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1 RECAP

� The noise level of the data is estimates as σ̂2 = MSE/(n − p), where p is the number of model
parameters (intercept and slopes).

� The ’usefullness’ of the model can be assessed using the R2 = (SST −RSS)/RSS, i.e. the reduction
in variability in y as a results of using the regression model.

� The goodness-of-fit F-test makes this assessment more formal - is the association between y and x
greater than one could expect to see by chance given the sample size and noise level?

� The F-statistic is computed as Fobserved = (SSreg/(p− 1))/MSE, where SSreg = SST −RSS.

� Under the null that β1 = 0, Fobserved follows the F -distribution Fp−1,n−p.

� We reject the null if Fobserved exceeds a chosen critical value of Fp−1,n−, e.g. the 1−α quantile for
an α-level test.

� The slope parameters can also be tested: the sampling distribution for β̂1 is tn−p. That is, β̂1−β1

SE(β̂1)
∼

tn−p where SE(β̂1) =
√

σ̂2∑
i(xi−x̄)2 .

2 Multivariate regression models

Let y = {y1, · · · , yn}′ be a n × 1 vector of dependent variable observations. Let β = {β0, β1}′ be the
2 × 1 vector of regression parameters, and ε = {ε1, · · · , εn}′ be the n × 1 vector of additive errors. We
construct the so-called design matrix X (dimension n× 2) as follows:

X =


1 x1

1 x2

. .
1 xn


We can now write the simple linear regression model in two ways:

yi = β0 + β1xi + εi, i = 1, · · · , n, (1)

or equivalently
y = Xβ + ε. (2)

The matrix formulation easily generalizes to multiple linear regression, involving predictor variables
x1, · · · , xp−1. We construct the n× p design matrix X:

X =


1 x11 x12 . x1,p−1

1 x21 x22 . x2,p−1

. . . . .
1 xn1 xn2 . xn,p−1
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The multiple regression can be written as

yi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi, i = 1, · · · , n, (3)

or equivalently
y = Xβ + ε, (4)

where β = {β0, β1, · · · , βp−1}′.

We use Least-Squares to fit a regression line to the data {xi, yi}ni=1, where xi = {xi,1, · · · , xi,p−1}.
That is, we find the regression coefficient estimates β̂ that minimizes the criterion

Q(β) = (y −Xβ)′(y −Xβ) =

n∑
i=1

(yi − xiβ)2.

Taking derivatives with respect to β, and setting these to 0, we obtain the normal equations:

dQ

dβ
= −2X ′(y −Xβ) = 0⇒

(X ′X)β = X ′y (5)

To solve for β we apply the inverse of X ′X to both sides of equation5 and obtain:

β̂ = (X ′X)−1X ′y (6)

.
It is not always possible to solve equation 5. When one might we run into trouble? Well, if the X

matrix contains some near perfectly correlated columns (meaning some of the explanatory variables are
highly correlated), the matrix X ′X may be singular and it won’t be possible to construct its inverse.

Let’s take a closer look at the two side of the normal equations: X ′X ' Cov(X), i.e. the left hand
side of equation 5 captures the covariance structure among the independent variables. On the right hand
side we have X ′y ' Cov(X, y) = (Cov(x1, y), Cov(x2, y), . . . , Cov(xp− 1, y)), i.e. the vector of pairwise
covariances between each independent variable xj and the outcome y.

What happens when we solve for β? If X ′X is a diagonal matrix, which would happen in all the
explanatory variables are uncorrelated, then β̂ ' (Corr(x1, y), Corr(x2, y), . . . , Corr(xp−1, y)), that is,

each ˆbetaj tells us how variable xj is related to y. For this particular scenario we can say that the βj ’s
have a direct interpretation of how much each xj affects y.

In most real life situations, X ′X will not be diagonal. The more correlated the x’s are, the larger the
off-diagonal elements of X ′X will be. When we then solve for β using equation 6 all x’s will contribute
to all βj !

� When x’s are highly correlated, (X ′X)−1 may not exist (det(X ′X) = 0)

� If x’s are highly correlated but the inverse exists, realize that this inverse is numerically unstable

� Numerical instability means that small changes to the data may lead to radical changes for the
estimates β̂j (magnitude and sign may change)

� Correlations among the x’s means we lose the direct interpretation of βj as the impact of xj on y.
βj will now also depend on the correlation between other xk and y.

Example:
Assume x2 = a+ bx1 and y = β0 + β1x1 + β2x2 + ε. There are an infinite number of regression models
that fit these data equally well as long as the sum of the two coefficients are the same. Here’s a small
demonstration: I generate data from the same true model y = 3 + 2x1 − x2 + ε. I explore two cases; (a)
when x1 and x2 are independent and (b) when the x’s are highly correlated (correlation .9). In Figure 1

I show the β̂1 and β̂2 obtained from 25 different data sets. The case a) estimates are shown as black
circles and the case (b) as red asterisks. Note that the spread among the black circles is much less than
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Figure 1: β̂1 and β̂2 estimated from 25 different data sets generated from the same true model, indicated
with blue horizontal and vertical lines. Black circles correspond to estimates obtained when x-variables
are uncorrelated and red asterisks estimates obtained when x’s are highly correlated.

among the red asterisks, demonstrating that there the estimation uncertainty of estimating β’s is much
higher when x’s are correlated. Note also that the β̂1 and β̂2 are highly correlated for case (b). The red

dotted line is an estimate of this correlation - as you see it takes the form of β̂1 + β̂2 = constant.

Call: lm(formula = y x1 + x2)
Residuals: Min 1Q Median 3Q Max -1.50136 -0.72254 0.08235 0.65359 2.35275
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.8367 0.1404 20.204 < 2e-16 *** x1

2.2399 0.1361 16.457 < 2e-16 *** x2 -0.8371 0.1517 -5.519 1.43e-06 *** — Signif. codes: 0 Ś***Š 0.001
Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.9806 on 47 degrees of freedom Multiple R-squared: 0.863, Adjusted R-
squared: 0.8572 F-statistic: 148.1 on 2 and 47 DF, p-value: < 2.2e-16 Call: lm(formula = y x1 +

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.8367 0.1404 20.20 0.0000

x1 2.2399 0.1361 16.46 0.0000
x2 -0.8371 0.1517 -5.52 0.0000

Table 1: Regression summary - uncorrelated x’s

x2)
Residuals: Min 1Q Median 3Q Max -2.25568 -0.66198 -0.08142 0.67605 2.16192
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.0389 0.1504 20.210 < 2e-16 *** x1

2.6708 0.3624 7.369 2.26e-09 *** x2 -1.4384 0.3263 -4.408 6.02e-05 *** — Signif. codes: 0 Ś***Š 0.001
Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 1.059 on 47 degrees of freedom Multiple R-squared: 0.6143, Adjusted R-
squared: 0.5979 F-statistic: 37.44 on 2 and 47 DF, p-value: 1.887e-10

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0389 0.1504 20.21 0.0000

x1 2.6708 0.3624 7.37 0.0000
x2 -1.4384 0.3263 -4.41 0.0001

Table 2: Regression summary - correlated x’s

In Tables 1 and 2 I provide the regression model summaries for the two cases (a) uncorrelated x’s
and (b) correlated x’s. As you see, the standard errors for case (b) are higher, indicating that estimation
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is more difficult when the x’s are correlated.s

3 Properties

3.1 The Hat-matrix

Note, the fitted values can be written as

ŷ = Xβ̂ = X(X ′X)−1X ′y,

where we denote the n×n matrix X(X ′X)−1X ′ by H, the ”Hat-matrix”. The matrix H is an idempotent
projection matrix:

HH = H ⇒
X ′e = X ′(y − ŷ) = X ′(y −Hy) = X ′(I −H)y = X ′y − (X ′X)(X ′X)−1X ′y = 0,

i.e. the residuals are orthogonal to all predictor variables. Note how the residuals could be written as

e = (I −H)y.

In addition,
e′ŷ = ((I −H)y)′Hy = y′(I −H)Hy = 0,

i.e. fitted values are orthogonal to the residuals.

We say that H is a projection matrix. It takes the data y and projects it onto the plane spanned by
X such that we obtain the fitted values ŷ = Hy.

If we write this on the long form we have:
ŷ1

ŷ2

.
ŷn

 =


h11 h12 h13 . h1n

h21 h22 h23 . h2n

. . . . .
hn1 hn2 hn3 . hnn




y1

y2

.
yn


The diagonal elements of theH-matrix, hii, i = 1, . . . , n constitute the leverage. In multivariate regression
the leverage takes the form

hii = xi(X
′X)−1x′i, where xi is the i-th row in X.

For which observations do we get a large leverage? When xi (the vector of all x-variable values for
observation i) is extreme compared x̄ (the vector of the means of each x-variable). Here we have to
be a little careful. What is ”extreme” in a multivariate setting? In the simple linear regression model
we only had to compare xi1 (the i-th value of variable x1) with its mean x̄1. Now we also have to pay
attention to the structure among the different x-variables as captured in X ′X. The leverage will be
high for observations i that deviate from the structure X ′X. Here’s an illustration: Following the same
set up as in Figure 1 I generate a data set with uncorrelated x’s and one with correlated x’s. I plot
each x against y and both x-variables against each-other in Figure 2. The observations with maximum
leverage are marked with red asterisks in each plot. Note that for uncorrelated x’s, maximum leverage
does correspond to x-values far from the mean of x. For correlated x’s extreme leverage is obtained in
’surprising’ locations, like when the x-values deviate from the correlation pattern of the bulk of the data.

3.2 Mean and Variance

E[β̂] = E[(X ′X)−1X ′y] = (X ′X)−1X ′Xβ = β.

I.e., the least-squares estimates are unbiased.

V [β̂] = V [(X ′X)−1X ′y] = (X ′X)−1X ′V (y)X(X ′X)−1,

since X is not random. V (y) = σ2I, since the errors are uncorrelated (and therefore so are the y′s). It
follows that

V [β̂] = σ2(X ′X)−1.
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Figure 2: Scatter plots of y vs x1 (a) and (d), y vs x2 (b) and (e), x2 vs x1 (c) and (f). Panels (a)-(c),
uncorrelated x’s, Panels (d)-(f) correlated x’s. The observation with maximum leverage are marked with
red asterisks.

3.3 Interpretation

Note, X ′X ∼ Cov(X), where the diagonal of the p×p matrix X ′X is the variances of the individual pre-
dictor variables (assuming x’s are centered). Now, what would happen in some of the predictor variables
are closely related (e.g. weight and height). If individual x’s are correlated (close to linearly dependent),
the X ′X matrix is near-singular. To solve for β we need to apply the inverse of X ′X to both sides of
equation (5). If X ′X is near-singular this is a highly unstable operation.

What does this mean? Well, consider the regression model in equation (3). If x1 and x2 are closely
related predictor variables, then we have no way of distinguishing between them in the regression model.
Let’s take the extreme example x1 = x2. If this is the case, then any combination of β1, β2 where β1 +β2

is constant is an equally good regression model. This extreme case is an example of an ”unidentifiable”
model - there is no unique best model.

The effect of this is seen in the variance of the least squares estimates. If X ′X is near-singular, the
determinant is close to 0 and the terms in the inverse (X ′X)−1 can get very large. Therefore, the variance

of the estimates β̂ is high whenever predictor variables are correlated. For correlated predictor variables
x1, x2 you would expect β̂1 and β̂2 to have high variance and be negatively correlated (since their sum
β1 + β2 ' constant). This is exactly what was demonstrated in Figure 1 and in Tables 1 and 2.

Let’s talk a bit more about V (β̂) = σ2(X ′X)−1. We can identify the three sources of errors in this
expression:

1. The higher the noise level σ2, the higher the estimation variance for β̂.

2. As before, nCov(X) ∼ X ′X, and so the larger the sample size, the smaller the estimation variance.
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3. The more spread in any x (V (xj)) the smaller the estimation uncertainty - BUT not only for β̂j if

the x’s are correlated. In fact, the more dependency we have between the x’s the larger V (β̂) (see
Tables 1 and2).

The more correlation we have between x’s, the more correlated their estimates will be, and the higher
the estimation variance.

3.4 Some more properties

Since
ŷ = Hy→ E[ŷ] = E[y], V [ŷ] = HV [y]H = σ2H.

The fitted values have marginal variance given by the leverage hii (diagonal elements of H).

Similarly, for the residuals,

e = (I −H)y→ E[e] = 0, V [e] = σ2(I −H).

Note that nothing has really changed from the simple linear model case as long as we formulate
everything in terms of the hat-matrix H.

4 Basic Inference

If we assume ε ∼ N(0, σ2), the derivation of the t-test and F-test in the multiple regression case follow
from the same line of thought as the simple case.

We thus have:

� The test statistics Fobserved = [(SST −RSS)/(p− 1)]/[RSS/(n− p)], where SST is the total sum
of squares

∑
i(yi− ȳ)2, and RSS is the error sum of squares in the p-parameter multiple regression

fit:
∑
i(yi − ŷi)2.

� Under the null, βj = 0 for all j = 1, · · · , p − 1, both SST /(n − 1) and RSS/(n − p) as well as
SSreg/(p− 1) = (SST −RSS)/(p− 1) provide estimates for the error variance σ2.

� Under the null, we thus expect Fobserved to be close to 1. In fact, under the null, Fobserved should
come from an F-distribution with p− 1 and n− p degrees of freedom.

� We compare Fobserved to the 1− α quantiles of the Fp−1,n−p distribution. If Fobserved exceeds the
1 − α quantile, we reject the null at the α level, and conclude that at least 1 of β1, · · · , βp−1 is
different from 0.

Similarly, for inference on a single regression coefficient:

� We define the test statistic tobserved = β̂j/SE(β̂j), where SE(β̂j) =
√
σ̂2diag((X ′X)−1)j is the

standard error of the estimate β̂j (Remember, V (β̂) = σ2(X ′X)−1).

� If the true βj = 0, tobserved should come from a t-distribution with n− p degrees of freedom.

� If the true βj 6= 0, the test statistic will be inflated (positive or negative).

� We reject the null hypothesis if |tobserved| exceeds the 1− α/2 quantile of the tn−p-distribution.

Caveat: if x’s are correlated, then so are their estimates. In that case, testing each regression coefficient
separately with a t-test can be misleading. Mathematically, you can’t really tell them apart.
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4.1 The R-squared

The R-squared is computed just as before:

R2 =
SSreg
SST

=
SST −RSS

SST
= 1− RSS

SST
.

However, when we include a large number of explanatory variables (x-variables) in the model, the R-
squared can get deceptively inflated. In fact, if you include close to n variables in your model you can
achieve an R-squared close to 1 even if the x’s are unrelated to y! Try this out yourself.

The adjusted R-squared takes the number of model parameters into account as follows:

R2
adj = 1− RSS

SST

n− 1

n− p
= 1− MSE

MST

4.2 The F-test for subset selection

The goodness-of-fit F-test investigates the null hypothesis that all slope parameters are equal to 0 against
the alternative hypothesis that at least one slope parameter is different from 0. This alternative is rather
vague. The F-test can be used to compare more precise subtypes of models.

Here is an example where I want to test if the first βj = 0, j = 1, . . . , k

� Null hypothesis: βj = 0, j = 1, . . . , k.

� Alternative: At least one of βj , j = 1, . . . , k is not 0

� I don’t specify for βj , j = k + 1, . . . , p− 1

I name the model under the alternative the complex model and the model under the null the simple
model. I now fit each of the models to the data (in the case of the null by simply not including variables
x1, . . . , xk in the fitting). I compute the residual sum of squares for each of the models: RSScomplex and
RSSsimple. The F-statistic is computed as

Fobserved =

(
(RSSsimple −RSScomplex)/(dfsimple − dfcomplex)

)
RSScomplex/(dfcomplex)

,

where dfcomplex = n−p and dfsimple = n−(p−k), i.e. the degrees of freedom of the errors for each model.

Now, if the null is true Fobserved is distributed as Fk,n−p, i.e. an F-distribution with the degrees of
freedom given by the difference in the number of parameters between the simple and complex models and
the error degrees of freedom of the complex models. The rationale for this F-test follows the derivation
of the F -test for goodness-of-fit. If the null is true, the RSS of the simple model can provide an estimate
of the error variance σ2 just as well as the complex model, etc.

You can use this kind of F-test to compare any nested models, i.e. where the simple model is the
complex model with some of its parameters set to 0.

5 Introduction to model selection

You can use both t-tests and F-tests to decide on a model, but you need to be a bit careful!

5.1 Using the t-test for selection

You could use the t-test, or just the regression summary (see e.g. Table 1) to select which variables to
keep and which to eliminate from the model. Looking at the regression summary you can eliminate all
variables xj whose estimates β̂j are not significant.

What’s the problem with this approach?
If the x’s are correlated we know from before (see Figure 1) that the estimates are correlated. It will be
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an almost random decision if for two highly correlated variables the first, the other, or both are kept in
the model. Since estimation variance increases for correlated variables you run the risk of dropping a
variable even if it has a real relationship with y.

In addition, this is an example of multiple testing. We perform a t-test on each slope coefficient. If
we use an α-level test each test has a chance α of leading to a false rejection, i.e. declaring the slope
parameter significant although no real relationship exists between this variable and y. If we do this
10 estimates, the probability that we get at least one false rejection is no longer α but (1 − (1 − α)10
(compare 5% to 40% for the case of α = .05).

5.2 F-test and subset selection

The F-test is a way of testing several slope estimates at the same time. However, which subset (complex
and simple models) should we compare?
If there are p parameters, p− 1 slope parameters for each of the x-variables and one intercept, there are
2p−1 model combinations we can consider! In Table 3 you can see how quickly the number of subset

number of variables 1 2 3 . 10 20 30
number of models 2 4 8 . 1024 1e+6 1e+9

Table 3: The number of subset models as a function of the number of x-variables

models grows as a function of the number of variables in the model. Most software packages can handle
all-subset selection only up until about 30 variables.

What are some alternatives then? We could forsake comparing all subsets and perform directed or
greedy searches. A common approach is the so-called Backward search which is outlined here:

Backward Model Selection:

0. * Initialize by fitting the full model with all p parameters - obtain the RSScomplex. Set the current
number of paramters pc = p. Include the variables x1, x2, . . . , xp−1 in the ”active” set of variables
A.

1. * Reducing the model.

– Examine the fit of each of the pc − 1 subset models corresponding to dropping one of the
variables in set A from the model. Denote the corresponding error sum of squares by RSSk
for variables xk, k ∈ A.

– Identify the variable x+, ∗ ∈ A with the minimum RSS+ = mink∈ARSSk

2. * Compute the Fobs =
(RSS+−RSScomplex)
RSScomplex/(n−pc)

3. * If Fobs < F1,n−pc(1− α)

– don’t reject the null hypothesis that β+ = 0

– drop x+ from the model and update set A = A \ x+

– set RSScomplex = RSS+ and pc = pc − 1

– Go to [1.]

* Else, if Fobs > F1,n−pc(1− α), reject the null hypothesis that β+ = 0 and STOP

You can of course perform a forward search, considering the addition of one variable in each step and
stopping when you cannot reject the hypothesis that the most recently added variable has slope 0.

Here are some cautionary statements about stepwise or greedy model selection:

8



� Since it is greedy you are not guaranteed to find the best subset model. There are variants of
stepwise model selection where you add a random element to the mix which can help (moving a
few steps forward, a few steps backward, which allows for erroneous drops or additions of variables
to be reversed).

� Greedy searchers can lead to models that are difficult to interpret - variables that are correlated
are competing to be in the model and human knowledge may be able to tell sensible models apart
where the statistics cannot.

9



6 Demo 5

We will work with the South-African heart disease data (see e.g. the book ”The Elements of Statistical
Learning”, by Hastie, Friedman and Tibshirani).

> SA <- data.frame(read.table("SA.dat", sep = "\t", header = T))

> print(dim(SA))

[1] 312 12

> print(names(SA))

[1] "age" "sbp" "adiposity" "obesity" "typea" "alcohol"

[7] "alcind" "tobacco" "tobind" "chd" "famhist" "ldl"

There is data on 311 male individuals. The variables in the data set include; age of patient (age),
systolic bloodpressure (sbp), fat in adipose tissue (beneath the skin, around organs) (adiposity), body
mass index (bmi) (obesity), typa A behaviour (aggressive personality) (typea), how much alcohol units
consumed per week (alcohol), an indicator if drink alcohol at al (alcind), cumulative tobacco consumption
in kg (tobacco), and indicator if patient is /have been a smoker (tobind), an indicator whether patient
is diagnosed with heart disease (chd), an indicator if the patient has family member with heart disease
(famhist), and finally the cholesterol level of the patient (ldl).
Now, I will use this data set to model cholesterol, though a more natural way of thinking about the data
is probably to treat the heart disease as the outcome. We will return to this data set later in the class
and do precisely that.

> par(mfrow = c(2, 2))

> plot(SA$obesity, SA$ldl, main = "LDL on obesity")

> plot(SA$sbp, SA$ldl, main = "LDL on blood pressure")

> plot(SA$tobacco, SA$ldl, main = "LDL on tobacco usage")

> plot(SA$alcohol, SA$ldl, main = "LDL on alcohol consumption")

> p <- locator()

> par(mfrow = c(2, 2))

> boxplot(SA$ldl ~ SA$chd, main = "LDL on coronary heart disease status")

> boxplot(SA$ldl ~ as.factor(SA$famhist), main = "LDL on family history of same")

> plot(SA$age, SA$ldl, main = "LDL on age")

> plot(SA$typea, SA$ldl, main = "LDL on type A behaviour")

> p <- locator()
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Figure 3: Scatter plots. TL: ldl vs obesity, TR: ldl vs blood pressure. LL: ldl vs tobacco. LR: ldl vs
alcohol
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Figure 4: Scatter plots. TL: ldl vs heart disease, TR: ldl vs family history of heart disease. LL: ldl vs
age. LR: ldl vs type A
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In Figures 3 and4 we see some indication that the error scatter is non-constant, it seems to be higher
with higher levels of cholesterol (ldl). I try out a couple of data transformations to deal with the problem
(see Figure 5).
Try some other transformations yourself.

> par(mfrow = c(2, 2))

> plot(log(SA$obesity), log(SA$ldl), main = "log(LDL) on log(obesity)")

> plot(log(SA$age), log(SA$ldl), main = "log(LDL) on log(age)")

> plot(SA$adi, log(SA$ldl), main = "log(LDL) on adiposity")

> plot(SA$sbp, log(SA$ldl), main = "log(LDL) on blood pressure")

> p <- locator()
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Figure 5: Trying data transformations. TL: log(ldl) vs heart log(obesity), TR: log(ldl) vs log(age) LL:
log(ldl) vs adiposity. LR: log(ldl) vs blood pressure

> mm1 <- lm(log(ldl) ~ log(age) + log(obesity) + as.factor(chd) +

+ as.factor(famhist) + as.factor(tobind) + as.factor(alcind) +

+ tobacco + alcohol + adiposity + typea + sbp, data = SA)

> print(summary(mm1))

Call:

lm(formula = log(ldl) ~ log(age) + log(obesity) + as.factor(chd) +

as.factor(famhist) + as.factor(tobind) + as.factor(alcind) +

tobacco + alcohol + adiposity + typea + sbp, data = SA)

Residuals:

Min 1Q Median 3Q Max

-1.23876 -0.21076 0.03156 0.23059 0.98068

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0956208 0.6728934 -0.142 0.887093

log(age) -0.0430960 0.0733132 -0.588 0.557086
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log(obesity) 0.2746311 0.2124959 1.292 0.197211

as.factor(chd)1 0.1560178 0.0479134 3.256 0.001258 **

as.factor(famhist)2 0.0733438 0.0426357 1.720 0.086420 .

as.factor(tobind)1 0.1572254 0.0537512 2.925 0.003707 **

as.factor(alcind)1 0.0178784 0.0509036 0.351 0.725669

tobacco -0.0008815 0.0053774 -0.164 0.869906

alcohol -0.0035654 0.0009710 -3.672 0.000285 ***

adiposity 0.0220377 0.0050461 4.367 1.73e-05 ***

typea 0.0019406 0.0020552 0.944 0.345822

sbp -0.0000682 0.0010241 -0.067 0.946950

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.3532 on 300 degrees of freedom

Multiple R-squared: 0.3602, Adjusted R-squared: 0.3368

F-statistic: 15.36 on 11 and 300 DF, p-value: < 2.2e-16

> par(mfrow = c(2, 2))

> plot(mm1)

> p <- locator()
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Figure 6: Diagnostic plots
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The diagnostic plots in Figure 6 include:

� Top left: a residual vs fitted value plot - look for an even spread around the horizontal axis

� Top right: a QQplot - checking to see if the residuals follows a near normal distribution

� Bottom left: absolute values of residuals vs fitted values - check to see that the variance does not
vary with the fitted value

� Bottom right: residuals vs leverage - look for extremes (R will mark some for you)

Let’s try some other diagnostic plots.

> plot(cooksd, main = "Cook's Distance", type = "h")

> abline(h = qf(0.95, 1, mm1$df), lty = 2)

> if (max(id$ind) != -Inf) {

+ text(id$ind, cooksd[id$ind], id$ind, pos = id$pos)

+ }

> plot(lm1$hat, main = "Leverage")

> abline(h = 3 * length(mm1$coef)/dim(SA)[1])

> if (max(idlev$ind) != -Inf) {

+ text(idlev$ind, lm1$hat[idlev$ind], idlev$ind, pos = idlev$pos)

+ }
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Figure 7: Diagnostic plots: Cook’s Distance and Leverage plots

> plot(lm1$coeff[, 4], main = "change in slope 4")

> if (max(id4$ind) != -Inf) {

+ text(id4$ind, lm1$coeff[id4$ind, 4], id4$ind, pos = id4$pos)

+ }

> plot(lm1$coeff[, 6], main = "change in slope 6")

> if (max(id6$ind) != -Inf) {

+ text(id6$ind, lm1$coeff[id6$ind, 6], id6$ind, pos = id6$pos)

+ }

> plot(lm1$coeff[, 9], main = "change in slope 9")

> if (max(id9$ind) != -Inf) {

+ text(id9$ind, lm1$coeff[id9$ind, 9], id9$ind, pos = id9$pos)

+ }

> plot(lm1$coeff[, 10], main = "change in slope 10")

> if (max(id10$ind) != -Inf) {

+ text(id10$ind, lm1$coeff[id10$ind, 10], id10$ind, pos = id10$pos)

+ }

14
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Figure 8: Change in slope in coefficients 4,6, 9 and 10

> indvec <- c(id$ind, idlev$ind, id4$ind, id6$ind, id9$ind, id10$ind)

> print(table(indvec))

indvec

14 73 74 101 139 235 255 292 312

1 1 1 1 3 3 1 2 1

> indout <- unique(sort(indvec))[sort.list(table(indvec), decreasing = T)[1]]

I identify the most commonly present outliers as observations 139. I rerun the analysis without this
observation.

> mm1b <- lm(log(ldl) ~ log(age) + log(obesity) + as.factor(chd) +

+ as.factor(famhist) + as.factor(tobind) + as.factor(alcind) +

+ tobacco + alcohol + adiposity + typea + sbp, data = SA, subset = -indout)

> print(summary(mm1b))

Call:

lm(formula = log(ldl) ~ log(age) + log(obesity) + as.factor(chd) +

as.factor(famhist) + as.factor(tobind) + as.factor(alcind) +

tobacco + alcohol + adiposity + typea + sbp, data = SA, subset = -indout)

Residuals:

Min 1Q Median 3Q Max

-0.93056 -0.22058 0.03154 0.22218 1.01322

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.3935346 0.6642453 -0.592 0.553995

log(age) -0.0019872 0.0726955 -0.027 0.978210

15



log(obesity) 0.3446144 0.2090664 1.648 0.100331

as.factor(chd)1 0.1504759 0.0469685 3.204 0.001503 **

as.factor(famhist)2 0.0638829 0.0418526 1.526 0.127973

as.factor(tobind)1 0.1357134 0.0529882 2.561 0.010922 *

as.factor(alcind)1 0.0029381 0.0500394 0.059 0.953218

tobacco -0.0013189 0.0052700 -0.250 0.802546

alcohol -0.0035687 0.0009514 -3.751 0.000211 ***

adiposity 0.0198151 0.0049808 3.978 8.72e-05 ***

typea 0.0023561 0.0020168 1.168 0.243647

sbp -0.0001148 0.0010034 -0.114 0.908999

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.346 on 299 degrees of freedom

Multiple R-squared: 0.3645, Adjusted R-squared: 0.3411

F-statistic: 15.59 on 11 and 299 DF, p-value: < 2.2e-16

> par(mfrow = c(2, 2))

> plot(mm1b)

> p <- locator()
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Figure 9: Diagnostics after removing observation 139

In the regression summary and diagnostic figures (Figure 9), we see that the fit is improved after
removing the outlier.

> SA2 <- SA

> SA2$obesity <- log(SA$obesity)

> SA2$age <- log(SA$age)

> SA2$ldl <- log(SA$ldl)

> distmat <- 1 - cor(SA2[, -12])

> library(gplots)

> hh <- heatmap.2(as.matrix(distmat), col = redgreen(75), cexRow = 0.5,

+ key = TRUE, symkey = FALSE, density.info = "none", trace = "none")
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Figure 10: Clustering of explanatory variables.

In Figure 10 I depict a clustering of the explanatory variables. Which variables cluster together?
What does that mean in terms of interpretational value of the regression model?

> step(mm1b, directions = "backward")

Start: AIC=-648.35

log(ldl) ~ log(age) + log(obesity) + as.factor(chd) + as.factor(famhist) +

as.factor(tobind) + as.factor(alcind) + tobacco + alcohol +

adiposity + typea + sbp

Df Sum of Sq RSS AIC

- log(age) 1 0.00009 35.798 -650.35

- as.factor(alcind) 1 0.00041 35.798 -650.35

- sbp 1 0.00157 35.800 -650.34

- tobacco 1 0.00750 35.806 -650.29

- typea 1 0.16340 35.961 -648.93

<none> 35.798 -648.35

- as.factor(famhist) 1 0.27894 36.077 -647.94

- log(obesity) 1 0.32530 36.123 -647.54

- as.factor(tobind) 1 0.78537 36.583 -643.60

- as.factor(chd) 1 1.22888 37.027 -639.85

- alcohol 1 1.68455 37.483 -636.05

- adiposity 1 1.89486 37.693 -634.31

Step: AIC=-650.35

log(ldl) ~ log(obesity) + as.factor(chd) + as.factor(famhist) +

as.factor(tobind) + as.factor(alcind) + tobacco + alcohol +

adiposity + typea + sbp

Df Sum of Sq RSS AIC

- as.factor(alcind) 1 0.00042 35.799 -652.35

- sbp 1 0.00176 35.800 -652.34

- tobacco 1 0.00831 35.806 -652.28

- typea 1 0.16487 35.963 -650.92

<none> 35.798 -650.35

- as.factor(famhist) 1 0.28483 36.083 -649.89
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- log(obesity) 1 0.34268 36.141 -649.39

- as.factor(tobind) 1 0.82401 36.622 -645.27

- as.factor(chd) 1 1.24607 37.044 -641.71

- alcohol 1 1.68852 37.487 -638.02

- adiposity 1 2.51981 38.318 -631.20

Step: AIC=-652.35

log(ldl) ~ log(obesity) + as.factor(chd) + as.factor(famhist) +

as.factor(tobind) + tobacco + alcohol + adiposity + typea +

sbp

Df Sum of Sq RSS AIC

- sbp 1 0.00160 35.800 -654.33

- tobacco 1 0.00834 35.807 -654.27

- typea 1 0.16461 35.963 -652.92

<none> 35.799 -652.35

- as.factor(famhist) 1 0.28675 36.085 -651.87

- log(obesity) 1 0.34694 36.145 -651.35

- as.factor(tobind) 1 0.83388 36.632 -647.19

- as.factor(chd) 1 1.24729 37.046 -643.70

- alcohol 1 1.94543 37.744 -637.89

- adiposity 1 2.53784 38.336 -633.05

Step: AIC=-654.33

log(ldl) ~ log(obesity) + as.factor(chd) + as.factor(famhist) +

as.factor(tobind) + tobacco + alcohol + adiposity + typea

Df Sum of Sq RSS AIC

- tobacco 1 0.00840 35.809 -656.26

- typea 1 0.16552 35.966 -654.90

<none> 35.800 -654.33

- as.factor(famhist) 1 0.28656 36.087 -653.85

- log(obesity) 1 0.34661 36.147 -653.34

- as.factor(tobind) 1 0.83228 36.632 -649.19

- as.factor(chd) 1 1.25398 37.054 -645.63

- alcohol 1 1.97882 37.779 -639.60

- adiposity 1 2.59393 38.394 -634.58

Step: AIC=-656.26

log(ldl) ~ log(obesity) + as.factor(chd) + as.factor(famhist) +

as.factor(tobind) + alcohol + adiposity + typea

Df Sum of Sq RSS AIC

- typea 1 0.16902 35.978 -656.80

<none> 35.809 -656.26

- as.factor(famhist) 1 0.29475 36.103 -655.71

- log(obesity) 1 0.35973 36.168 -655.15

- as.factor(tobind) 1 0.88219 36.691 -650.69

- as.factor(chd) 1 1.26426 37.073 -647.47

- alcohol 1 2.04131 37.850 -641.02

- adiposity 1 2.62351 38.432 -636.27

Step: AIC=-656.8

log(ldl) ~ log(obesity) + as.factor(chd) + as.factor(famhist) +

as.factor(tobind) + alcohol + adiposity

Df Sum of Sq RSS AIC

<none> 35.978 -656.80
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- as.factor(famhist) 1 0.30162 36.279 -656.20

- log(obesity) 1 0.44901 36.427 -654.94

- as.factor(tobind) 1 0.84488 36.822 -651.58

- as.factor(chd) 1 1.42731 37.405 -646.70

- alcohol 1 1.97752 37.955 -642.15

- adiposity 1 2.48021 38.458 -638.06

Call:

lm(formula = log(ldl) ~ log(obesity) + as.factor(chd) + as.factor(famhist) +

as.factor(tobind) + alcohol + adiposity, data = SA, subset = -indout)

Coefficients:

(Intercept) log(obesity) as.factor(chd)1

-0.403954 0.388258 0.154690

as.factor(famhist)2 as.factor(tobind)1 alcohol

0.065295 0.127694 -0.003525

adiposity

0.018669
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