
MSG500/MVE190

Linear Models - Lecture 8

Rebecka Jörnsten
Mathematical Statistics

University of Gothenburg/Chalmers University of Technology

November 22, 2012

1 RECAP

� Ultimate validation of a model is to test its predictive capacity

� Prediction performance is affected by both Bias and Estimation variance

� We combine the two into the criterion prediction MSE = Bias2 + Estimation Variance

� We can’t compute this in real life situations since we don’t know the true model (needed to compute
the bias)

� With training and test data we can separate model estimation from model validation (prediction)

� Training data: compute MSEtrain = RSS/n (the fit of the model on the data used to estimate
model parameters)

� Test data: compute pMSE = MSEtest (the fit of the model to new data not used for estimation).

� The pMSE is a substitute for the real prediction MSE as defined above.

� We select the model that minimizes the pMSE

2 Cross-validation

In the previous lecture we compared backward model selection to the performance of model actually
selected to work for prediction. Of course, in practise we won’t have access to both training and test
data, but as you saw in the demo, you can create training and test data by splitting the data set up.
That raises a couple of issues; (i) how much data should be used for training and how much for testing;
and (ii) how to split the data up.

We focus on (ii) first. In the previous demo we just randomly split the data 50-50 or 60-40. Now,
this means that some observations are used for training and some for testing, and chance decides. Cross-
validation is a way of formalizing this idea, but making sure that all data plays both training and testing
at least once.

K-fold Cross-validation

� Split the data set into K equal size parts (if the data isn’t of size integer∗K, some folds of data
will have one observation more than the others - just keep track of this).

� Enumerate all models you want to investigate: m1, · · · ,mM

� For k = 1, · · · ,K

1. For observation i not in fold k, fit all models m1, · · · ,Mm. Save the corresponding coefficient
estimate β̂k(mj), j = 1, · · · ,M

1

2. Apply the estimated model for prediction to the observations i in the fold k and compute the

corresponding sum of prediction errors: prederrork(mj) =
∑

i∈ fold k

(
yi− ŷi(k,mj)

)2
, where

ŷi(k,mj) = xiβ̂k(mj). Note, the estimated coefficients β̂k do not depend on observations i in
fold k.

� Compute the total prediction error sum of squares for all the M models: prederror(mj) =∑
k prederrork(mj)

� Choose the model m∗ which minimizes the prediction error: m∗ = argminjprederror(mj)

Note, that all observations get a chance to be part of the validation or testing of the models. The final
selection criterion is the prediction error summed up over all folds. You could also use the prediction
MSE, prederror/n where n is the number of observations.

Here’s an illustration: We simulate data with n = 75 observations from y = 1 + 2x− .5x2 + ε, where
ε ∼ N(0, 2). We enumerate all the possible models up to order 3: y = β0 + β1x+ β2x

2 + β3x
3 + ε

Model β0 β1 β2 β3
1 TRUE FALSE FALSE FALSE
2 TRUE TRUE FALSE FALSE
3 TRUE FALSE FALSE TRUE
4 TRUE FALSE TRUE FALSE
5 TRUE TRUE TRUE FALSE
6 TRUE TRUE FALSE TRUE
7 TRUE FALSE TRUE TRUE
8 TRUE TRUE TRUE TRUE

Table 1: Enumeration of models

In Table 1, I don’t allow for the intercept to be absent and there are thus 8 total models to compare.
I try 10-fold cross-validation, i.e. divide the data set into 10 random chunks of the data. To make

this easier, I first create a vector enumerating all the observations, then scramble this vector and finally
divide it into 10 equal pieces. Note, if my sample size is not an integer value of 10, I let the first folds
contain one extra observation until all data observations have been included in a fold.

We now cycle through each fold, withholding part of the data and fitting each model to the rest. We
then apply the fitted models to the folds for prediction.

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 PE
1 40.40 61.78 114.14 84.36 48.33 45.18 24.16 92.53 17.91 50.40 7.72
2 25.23 27.44 73.42 51.14 30.39 36.74 16.18 42.03 18.27 38.51 4.79
3 16.97 42.11 104.26 66.86 33.22 70.63 15.47 69.92 12.31 46.45 6.38
4 42.91 56.06 114.81 78.93 62.02 39.27 21.69 91.83 20.65 47.35 7.67
5 37.96 25.54 65.51 51.78 30.57 26.06 20.04 35.77 26.39 37.30 4.76
6 27.56 25.89 72.92 63.81 30.01 31.53 13.34 44.23 16.88 36.13 4.83
7 20.94 39.83 104.67 93.86 34.59 71.58 13.36 70.86 12.68 44.24 6.76
8 39.40 23.37 63.70 51.04 33.48 16.96 16.92 37.92 25.02 34.56 4.56

Table 2: Prederrors in different folds and total

In Table 2 you can compare the fold results and total prediction error results for the different models
(see Table 1). I extract the winning model (with minimum PE) from the table:

> winmod <- Models[which.min(PE),]

> print(winmod)

intercept b1 b2 b3

TRUE TRUE TRUE TRUE

Let’s repeat the exercise with much more data (n = 1500).

2

> z <- data.frame(as.matrix(cbind(Prederrors, PE)))

> colnames(z) <- c("Fold1", "Fold2", "Fold3", "Fold4", "Fold5",

+ "Fold6", "Fold7", "Fold8", "Fold9", "Fold10", "PE")

> row.names <- c(seq(1, 8))

> xtable(z, digits = c(0, rep(0, 10), 3), caption = "Prederrors in different folds and total",

+ label = "tab:CVresult2")

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 PE
1 1184 1460 1177 1182 1285 1559 1453 1310 1269 1570 8.967
2 546 667 658 587 727 602 672 660 582 795 4.330
3 841 919 946 777 979 1196 912 896 960 979 6.270
4 1120 1410 1160 1023 1386 1385 1233 1291 1107 1245 8.240
5 479 541 632 538 694 533 595 628 531 693 3.909
6 553 673 661 584 730 592 671 664 574 781 4.321
7 787 815 937 746 947 1302 840 862 1011 983 6.153
8 477 543 631 537 699 530 596 629 528 696 3.911

Table 3: Prederrors in different folds and total

In Table 3 you can compare the fold results and total prediction error results for the different models
(see Table 1). I extract the winning model (with minimum PE) from the table:

> winmod <- Models[which.min(PE),]

> print(winmod)

intercept b1 b2 b3

TRUE TRUE TRUE FALSE

Next lecture we will talk about the expected prediction error and the sources of variation in this -
one being the model estimation and one being the inherent variation in the data (σ2). You might notice
that the PE comes pretty close to the σ2 = 4 of the model for large sample sizes, but (if you repeat) the
exercise we see more variability for the smaller sample sizes.

Even with this simple model, cross-validation may not always select the correct model - there are
some collinearity problems present (x and x3 are correlated) and the effect of x2 is rather weak. Repeat
the above exercise a couple of times with different sample sizes and noise levels.

Picking K and LOOCV: leave-one-out cross-validation

You can pick the number of folds, K, anyway you want. However, if you check in the literature the most
common choices for K are K = 3, 5, 10 and n. We will discuss the pros and cons of these choices now.

What is the impact of choosing a small K, say K = 2. K = 2 means you split the data in half and
train/test on each half separately. This boils down to sacrificing quite a lot of data to be saved for testing
each model. If you have a huge data set this doesn’t really matter too much but if your sample size is
small you have an even smaller data set to train your models on. The less data you have, the higher the
estimation variance of the model parameters (as we know from previous lectures). As a consequence, the
prediction performance might deteriorate.

Why do we care? Well, we have talked about bias and variance. If we intend to use the observed
prediction error (across folds of data) for model selection, we need this estimate of the expected prediction
error to be accurate. We may suffer from bias, which here would mean that we over- or under-estimate
the performance of a model. We may also have high estimation variance of the expected prediction error,
which means that our observed quantity may be quite far from the expected one, making model selection
an uncertain business. The smaller we make K, the less data we have and so we will bias our prediction
error estimate upward.

So, should we pick a large K? The larger K is, the more similar the training data set is in size to the
original data set, so we expect training to perform nearly as well for large K as when we use all the data.

3

However, each of the training sets actually overlap quite a bit, so our final estimate of the prediction error,
essentially an average of each fold performance, shares a lot of information. When we use small K we
hope that the average over each fold performance cancels out some of the training and test-specific data
variabilities. Here, since the training data sets share so much information, we are really only observing
a few, separate predictions. This will be reflected in a highly variable estimate of the true prediction error.

Conclusion: small K - we bias our prediction error estimate upward: large K - our estimated predic-
tion error is highly variable. There is a trade-off. In general, I advice you to stay with common choices
like K = 10 or K = n. Now, this extreme K = n option is something that deserves a separate discussion.
K = n is called Leave-one-out cross-validation, LOOCV. It can be shown to generate unbiased estimates
of a model’s expected prediction error, but is also notorious for having high estimation variance. LOOCV
is still very popular because for linear models we don’t actually have to do any refitting at all!

Let’s show this. Let’s say we look in fold k, meaning observation k is the test data and every other
observation is the training data. The fitted value

ŷk =
∑
j

hkjyj

when all observations are included, but if we exclude k the predicted value is

ŷk(−k) =
∑
j 6=k

hkj
1 − hkk

yj

(all we are doing is re-weighting the the entries in the Hat-matrix to account for observation k not being
included). We can now write:

ŷk(−k) =
∑
j 6=k

hkjyj + hkkŷk(−k).

Now, the squared prediction error for observation k is

(yk − ŷk(−k))2 = (yk −
∑
j 6=k

hkjyj − hkkŷk(−k))2 = (yk −
∑
j

hkjyj + hkk(yk − ŷk(−k)))2

But that means that we can write the LOOCV error as

1

n

∑
k

(yk − ŷk(−k))2 =
1

n

∑
k

(yk − ŷk
1 − hkk

)2
.

We can thus compute the LOOCV error from the original fit ŷk by just re-weighting the residuals by the
factor 1 − hkk. These residuals:

ẽk =
ek

1 − hkk

are called the studentized residuals. Note, the leverage values hkk of course depend on the model we use
since hkk = xk(X ′X)−1x′k, where the columns of X are specific for each model.

I apply this strategy to the simulated data above and extract the winning model (with minimum
PE):

> winmod <- Models[which.min(PE),]

> print(winmod)

intercept b1 b2 b3

TRUE TRUE TRUE TRUE

3 Demo 8

We revisit the South-African heart disease data. We start by enumerating all models to investigate.

4

> SA <- data.frame(read.table("SA.dat", sep = "\t", header = T))

> yy <- SA[, 12]

> xx <- SA[, -12]

> rleaps <- regsubsets(xx, yy, int = T, nbest = 250, nvmax = 250,

+ really.big = T, method = c("ex"))

> cleaps <- summary(rleaps, matrix = T)

> Models <- cleaps$which

> Models <- rbind(c(T, rep(F, dim(xx)[2])), Models)

Let’s try 10-fold cross-validation. First, we create the 10 folds of data:

> K <- 10

> ii <- sample(seq(1, length(yy)), length(yy))

> foldsize <- floor(length(yy)/K)

> sizefold <- rep(foldsize, K)

> restdata <- length(yy) - K * foldsize

> if (restdata > 0) {

+ sizefold[1:restdata] <- sizefold[1:restdata] + 1

+ }

We will now cycle trough each fold of data, fit each of the models and compute the prediction errors:

> Prederrors <- matrix(0, dim(Models)[1], K)

> iused <- 0

> Xmat <- as.matrix(cbind(rep(1, dim(xx)[1]), xx))

> for (k in (1:K)) {

+ itest <- ii[(iused + 1):(iused + sizefold[k])]

+ itrain <- ii[-c((iused + 1):(iused + sizefold[k]))]

+ iused <- iused + length(itest)

+ for (mm in (1:dim(Models)[1])) {

+ betahat <- solve(t(Xmat[itrain, Models[mm,]]) %*% Xmat[itrain,

+ Models[mm,]]) %*% t(Xmat[itrain, Models[mm,]]) %*%

+ yy[itrain]

+ ypred <- Xmat[itest, Models[mm,]] %*% betahat

+ Prederrors[mm, k] <- sum((yy[itest] - ypred)^2)

+ }

+ }

> PE <- apply(Prederrors, 1, sum)/length(yy)

5

There are more than 1400 models in the above comparison: here are the top 5

> jj <- sort.list(PE)[1:5]

> print(as.matrix(Models[jj,]))

(Intercept) age sbp adiposity obesity typea alcohol alcind tobacco tobind

6 TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE

7 TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE

5 TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

6 TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

6 TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE

chd famhist

6 TRUE FALSE

7 TRUE TRUE

5 TRUE FALSE

6 TRUE TRUE

6 TRUE FALSE

> z <- data.frame(as.matrix(cbind(Prederrors[jj,], PE[jj])))

> colnames(z) <- c("Fold1", "Fold2", "Fold3", "Fold4", "Fold5",

+ "Fold6", "Fold7", "Fold8", "Fold9", "Fold10", "PE")

> row.names <- c(seq(1, 5))

> xtable(z, digits = c(0, rep(0, 10), 3), caption = "Prederrors in different folds and total",

+ label = "tab:CVldl")

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 PE
1 127 87 136 68 127 78 73 40 78 66 2.820
2 128 88 135 63 125 78 73 49 77 64 2.822
3 127 89 135 69 124 78 72 41 78 67 2.822
4 128 90 135 64 121 78 72 50 77 66 2.823
5 128 87 133 68 123 76 74 44 79 68 2.824

Table 4: Prederrors in different folds and total

In Table 4 you can compare the fold results and total prediction error results for the different models
(seen in the R output). The winning model is

> winmod <- Models[which.min(PE),]

> print(winmod)

(Intercept) age sbp adiposity obesity typea

TRUE TRUE FALSE TRUE FALSE TRUE

alcohol alcind tobacco tobind chd famhist

TRUE FALSE FALSE TRUE TRUE FALSE

6

Let’s compare this to the backward model selection results:

> mm <- lm(log(ldl) ~ log(age) + sbp + adiposity + log(obesity) +

+ typea + alcohol + alcind + tobacco + tobind + as.factor(chd) +

+ as.factor(famhist), data = SA)

> ss <- step(mm, trace = F)

> print(ss)

Call:

lm(formula = log(ldl) ~ adiposity + log(obesity) + alcohol +

tobind + as.factor(chd) + as.factor(famhist), data = SA)

Coefficients:

(Intercept) adiposity log(obesity)

-0.295887 0.019417 0.342913

alcohol tobind as.factor(chd)1

-0.003449 0.143639 0.154434

as.factor(famhist)2

0.071745

7

What about the LOOCV model?

> PE <- rep(0, dim(Models)[1])

> for (mm in (1:dim(Models)[1])) {

+ modfit <- lm(yy ~ Xmat[, Models[mm,]] - 1)

+ rstud <- rstudent(modfit) * summary(modfit)$sig

+ PE[mm] <- sum((rstud)^2)/length(yy)

+ }

The top 5 LOOCV models are

> jj <- sort.list(PE)[1:5]

> print(as.matrix(Models[jj,]))

(Intercept) age sbp adiposity obesity typea alcohol alcind tobacco tobind

6 TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

7 TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE

7 TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE

8 TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE

7 TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE

chd famhist

6 TRUE TRUE

7 TRUE TRUE

7 TRUE TRUE

8 TRUE TRUE

7 TRUE TRUE

8

	RECAP
	Cross-validation
	Demo 8

