)[induse],

+ pos = T)

> plot(induse, lmi$sig, ylab = "Impact on Sum of Squares")

> id <- identify(induse, lmi$sig, label = row.names(TVdat)[induse],

+ pos = T)

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

0 10 20 30 40

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

induse

Im
pa

ct
 o

n 
S

lo
pe

Bangladesh

KoreaNorth

Myanmar (Burma)

Sudan

●

●

●

●

●

● ●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

● ●

0 10 20 30 40

0.
90

0.
95

1.
00

1.
05

induse

Im
pa

ct
 o

n 
S

um
 o

f S
qu

ar
es Bangladesh

KoreaNorth

Myanmar (Burma)

Figure 12: Impact on Slope (left) and Residual sum of squares (right) when dropping observation i
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