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1 RECAP

• The variance of the fitted values increase with the leverage, V (ŷi) = σ2hii. This means that the
estimated regression line almost pivots around the center x̄, ȳ and thus the position of the line can
differ a lot in extreme locations of x from data to data set

• The variance of the residuals exhibit the opposite pattern, V (ei) = σ2(1− hii)

• The residuals have non-constant variance and are correlated! Compare with the true errors that
have constant variance and are uncorrelated.

• The noise level, σ2 is a nuisance parameter that we estimate as σ̂2 = MSE = RSS/(n− 2) where
RSS is the residual sum of squares.

• By comparing the RSS to the total sum of squares, SST =
∑
i(yi − ȳ)2 we see how much of the

variability in y can be explained through x.

• We summarize this with the so-called R2 (R-squared) defined as R2 = (SST − RSS)/SST . If R2

is near 0, y and x do not have a strong linear relationship, whereas R2 indicate that y and x are
closely related in a linear sense. (It doesn’t prove that the linear model is true or false, you have
to check the residual plots to gauge the model adequacy.)

2 Variance Decomposition

If y and x are linearly unrelated, the true β1 = 0 and so the marginal and conditional variance are almost
equal. If y = β0 + β1x exactly, then the conditional variance V (y|x) =: knowing x explains everything
about y.

We used the R-squared to quantify this, where

R2 =
SST −RSS

SST
= the % of variability in y explained by the regression.

Let’s take a closer look at the numerator of the R-squared:

SST−RSS =
∑
i

(yi−ȳ)2−
∑
i

(yi−ŷi)2 =
expanding the squares

∑
i

y2
i+
∑
i

ȳ2−2ȳ
∑
i

yi−
∑
i

y2
i−
∑
i

ŷ2
i+2

∑
i

yiŷi =

= −nȳ2 −
∑
i

ŷ2
i + 2

∑
i

ŷ2
i + 2

∑
i

eiŷi =
ei uncorrelated ŷi

∑
i

ŷ2
i − nȳ2 =

∑
i

(ŷi − ȳ)2

We define this last expression as SSreg =
∑
i(ŷi − ȳ)2, or the regression sum of squares. This is the

spread among the fitted values around the horizontal line at ȳ. In Figure 1 the variance decomposition

is illustrated. We have concluded that the total variance is made up of two parts: the residual sum of
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Figure 1: Variance decomposition. SST is the spread among the black circles (data) around the mean of
y (green line). RSS is the spread of the data around the regression line (red line). SSreg is the spread
among the fitted values (blue stars) around the mean of y (green line).

squared (deviations around the regression line) and the regression sum of squares (deviations on the line
around the mean of y),

SST = RSS + SSreg.

This means we have an alternative definition of R2 = SSreg/SST , the percent of total variability ac-
counted for by the model.

Now, R2 can be used to gauge if the regression model is ”helpful”, but it is not a statistical test. In
order to decide how large is large enough for R2 to state that the y − x relationship is real we have to
do some addition work. We will figure out how large a variant of this quantity can get just by chance
when y and x are unrelated.

Null hypothesis: β1 = 0. We will do all our work under this assumption. The test will be based
on three different estimates for the noise level.

Using the MSE to estimate σ2

We already know that the MSE is an unbiased estimate of the σ2. This is true whether the true β1 = 0
or not. We estimate β̂1 and compute the residuals and the MSE and obtain

σ̂2 = MSE =
RSS

n− 2

Using the total sum of squares, SST

If β1 = 0, then yi = β0 + εi, with V (εi) = σ2. The total sum of squares SST =
∑
i(yi − ȳ) can now also

provide an estimate of σ2 since E[SST ] = (n− 1)σ2 (do the math for this at home).
That is,

σ̂2 =
if β1=0

SST
n− 1
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Using the regression sum of squares, SSreg

If the null is true, β1 = 0, then we can get a third estimate of σ2 from the regression sum of squares.
Below, all expectations are under the null:

E[SSreg] = E

[∑
i

(ŷi − ȳ)2

]
= E

[∑
i

(ŷ2
i + ȳ2 − 2ȳŷi)

]
= E

[∑
i

ŷ2
i

]
+ nE[ȳ2]− 2E

[
ȳ
∑
i

ŷi

]

Using the fact that V (Z) = E(Z2) − (E[Z])2, Cov(Z,W ) = E(ZW ) − E(Z)E(W ) and that E[yi] =
E[ŷi] = β0 under the null we get

E[SSreg] =
∑
i

(
V [ŷi] + E[ŷi]

2
)

+ n
(
V [ȳ] + E[ȳ]2

)
− 2

∑
i

(Cov(ȳ, ŷi) + E[ȳ]E[ŷi]) =

= σ2
∑
i

hii + nβ2
0 + n

σ2

n
+ nβ2

0 − 2
∑
i

∑
j

Cov

(
yj
n
, ŷi =

∑
l

hilyl

)− 2nβ2
0 =

= σ2
∑
i

hii + σ2 − 2
∑
i

(
∑
j

σ2

n
hij) = σ2

∑
i

hii + σ2 − 2
σ2

n

∑
i

∑
j

hij

=1

=

= σ2
∑
i

hii + σ2 − 2σ2 = σ2(
∑
i

hii − 1) = σ2

(Puh!) This followed from
∑
i hii = 2. We have thus concluded that another estimate for σ2, provided

that the null is true, β1 = 0 is
σ̂2 =

if β1=0
SSreg

(Looking ahead to multivariate regression when you have p independent variables (one intercept and
p slope parameters), E[SSreg] = σ2p.)

2.1 The F Goodness-of-fit test

If the null is true, β1 = 0, y and x are not related and we have three different estimate for the σ2 as seen
above. If, on the other hand, the null is not true, both the SST -based and the SSreg-based estimates will
be inflated compared with RSS/(n−2). We choose to use the RSS and SSreg to test the null by looking
at the ratio SSreg/RSS. The reason for this is that the RSS are functions of the residuals, whereas the
SSreg is a function of the fitted values ŷ. Now, we know from before that the residuals, e, and the fitted
values, ŷ, are uncorrelated. This will make it easier to work out a distribution for the ratio of the SSreg
and RSS.

We now make an additional assumption, that ε is normally distributed.

• If ε ∼ N(0, σ2), SSreg/σ
2 ∼ χ2

1. (If we have p model parameters, one intercept and p − 1 slope
parameters the distribution will be χ2

p−1).

• We also have that RSS/σ2 ∼ χ2
n−2. (If we have p model parameters, it’s χ2

n−p.)

• SSreg
σ2 and RSS

σ2 are independent.

• Definition of an F-distribution: Fν1,ν2 ≡
χ2
ν1

χ2
ν2

Finally, we arrive at our test statistic:

Fobserved =

(SSreg
p−1

)(
RSS
n−p

)
where p is the number of model parameters, here 2 (intercept β0 and slope β1). We can also write this
as

Fobserved =

(
SST−RSS

(n−1)−(n−p)
)(

RSS
n−p

) =

(
reduction in spread from mean-model to regression model

number of extra parameters in regression model

)
Mean Squared Error of regression model
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Figure 2: 4 different F-distributions and their 95th percentiles (vertical lines). The black curves corre-
spond to models with p = 4 parameters and sample sizes n = 12 and n = 120 respectively (solid and
dashed). The F-distributions are F3,8 and F3,116. The green curves correspond to p = 8 and sample
sizes n = 12 and n = 120 (solid and dashed). The F-distributions are F7,4 and F7,112. The critical value
of the Goodness-of-fit test is decreases with sample size (comparing solid to dashed), and increases with
model parameters (comparing green with black).

In Figure 2 you see 4 different F-distributions that would be appropriate to test the goodness-of-fit, or
null hypothesis β1 = 0, under the scenarios (i) p = 4, n = 12, (ii) p = 4, n = 120, (iii) p = 8, n = 12 and
(iv) p = 8, n = 120. As you can see from the figure the critical vales (1 − α, α = .05), 95th percentiles,
are smaller for larger sample sizes (meaning we can reject the null with a smaller observed F with a large
sample data) and larger for models involving more parameters (we need a larger observed F to reject
the null for more complex models).
We can of course also choose to use P-values rather than fixed level test. You can compute the probability
P (F3,8 > Fobserved), which would tell you the likelihood of a data set where the null is true would generate
an F -value as extreme or more extreme than the one we observed. If this P-value is small, we reject the
null hypothesis that β1 = 0.

Call: lm(formula = y x)
Residuals: Min 1Q Median 3Q Max -1.6975 -0.5843 -0.1996 0.5022 2.2361
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.7157 0.1944 8.825 7.66e-09 *** x

3.0301 0.1827 16.584 2.74e-14 *** — Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.9673 on 23 degrees of freedom Multiple R-squared: 0.9228, Adjusted

R-squared: 0.9195 F-statistic: 275 on 1 and 23 DF, p-value: 2.744e-14

value df1 df2
275.018 1.000 23.000

Table 1: F-statistic

In the regression summary output below we see that Fobserved = 275.018. In Table 1 the F value
observed and the corresponding degrees of freedom are also recorded in the table. The P-value is
p = 2.742e− 14.
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3 Inference about the slope, β1

Again, we assume that the errors are normally distributed, ε ∼ N(0, σ2). It follows that yi ∼ N(β0 +

β1xi, σ
2) and since β̂1 =

∑
i kiyi is a linear combination of y-values and a linear combination of normally

distributed random variables is normal, we have

β̂1 ∼ N(β1,
σ2∑

j(xj − x̄)2
).

Another way of writing this is

β̂1 − β1√
σ2∑

j(xj−x̄)2

∼ N(0, 1).

There is one problem here. The above is indeed the sampling distribution of β̂1 BUT we don’t know
σ2. Is it OK to plug in σ̂2 = RSS/(n− p) in the above sampling distribution expression?

β̂1 − β1√
σ̂2∑

j(xj−x̄)2

6= N(0, 1)

In the above expression there are two random quantities: β̂1 and σ̂2 and so the ratio can vary a bit more
than the standard normal N(0, 1) describes (the ratio has longer tails). What we have instead is

β̂1 ∼ N(β1,
σ2∑

j(xj − x̄)2
), RSS/σ2 ∼ χ2

n−p, σ̂
2 = RSS/(n− p)

• Definition of a t-distribution is the ratio of an independent Normal distributed variable and a χ2

distributed variable

• Our test statistics tobserved = β̂1−β1√
ˆ
σ2∑

j(xj−x̄)2

∼ tn−p

3.1 Hypothesis testing

We fit a model to the data. We formulate the null hypothesis β1 = 0 and compute the test statistic
under the null:

tobserved =
β̂1 − 0√

σ̂2∑
j(xj−x̄)2

We compare tobserved to quantiles of the t-distribution tn−p.
If the absolute value of tobserved exceeds the critical value tn−p(1−α/2) (the 1−α/2 percentile, e.g. the
97.5 percentile) we reject the null hypothesis β1 = 0 at the level α (two-sided test).

Alternatively, we can compute the P-value. Compute the probability mass of the tn−p-distribution
for absolute values exceeding |tobserved|.

In Figure 3 we see two different t-distributions. As you can see, the larger the sample size (n− p) the
smaller the critical value so it’s ”easier” to reject a null hypothesis with more data.

3.2 Confidence intervals

There is a duality between hypothesis testing and confidence intervals. We know that

β̂1 − β1√
σ̂2
∑
j(xj − x̄)2

∼ tn−p.

We can write

P

tn−p(α/2) ≤ β̂1 − β1√
σ̂2∑

j(xj−x̄)2

≤ tn−p(1− α/2)

 = 1− α,
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Figure 3: 2 different t-distributions and their 97.5th and 2.5th percentiles (vertical lines). The black
curves correspond to models with n− p = 3 and the green curves correspond to n− p = 100.

where tn−p(q) denotes the q-th quantile of the tn−p-distribution. We manipulate the above expression as

P

(
β̂1 − tn−p(1− α/2)

√
σ̂2∑

j(xj − x̄)2
≤ β1 ≤ β̂1 + tn−p(α/2)

√
σ̂2∑

j(xj − x̄)2

)
= 1− α.

That is, denoting SE(β̂1) =

√
σ̂2∑

j(xj−x̄)2 , we see that the random interval

[β̂1 ± tn−p(1− α/2)SE(β̂1)]

covers the true β1 with probability 1−α. We can now form any hypothesis β1 = β∗
1 . If the above random

interval does not cover β∗
1 we can reject this hypothesis at level α. We usually use this to test hypothesis

β1 = 0 of course.

4 Prediction Intervals

We can also construct confidence intervals and test for the regression line, fitted values and predictions.
We know from before that

ŷi −→ E[ŷi] = β0 + β1xi, V [ŷi] = σ2hii

Following the same line of thought as in setting up confidence intervals for β1 we find that at each location
xi the random interval

[ŷi ± tn−p(1− α/2)σ̂
√
hii]

covers the true line with probability 1−α. Note that the width of this interval is non-constant, it depends
on the location xi through the leverage. This makes sense, we have already seen that the regression line
pivots around the center of mass of the data and can differ substantially at points of high leverage subject
to small changes in the data. This is illustrated in Figure 4 for a data set of size n = 25.

Things look a bit different when we use the regression model for prediction. Let’s say we want to
predict the outcome ynew at location xnew. Now, the prediction itself we obtain from the regression line:
ŷnew = β̂0 + β̂1x

new, but what about the prediction variance.
The prediction has two sources of errors associated with it. If we knew the true regression model we
would estimate ynew by β0 + β1x

new and our prediction error would be σ, the standard deviation of the
random scatter about the true model. Here, we don’t know the true model so our prediction inherits the
estimation variance from β̂0, β̂1 as well. The prediction has thus the following properties:

ŷnew −→ E[ŷnew] = β0 + β1x
new, V [ŷnew] = σ2(1 + h(xnew)).

Since we have to estimate σ2 the t-distribution tn−p has to be used to construct the prediction interval.
In Figure 5 I illustrate the difference between a prediction interval and a confidence interval for the line.
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Figure 4: The confidence interval for ŷ (the regression line). Notice the width of the interval depends on
the leverage. The true line is marked in red, the estimated on in black.
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Figure 5: The prediction interval (green dotted lines) and the confidence interval for the line (black
dashed lines). A set of new observations are drawn from the true model (red line) and depicted as green
triangles. Are these covered by the prediction interval?

The distinction between the confidence interval and prediction interval can be remembered like this.
The confidence interval is used to draw inference about the average outcome at a location x, whereas
the prediction interval is used to draw inference about a single, new occurrence at a location.
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5 Demo 4

We continue with the television data.

> TVdat <- read.table("TV.dat", sep = "\t")

> print(dim(TVdat))

[1] 40 5

> print(names(TVdat))

[1] "life" "ppTV" "ppDr" "flife" "mlife"

> print(row.names(TVdat))

[1] "Argentina" "Bangladesh" "Brazil" "Canada"

[5] "China" "Colombia" "Egypt" "Ethiopia"

[9] "France" "Germany" "India" "Indonesia"

[13] "Iran" "Italy" "Japan" "Kenya"

[17] "KoreaNorth" "KoreaSouth" "Mexico" "Morocco"

[21] "Myanmar (Burma)" "Pakistan" "Peru" "Philippines"

[25] "Poland" "Romania" "Russia" "South Africa"

[29] "Spain" "Sudan" "Taiwan" "Tanzania"

[33] "Thailand" "Turkey" "Ukraine" "United Kingdom"

[37] "United States" "Venezuela" "Vietnam" "Zaire"

> plot(TVdat$ppD, TVdat$ppT, xlab = "people per Dr", ylab = "people per TV")

> id <- identify(TVdat$ppD, TVdat$ppT, row.names(TVdat), pos = T)
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Figure 6: People per TV vs People per Dr

> plot(log(TVdat$ppD), TVdat$ppT)

> id <- identify(log(TVdat$ppD), TVdat$ppT, row.names(TVdat), pos = T)

> plot(log(TVdat$ppD), log(TVdat$ppT))

> id <- identify(log(TVdat$ppD), log(TVdat$ppT), row.names(TVdat),

+ pos = T)

> mm <- lm(log(TVdat$ppT) ~ log(TVdat$ppD))

> lines(sort(log(TVdat$ppD)[is.na(TVdat$ppT) == F]), mm$fit[sort.list(log(TVdat$ppD)[is.na(TVdat$ppT) ==

+ F])])
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Figure 7: People per TV vs People per Dr: logs on ppDr to even out the spread in x
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Figure 8: People per TV vs People per Dr: logs on ppTV to suppress non-constant variance. Regression
line

> library(xtable)

> xtable(summary(mm), caption = "Regression summary", label = "tab:ch4")

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.3417 0.9933 -4.37 0.0001

log(TVdat$ppD) 0.9527 0.1388 6.86 0.0000

Table 2: Regression summary

5.1 Residuals and Leverage

> induse <- seq(1, dim(TVdat)[1])[is.na(TVdat$ppT) == F]

> plot(log(TVdat$ppD)[induse], mm$res)

> abline(h = 0)

> id <- identify(log(TVdat$ppD)[induse], mm$res, row.names(TVdat)[induse],

+ pos = T)

> lmi <- lm.influence(mm)

> plot(log(TVdat$ppD)[induse], lmi$hat, ylab = "leverage")

> id <- identify(log(TVdat$ppD)[induse], lmi$hat, row.names(TVdat)[induse],

+ pos = T)

> plot(induse, lmi$coef[, 2], ylab = "Impact on Slope")

> abline(h = 0)
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Figure 9: Residual and Leverage plot for the Television regression model

> id <- identify(induse, lmi$coef[, 2], label = row.names(TVdat)[induse],

+ pos = T)

> plot(induse, lmi$sig, ylab = "Impact on Sum of Squares")

> id <- identify(induse, lmi$sig, label = row.names(TVdat)[induse],

+ pos = T)
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Figure 10: Impact on Slope (left) and Residual sum of squares (right) when dropping observation i

> print(summary(mm))

Call:

lm(formula = log(TVdat$ppT) ~ log(TVdat$ppD))

Residuals:

Min 1Q Median 3Q Max

-1.5139 -0.7092 -0.0871 0.3575 3.2077

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.3417 0.9933 -4.371 0.000101 ***

log(TVdat$ppD) 0.9527 0.1388 6.864 4.95e-08 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 1.045 on 36 degrees of freedom

(2 observations deleted due to missingness)
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Multiple R-squared: 0.5669, Adjusted R-squared: 0.5549

F-statistic: 47.12 on 1 and 36 DF, p-value: 4.949e-08

The R2 for the model regression people per TV on people per Dr is R2 = 0.57. That means that 100∗0.57
percent of the variability in people per TV is explained by people per Dr.

5.2 Testing and Confidence intervals

Looking at the regression model summary above we see that the slope estimate β̂1 = 0.95 with standard
error SE(β̂1) = 0.14. From this we can construct confidence intervals as follows:

> library(xtable)

> z <- data.frame(matrix(confint(mm), 2, 2))

> dimnames(z) <- list(c("intercept", "slope"), c("2.5%", "97.5%"))

> xtable(z, digits = c(0, 3, 3), caption = "95 percent confidence intervals",

+ label = "tab:ci")

2.5% 97.5%
intercept -6.356 -2.327

slope 0.671 1.234

Table 3: 95 percent confidence intervals

> p <- locator()

In Table 3 we see that the confidence interval for the slope does not cover 0 so we reject this hypothesis
at the 5% level.

> z <- data.frame(matrix(ms$fstat, 1, 3))

> dimnames(z) <- list(c(""), c("value", "df1", "df2"))

> xtable(z, digits = c(0, 3, 3, 3), caption = "F-statistic", label = "tab:fsumTV")

value df1 df2
47.119 1.000 36.000

Table 4: F-statistic

> pval <- 1 - pf(ms$fs[1], ms$fs[2], ms$fs[3])

> ord <- 3 + abs(floor(log10(pval)))

> p <- locator()

From the regression summary we also see that the Fobserved = 47.119. In Table 4 the F value observed
and the corresponding degrees of freedom are also recorded in the table. The P-value is p = 4.949e− 08.

We can thus reject the hypothesis that people per TV and people per doctor are unrelated as the
association is highly significant.
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5.3 Prediction intervals

The following code withholds 10 countries from the regression analysis and checks to see if the prediction
intervals will cover their people per TV values.

> ii <- sample(seq(1, dim(TVdat)[1]), 10)

> x <- sort(log(TVdat$ppD[-ii]))

> y <- log(TVdat$ppT[-ii])[sort.list(log(TVdat$ppD[-ii]))]

> plot(x, y, xlab = "log-ppDr", ylab = "log-ppTV")

> mm <- lm(y ~ x)

> lines(x[is.na(y) == F], mm$fitted, lwd = 2)

> xp <- seq(min(log(TVdat$ppD)), max(log(TVdat$ppD)), by = 0.1)

> xuse <- x[is.na(y) == F]

> hats <- 1/length(xuse) + (xp - mean(xuse))^2/sum((xuse - mean(xuse))^2)

> lines(xp, mm$coef[1] + mm$coef[2] * xp + qt(0.975, length(xuse) -

+ 2) * sqrt(ms$sigma^2 * hats), lwd = 2, lty = 2)

> lines(xp, mm$coef[1] + mm$coef[2] * xp - qt(0.975, length(xuse) -

+ 2) * sqrt(ms$sigma^2 * hats), lwd = 2, lty = 2)

> lines(xp, mm$coef[1] + mm$coef[2] * xp + qt(0.975, length(xuse) -

+ 2) * sqrt(ms$sigma^2 * (1 + hats)), lwd = 2, col = 3, lty = 3)

> lines(xp, mm$coef[1] + mm$coef[2] * xp - qt(0.975, length(xuse) -

+ 2) * sqrt(ms$sigma^2 * (1 + hats)), lwd = 2, col = 3, lty = 3)

> points(log(TVdat$ppD)[ii], log(TVdat$ppT)[ii], col = 3, pch = 2)

> points(log(TVdat$ppD)[ii], mm$coef[1] + mm$coef[2] * log(TVdat$ppD)[ii],

+ col = 3, pch = 8)

> id <- identify(log(TVdat$ppD)[ii], log(TVdat$ppT)[ii], row.names(TVdat)[ii],

+ pos = T)
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Figure 11: The regression line and confidence interval for 30 countries. 10 countries (green triangles)
were not used as part of the estimation. Their prediction are shown as green asterisks and the prediction
interval as green dotted lines.

In Figure 11 I show the estimated regression line and confidence interval for a subset of 30 countries
(black lines). I withheld 10 countries to test the model’s prediction capacity. The green triangles are
the true observations for these 10 countries, whereas the green asterisks are the model predictions. The
prediction interval (green dotted lines) does a good job in covering the true values.
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