
MVE190/MSG500: Linear Statistical Models

Time: 08:30-12:30, Date: 2013-12-19

Instructor: José Sánchez (Rebecka Jörnsten)
Jour: José Sánchez, tel. 031–772 53 77.
Help: Course notes, your own notes, books.
Grading scale: Max points 35 (5 points each question).
Chalmers: 3 requires 14 points, 4 requires 21 points, 5 requires 28 points.
GU: G 14 points, VG 28 points.

Question 1

Consider a model where the regression line is expected to pass through the origin

yi = βxi + ǫi

a) Compute the least squares estimate for β.

b) Derive the variance of β̂ and ŷi for this model.

c) Suppose now that the xi ≥ 0. Define

β̂1 =

∑n

i=1
yi

∑n

i=1
xi

, and β̂2 =

∑n

i=1
xiyi

∑n

i=1
x2

i

.

That is, β̂1 and β̂2 are two different estimates of β. Show that β̂1 and β̂2 are unbiased
estimates for β.

d) Compare the variances of β̂1 and β̂2.

e) How do you interpret β̂1 and β̂2? Which one is a better estimate of β?

Question 2

The following table shows the occurrences of rare words in James Joyce’s Ullyses.

Number of occurrences Number of words
1 16432
2 4776
3 2194
4 1285
5 906
6 637
7 483
8 371
9 298
10 222

a) Assume a word in Joyce’s vocabulary will appear x number of times according to a Pois-
son model with mean parameter λ. Estimate λ for the model. Does it predict the counts
accurately? Does it seem to be adequate?
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b) Consider now that the counts occur according to a Poisson model with parameter λ where

log(λ) = β0 + β1x

Figure 1 I shows a scatter plot on the data, the fit from the simple Poisson model from a) and
two different GLMs, one for (exactly) the equation above and one for a transformed version
of x.
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Figure 1: Scatter plot of number of occurrences vs number of counts with fitted model

Figures 2 and 3 show the residual plots for the GLMs. Can you identify which one is which?
Comment on the fit of the models with respect to the basic assumptions in generalized linear
models.
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Figure 2: Residual plots from the regression fit.
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Figure 3: Residual plots from the regression fit.

Question 3

Consider the simple linear regression model

yi = β0 + β1xi + ǫi.
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Assume that

Var(ǫi) =

{

σ2 with probability 1− δ

τ2 with probability δ

a) Derive the variance for the OLS estimate of β1.

b) Based on the result in a), how would you expect the least squares estimate to behave for
small perturbations of the data?

c) For a data set x1, x2, . . . , xn, the mean and the median can be defined as

mean: min
m

{

n
∑

i=1

(xi −m)2

}

, median: min
m

{

n
∑

i=1

|xi −m|

}

The usual least squares (OLS) can be thought of as the regression analogue to the mean,
while the least absolute deviation (LAD) regression

min
β0,β1

{

n
∑

i=1

|yi − (β0 + β1xi)|

}

can be thought of the regression analogue to the median. The following table shows the
measurements of oxygen (O2) and carbon dioxide (CO2) in the pouches of 23 potoroos (a
marsupial).

Animal O2 CO2

1 20 1
2 19.6 1.2
3 19.6 1.1
4 19.4 1.4
5 18.4 2.3
6 19 1.7
7 19 1.7
8 18.3 2.4
9 18.2 2.1
10 18.6 2.1
11 19.2 1.2
12 18.2 2.3
13 18.7 1.9
14 18.5 2.4
15 18 2.6
16 17.4 2.9
17 16.5 4
18 17.2 3.3
19 17.3 3.4
20 17.8 3.4
21 17.3 2.9
22 18.4 1.9
23 16.9 3.9

To test the performance of OLS and LAD another data set was generated where the O2 level
for animal 15 was changed to 10. Figure 4 shows the OLS and the LAD regressions for the
above original data set and the OLS and LAD regressions for the altered data set. Can you
motivate which one is which? Why do you expect such behaviour from OLS and from LAD?
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Figure 4: Regression models for the O2 and CO2

Question 4

a) Based on survey data, a psychologist runs a regression in which the dependent variable is a
measure of depression and the independent variables are marital status. employment status,
income, gender and body mass index. Using a regression analysis he finds that people with a
higher body mass index are significantly more depressed, controlling for the other variables.
Has he shown that being overweight causes depression?

b) In a large organization, the average salary for men is $47,000 while the average salary for
women is $30,000. A t-test shows that this difference is significant at the 0.001 level. When
we control for years of work experience, the p-value for the effect of gender changes to 0.17.
What would you conclude?

Question 5

Here we will analyse again the hear disease data set from the lectures. It consists of 312 observations
and 12 different variables. Here wi will focus on two of them only, namely, the indicator variable
for the presence of heart disease (chd) and cholesterol level (ldl). Cholesterol level is a continuous
variable raging form 0.98 to 11.98. I’ll transform it to a discrete variable 0/1 by assigning 0 to all
observations that have cholesterol level below the mean (4.65), and 1 to all observations that have
cholesterol level above the mean; this way cholesterol level becomes an indicator variable for low
(those with 0) and high (those with 1) cholesterol level. Below I show a contingency table for this
indicator of cholesterol level and presence of heart disease.
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Heart disease

Cholesterol Not-present Present Total by cholesterol level

Low 131 43 174
High 74 64 138

Total by heart disease 205 107 312

a) Could you suggest a model for the counts in this table using the Multinomial distribution?

b) Assume now that the counts the 4 cells, µij for i, j = 0, 1, come from a Poisson distribution.
A possible model for the logarithm of the counts, the so called log-linear model is

log(µij) = η + αi + βj, i, j = 0, 1.

Where α corresponds to cholesterol level and β to heart disease. How do you interpret this
model?

c) The p-value for the Pearson statistic where the expected values are computed under this
model is less than 10−5. What does this mean in terms of heart disease for people with high
cholesterol level?

d) The estimated coefficients for the above model are

Parameter Value
η 4.298
α0 0.1159
α1 -0.1159
β0 0.3250
β1 -0.3250

What are the odds of having heart disease versus not having it?

Question 6

The ’Detroit’ data set comprises 13 observations and 14 variables for the city of Detroit between
years 1961 and 1973 as explained below.

FTP - Full-time police per 100,000 population
UEMP - % unemployed in the population
MAN - number of manufacturing workers in thousands
LIC - Number of handgun licences per 100,000 population
GR - Number of handgun registrations per 100,000 population
CLEAR - % homicides cleared by arrests
WM - Number of white males in the population
NMAN - Number of non-manufacturing workers in thousands
GOV - Number of government workers in thousands
HE - Average hourly earnings
WE - Average weekly earnings
HOM - Number of homicides per 100,000 of population
ACC - Death rate in accidents per 100,000 population
ASR - Number of assaults per 100,000 population

We will use HOM as the response variable and the first 11 variables as predictors (that is, we
won’t use ACC or ASR). Figure 5 shows some scatter plots for some predictors and the response.
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Figure 5: Scatterplots for Detroit data set

a) Does the data seems suitable for a linear regression analysis? Are transformations required?

b) Below are the results for a regression model including the first 11 predictors. The correlation
matrix for the variables and the diagnostic plots for the model are also included. Comment
on the model overall. What can you say about HOM as a function of the other variables?
Interpret the model.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -91.5257 31.8485 -2.87 0.2132

FTP 0.0241 0.0105 2.28 0.2626
UEMP 0.5725 0.1926 2.97 0.2066
MAN -0.0586 0.0163 -3.60 0.1723
LIC 0.0214 0.0017 12.41 0.0512
GR -0.0033 0.0013 -2.61 0.2332

CLEAR -0.0827 0.0616 -1.34 0.4076
WM 0.0001 0.0000 2.24 0.2668

NMAN 0.0496 0.0172 2.88 0.2127
GOV 0.1812 0.0608 2.98 0.2062
HE -6.0965 1.8919 -3.22 0.1916
WE 0.3052 0.0524 5.83 0.1082

Residual standard error: 0.2998 on 1 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 0.9997
F-statistic: 3259 on 11 and 1 DF, p-value: 0.01366

Int FTP UEMP MAN LIC GR CLEAR WM NMAN GOV HE WE

Int 1.00 0.05 0.56 0.67 -0.60 0.55 -0.58 -0.97 -0.56 -0.87 0.74 -0.82

FTP 0.05 1.00 0.11 0.38 -0.37 0.19 0.05 -0.17 -0.17 -0.19 0.28 -0.37

UEMP 0.56 0.11 1.00 0.79 -0.28 0.24 0.04 -0.70 -0.72 -0.43 0.33 -0.33

MAN 0.67 0.38 0.79 1.00 -0.49 0.61 -0.37 -0.74 -0.75 -0.66 0.72 -0.71

LIC -0.60 -0.37 -0.28 -0.49 1.00 -0.57 0.54 0.60 0.12 0.59 -0.45 0.71

GR 0.55 0.19 0.24 0.61 -0.57 1.00 -0.53 -0.50 -0.33 -0.68 0.76 -0.72

CLEAR -0.58 0.05 0.04 -0.37 0.54 -0.53 1.00 0.39 0.05 0.60 -0.53 0.67

WM -0.97 -0.17 -0.70 -0.74 0.60 -0.50 0.39 1.00 0.62 0.85 -0.72 0.79

NMAN -0.56 -0.17 -0.72 -0.75 0.12 -0.33 0.05 0.62 1.00 0.28 -0.44 0.34

GOV -0.87 -0.19 -0.43 -0.66 0.59 -0.68 0.60 0.85 0.28 1.00 -0.86 0.91

HE 0.74 0.28 0.33 0.72 -0.45 0.76 -0.53 -0.72 -0.44 -0.86 1.00 -0.93

WE -0.82 -0.37 -0.33 -0.71 0.71 -0.72 0.67 0.79 0.34 0.91 -0.93 1.00

Table 1: Correlation matrix for predictors
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Figure 6: Diagnostic plots

c) Which methods for model selection would be suitable for this data set? Why?

d) After LOOCV a model including FTP, CLEAR and GOV is selected. The results of a
regression are included below. Comment on the results.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.6364 38.9204 -0.50 0.6260

FTP 0.1142 0.0616 1.85 0.0966
CLEAR -0.3269 0.2414 -1.35 0.2086

GOV 0.1971 0.0391 5.05 0.0007

Residual standard error: 2.242 on 9 degrees of freedom
Multiple R-squared: 0.986, Adjusted R-squared: 0.9813
F-statistic: 210.7 on 3 and 9 DF, p-value: 1.184e-08
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Figure 7: Diagnostic plots

Question 7

The California housing data set contains the median prices as well as location (given by latitude
and longitude coordinates) of 20640 houses in California. It is well know that the location is among
the most important variables for the price of a house. Below I use CART to construct areas in
California where the median prices for houses are similar.
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Figure 8: Regression tree
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Figure 9: Regression tree

a) Explain how was it done and interpret the results.

b) How does the above analysis compares to regular linear regression?

c) Could you think of another way of constructing areas with similar prices for houses in Cali-
fornia?
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