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1 RECAP

� Both the slope estimate and the fitted values are weighted averages of the dependent variable
observations yi

� The weights are large (in absolute value) for extreme values of xi, so the extremes in x are the ones
that determine which yi influence the model fit

� The amount of influence an observation yi has on its own fitted values is called leverage and is

defined as hii = (xi−x̄)2∑
j(xj−x̄)2

� If x is near constant, hii ' 1/n so the fitted values become just the mean of y (a slope of 0). If hii
is very large, then ŷi ' yi, i.e. the fitted value is almost the observation itself - we haven’t learnt
anything from the pattern among the rest of the observations.

� There are three sources of error in the slope estimation: the noise level, the sample size and the
spread in x.

� The residuals ei = yi − ŷi are our primary diagnostic tool. Residual plots of e vs x or e vs ŷ can
be used to check the basic assumptions and detect outliers.

� We can detect outliers using diagnostic plots like the impact on the slope or on the residual sum
of squares in response to dropping an observation i.

2 Properties of Least Squares estimates

We have already discussed the properties of the slope estimate (unbiased and the three-sources of error
of the variance). What about the properties of the fitted values and the residuals. We have already
determined that both the residuals and the fitted values are uncorrelated with the x (orthogonal projec-
tion). What about the mean and variance?

ŷi = β̂0 + β̂1xi → E[ŷi] =
since estimates of β are unbiased

E[yi] = β0 + β1xi

For the variance of the fitted values (or of the regression line itself) we have

V [ŷi] = V [β̂0 + β̂1xi] = V [ȳ + β̂1(xi − x̄)] =
ŷ and β̂1 uncorrelated

V (ȳ) + (xi − x̄)2V (β̂1)

The expression for V [ŷ] simplified because ȳ and β̂1 are uncorrelated, which we can show as follows:

Cov(ȳ, β̂1) = Cov(
1

n

∑
yi,

∑
i

kiyi) =
yi,yj uncorrelated

∑
i

ki
n
V (yi) =

σ2

n

∑
i

ki = 0.
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Therefore, we can write

V [ŷi] = V (ȳ) + (xi − x̄)2V (β̂1) =
σ2

n
+ σ2 (xi − x̄)2∑

j(xj − x̄)2
= hiiσ

2

So, the variance of the fitted value is directly proportional to the leverage!!! This makes sense. Points
with high leverage have a lot of influence on the fit so of course their fitted value will vary a lot from
instance to instance since the fit will react strongly to any small random change at this location. In
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Figure 1: 50 different regression line estimates (green line) estimated from data generated under the
true model (black line). The impact of the leverage on the variance of the fitted values. At points
with extreme leverage (extreme x) there is a lot of variability in the fitted value (green regression lines)
whereas low leverage observations (near the mean of x) exhibit very low variance for the fitted values.

Figure 1 we see the impact on leverage on the variance of the fitted values. Near the center of the data
(mean of x) the different regression line estimates (from 50 different data sets generated from the same
underlying true model (solid black line)) vary almost not at all, whereas at locations of extreme x (high
leverage) the position of the regression line can vary substantially.

Residuals

The definition of the residuals is ei = yi − ŷi. From the properties of the fitted values it follows that
E[ei] = 0. Moreover

V [ei] = Cov(yi − ŷi, yi − ŷi) = Cov(yi, yi) + Cov(ŷi, ŷi)− 2Cov(yi, ŷi) = σ2 + σ2hii − 2Cov(ŷi + ei, ŷi)

Using that the residuals are uncorrelated with the fitted values we finally obtain

V [ei] = σ2(1− hii)

This means that the residual variance is smaller at locations with high leverage. This makes sense as at
those locations the regression line is pulled toward the data and so there is more control over the residual
variability.

Another interesting fact is that Cov(ei, ej) = −σ2hij . That is, even though we assume that the
random errors (ε) are uncorrelated, the residuals from the fit are not uncorrelated. That makes sense as
well. The fit is obtained by allowing observations yj influence the fit for yi (that’s what hij) measures
remember). In Table 1 you can compare the properties of the true random scatter and the residuals.

True errors, εi Residuals from fit, ei

E[εi] = 0 E[ei] = 0
V [εi] = σ2 V [ei] = σ2(1− hii)

Cov(εi, εj) = 0 Cov(ei, ej) = −σ2hij

Table 1: Some facts about errors and residuals
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One thing to be especially aware of is the non-constant variance of the residuals. That means that
you can’t really compare residuals directly - what constitute as large value at one location may not be
so surprisingly large at another location. It is therefore often better to plot the standardized residuals
defined as

standardized residuals = ẽi =
ei√

1− hii
The standardized residuals all have the same variance, σ2 are are thus directly comparable in diagnostic
plots (see Figure 2).
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Figure 2: The residuals and standardized residuals (red triangles) from a regression fit

3 The nuisance parameter, σ2

So far we have discussed the slope and intercept parameter - these are of primary interest to us to inter-
pret the data. However, there is one more parameter in our model, the noise level σ2. This parameter
is not of direct interest to us, but we will need to estimate it in order to draw inference. σ2 is therefore
referred to as a nuisance parameter.

We have yi = β0 + β1xi + εi, where V (εi) = σ2. σ2 is thus the variance of the true random scatter.
We can’t get the true errors, but via least squares fitting we can get the residuals. Now, if we had known
the true errors we could have estimated the σ2 as

σ̂2 =

∑n
i=1 εi − ε̄
n− 1

.

However, we don’t know ε so we estimate σ2 from

σ̂2 = MSE =

∑n
i=1(yi − ŷi)2

n− 2
=

∑n
i=1 e

2
i

n− 2
=
RSS

n− 2

where RSS refers to the Residual Sum of Squares and MSE is the Mean Squared Error. Notice that we
are using n−2 in the expression instead of n−1 as in the standard variance estimation. That is because
we needed to estimate two parameter to get the residuals - both the intercept and the slope. Had we
known the errors, ε we only needed to estimate their mean ε̄.

The MSE is a key quantity in regression analysis. Let’s first check that the MSE is an estimate of σ2.

E[RSS] = E[
∑
i

e2
i ] = E[

∑
i

(yi − ŷi)2] =
∑
i

(E[y2
i ] + E[ŷ2

i ]− 2E[yiŷi])

I will now use that V [Z] = E[Z2]− (E[Z])2 for a random variable Z and rewrite the above expression as

E[RSS] =
∑
i

V [yi] + (E[yi])
2 + V [ŷi] + (E[ŷi])

2 − 2E[(ŷi + ei)ŷi]
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Using that Cov(Z,W ) = E[ZW ]− E[Z]E[W ] we can write

E[RSS] =
∑
i

V [yi] + V [ŷi] + 2(E[yi])
2 − 2Cov(ŷi + ei, ŷi)− 2E[yi]E[ŷi]

Now, Cov(ei, ŷi) = 0 since residuals and fitted values are uncorrelated and so we have

E[RSS] =
∑
i

V [yi] + V [ŷi]− 2Cov(ŷi, ŷi) =
∑
i

V [yi]− V [ŷi] = nσ2 − σ2
∑
i

hii

Finally, we can show that
∑
i hii =

∑
i(

1
n + (xi−x̄)2∑

j(xj−x̄)2 ) = 2 and so

E[RSS] = σ2(n− 2), E[MSE] = σ2

4 Variance Decomposition
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Figure 3: Variance Decomposition. y and x closely related. The blue lines delimit the spread in y,
whereas the red lines delimit the spread among y-values whose corresponding x values are close to x∗.

Regression is all about modeling y given x. That is, without x our best guess for a future value of
y is the average of the observed y-values: ŷi = ȳ. This is what we get from regression modeling if all
the x’s are constant (leverage is equal to 1/n for all observations). y varies around its mean according
to SD(y) =

√
V (y). We now bring x into the equation. If we know that the x-value for the observation

is xP , can we improve on the guess ȳ for the corresponding y-value. Regression modeling gives us the

estimate ˆy(x∗) = β̂0 + β̂1x
∗. The spread among the y-values for those y with x near x∗ we denote by

V (y|x = x∗). If y and x are strongly dependent on each other, the spread V (y|x = x∗) (conditional
variance) is much less than the total spread among y-values, V (y) (marginal variance). If y and x
are unrelated, the regression model doesn’t add much information about y and so the conditional and
marginal variance are almost the same. In Figure 3 I illustrate this discussion. The scatter plot of x and
y values show the data set as a clould. The value x∗ is marked between two vertical bars that identify the
observations with x-values near x∗. These observations are marked in red. The blue horizontal lines are
located 2.5% and 97.5% quantiles of all the y’s. The red horizontal lines are the corresponding quantiles
for the y’s marked in red. As you can see, the marginal spread in y, illustrated by the distance between
the two blue horizontal bars, far exceeds the conditional spread, illustrated by the distance between the
red bars.

In Figure 4 I show you marginal and conditional spreads for a weak y − x relationship data. Here,
the spread in the vertical wedge (red observations) are almost the same as the marginal spread.
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Figure 4: Variance Decomposition. y and x weakly related. The blue lines delimit the spread in y,
whereas the red lines delimit the spread among y-values whose corresponding x values are close to x∗.

This variance decomposition is a useful tool for summarizing the efficacy of regression modeling: does
x ”help” describing y or can we just use the mean of y to summarize the data? We compare the following
two quantities:

1. RSS = SSE , the residual sum of squares, also called the error sum of squares. It’s defined as
RSS = SSE =

∑
i(yi − ŷi)2

2. SST , the total sum of squares. It’s defined as SST =
∑
i(yi − ȳ)2

Note, since the regression model has two parameters to match to the data, the RSS is always smaller
than the total sum of squares, SST .

4.1 The multiple R-squared, R2

We summarize the regression fit with a quantity called the R-squared, or R2, or sometimes the coefficient
of determination.

R2 =
SST −RSS

SST
=

reduction in spread of y

total spread in y
= The % of variability in y explained by the regression

In Figure 5 I plot three different data sets and their fitted regression line. The R2-values are also shown
in the plot. Use the source code for the lecture to simulate some other data sets and compare
the resulting R2.
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Figure 5: R-squared: R-squared values computed for three different regression fits to data.

5 Demo 3

We continue with the television data. Let’s revisit the Television data from Lecture 1.

> TVdat <- read.table("TV.dat", sep = "\t")

> print(dim(TVdat))

[1] 40 5

> print(names(TVdat))

[1] "life" "ppTV" "ppDr" "flife" "mlife"

> print(row.names(TVdat))

[1] "Argentina" "Bangladesh" "Brazil" "Canada"

[5] "China" "Colombia" "Egypt" "Ethiopia"

[9] "France" "Germany" "India" "Indonesia"

[13] "Iran" "Italy" "Japan" "Kenya"

[17] "KoreaNorth" "KoreaSouth" "Mexico" "Morocco"

[21] "Myanmar (Burma)" "Pakistan" "Peru" "Philippines"

[25] "Poland" "Romania" "Russia" "South Africa"

[29] "Spain" "Sudan" "Taiwan" "Tanzania"

[33] "Thailand" "Turkey" "Ukraine" "United Kingdom"

[37] "United States" "Venezuela" "Vietnam" "Zaire"

> plot(TVdat$ppD, TVdat$ppT, xlab = "people per Dr", ylab = "people per TV")

> id <- identify(TVdat$ppD, TVdat$ppT, row.names(TVdat), pos = T)

> plot(log(TVdat$ppD), TVdat$ppT)

> id <- identify(log(TVdat$ppD), TVdat$ppT, row.names(TVdat), pos = T)

> plot(log(TVdat$ppD), log(TVdat$ppT))

> id <- identify(log(TVdat$ppD), log(TVdat$ppT), row.names(TVdat),

+ pos = T)

> mm <- lm(log(TVdat$ppT) ~ log(TVdat$ppD))

> lines(sort(log(TVdat$ppD)[is.na(TVdat$ppT) == F]), mm$fit[sort.list(log(TVdat$ppD)[is.na(TVdat$ppT) ==

+ F])])
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Figure 6: People per TV vs People per Dr
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Figure 7: People per TV vs People per Dr: logs on ppDr to even out the spread in x

> library(xtable)

> xtable(summary(mm), caption = "Regression summary", label = "tab:ch4")

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.3417 0.9933 -4.37 0.0001

log(TVdat$ppD) 0.9527 0.1388 6.86 0.0000

Table 2: Regression summary

5.1 Residuals and Leverage

> induse <- seq(1, dim(TVdat)[1])[is.na(TVdat$ppT) == F]

> plot(log(TVdat$ppD)[induse], mm$res)

> abline(h = 0)

> id <- identify(log(TVdat$ppD)[induse], mm$res, row.names(TVdat)[induse],

+ pos = T)

> lmi <- lm.influence(mm)

> plot(log(TVdat$ppD)[induse], lmi$hat, ylab = "leverage")

> id <- identify(log(TVdat$ppD)[induse], lmi$hat, row.names(TVdat)[induse],

+ pos = T)

> plot(induse, lmi$coef[, 2], ylab = "Impact on Slope")

> abline(h = 0)
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Figure 9: Residual and Leverage plot for the Television regression model

> id <- identify(induse, lmi$coef[, 2], label = row.names(TVdat)[induse],

+ pos = T)

> plot(induse, lmi$sig, ylab = "Impact on Sum of Squares")

> id <- identify(induse, lmi$sig, label = row.names(TVdat)[induse],

+ pos = T)

> print(summary(mm))

Call:

lm(formula = log(TVdat$ppT) ~ log(TVdat$ppD))

Residuals:

Min 1Q Median 3Q Max

-1.5139 -0.7092 -0.0871 0.3575 3.2077

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.3417 0.9933 -4.371 0.000101 ***

log(TVdat$ppD) 0.9527 0.1388 6.864 4.95e-08 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 1.045 on 36 degrees of freedom

(2 observations deleted due to missingness)
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Figure 10: Impact on Slope (left) and Residual sum of squares (right) when dropping observation i

Multiple R-squared: 0.5669, Adjusted R-squared: 0.5549

F-statistic: 47.12 on 1 and 36 DF, p-value: 4.949e-08

The R2 for the model regression people per TV on people per Dr is R2 = 0.57. That means that 100∗0.57
percent of the variability in people per TV is explained by people per Dr.

9


	RECAP
	Properties of Least Squares estimates
	The nuisance parameter, 2
	Variance Decomposition
	The multiple R-squared, R2

	Demo 3
	Residuals and Leverage


