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1 Dummy variables, Polynomial regression and Interactions

In this lecture we will discuss how to include categorical covariates in our analysis. In addition, we will
discuss models that include interactions or combinations of variables.

2 Categorical covariates

We have already encountered ”dummy variables” in the Demos, e.g. when I used a 0/1 variable to encode
the smoking status of a patient in the South African heart disease data set. The estimated coefficient for
the smoking dummy variable in the backward selected model (Lecture 8) was approximately 0.15. Since
the dummy variable only takes on two values: 0 and 1, we can interpret this coefficient as the excess ldl
we expect to see among the smokers compared with the nonsmokers.

When our categorical variable (here smoking status) only takes on two values, the dummy variable is
not much different than any other numerical variable in the model. Things get more complicated when
we have more than one level: e.g. non-smoker, smokes at parties, smokes on weekends, 3 cigarettes a day,
1 pack a day, more than 1 pack a day. Here I hypothesize that we had a smoking variable with 6 levels.
We can always encode such a variable with 6 dummy variables, one for each level. We thus estimate 6
coefficients, one for each level of smoking, and interpret the coefficient value as the excess ldl expected
for this level of smoking. Note, we can’t include 6 dummy variables if we also include an intercept in the
model, since the combined role of all 6 levels is that of an intercept (the column sum of all the dummy
variables is a vector of 1s). If we think of one of the levels of our categorial variables as ”baseline” we
can choose to let that level take the role of the intercept and include 5 dummy variables to encode all
the other levels. We can make other restrictions in terms of contrasts between levels, but I refer you to
the classes on experimental design for a deeper study of these options.

Note, in the above example the order of the levels of the categorical variable has a meaning. When
this is the case, spend some time to explore the option of turning the variable into a numerical one.
This saves a lot of parameters! In our above example, perhaps you need to keep a dummy variable for
non-smokers/smoker but might be able to turn the levels of smoking into a numerical variable. This is
something you have to look at on a case by case basis.

We will now turn to a data example: an anorexia data set consisting of weight data for 72 young
women. We have a record of the women’s weight prior to the study, Prewt, and after the study, Postwt.
I have also added the weight gain = Post-Pre, WtGain, such that a positive number for this variable
means that the women gained weight. Note, the weight is in pounds not kilograms. One pound is around
0.45 kilos, so these women are severely underweight (mean weight 37 kg). The study itself consisted of
dividing the women into three groups; one control group, one group that underwent cognitive behavior
treatment (where the women meet with a therapist), and a group that underwent family therapy (where
the women’s parents are instructed to interrupt the destructive behavior when they observe it. The
groups are encoded 1, 2 and 3 respectively. (I was unable to retrieve information about the length of the
study unfortunately.)
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> anorexia <- read.table("anorexia.dat", header = T)

> boxplot(anorexia$WtGain ~ anorexia$Treat, names = c("Ctrl", "CBT",

+ "FT"))

> abline(h = 0, lty = 2)
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Figure 1: Weight gain as a function of treatment (Control, Cognitive behavior treatment, and Family
treatment).

From Figure 1 you can see that the control group essentially gains no weight, whereas both treatment
groups appear to experience some weight gain. Now, we could approach this problem as a (one-way)
ANOVA (analysis of variance) - comparing the mean weight gain between the treatment groups.

> anovatest <- aov(WtGain ~ as.factor(Treat), data = anorexia)

The as.factor() is an R command that tells R that this variable should be interpreted as a categorical
feature, not a numerical one. In Table 1 I show the outcome of the ANOVA test of the effect of treatment

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(Treat) 2 614.64 307.32 5.42 0.0065
Residuals 69 3910.74 56.68

Table 1: ANOVA summary

on the group weight gain. As you can see from the table, we reject the hypothesis that the mean weight
gain is the same in all treatment groups. Strictly speaking, the underlying assumptions of the ANOVA
test as executed above is equal sample variance in each treatment group and normally distributed errors.
ANOVA is fairly robust to departures from these assumptions as long as the sample sizes for the groups
aren’t too different paired with unequal sample variance or skewed distributions. We can compare the
outcome of a non-parametric test (Kruskal-Wallis):

> kruskal.test(anorexia$WtGain, as.factor(anorexia$Treat))

Kruskal-Wallis rank sum test

data: anorexia$WtGain and as.factor(anorexia$Treat)

Kruskal-Wallis chi-squared = 9.0475, df = 2, p-value = 0.01085
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As you can see, the test still comes out significant in this case.

We will now approach this problem using regression instead. We first create dummy variables for
each of the groups:

> dctrl <- rep(0, 72)

> dcbt <- rep(0, 72)

> dft <- rep(0, 72)

> dctrl[anorexia$Treat == 1] <- 1

> dcbt[anorexia$Treat == 2] <- 1

> dft[anorexia$Treat == 3] <- 1

> anorexia2 <- cbind(anorexia, dctrl, dcbt, dft)

> names(anorexia2) <- c(names(anorexia), "ctrl", "CBT", "FT")

> regmod <- lm(WtGain ~ CBT + FT, data = anorexia2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4500 1.4764 -0.30 0.7614

CBT 3.4569 2.0333 1.70 0.0936
FT 7.7147 2.3482 3.29 0.0016

Table 2: Regression summary

Res.Df RSS Df Sum of Sq F Pr(>F)
1 69 3910.74
2 71 4525.39 -2 -614.64 5.42 0.0065

Table 3: Regression summary

Note, in regmod I only include the two dummy variables for the treatments, letting control act as baseline
(intercept). Tables 2 and 3 summarize the results. If you compare Tables 3 you find the F goodness-of-fit
test and comparing this with Table 1 you see that the p-value for the ANOVA and goodness-of-fit F-tests
are identical. Recall that the F goodness-of-fit test in regression tests if any of the variables (dcbt,
dft) are related to weight gain (differently from dctrl) against the null that the intercept is sufficient
(meaning all groups exhibit the same mean weight gain), exactly what ANOVA does.

The regression summary in Table 2 includes the t-tests for the individual parameters (CBT versus
control, and FT versus control). We can access similar results from the ANOVA as well using post-
hoc pairwise comparisons between means in the groups. In R you can use Tukey’s Honest Significant
Difference post-hoc adjustment:

> TukeyHSD(anovatest)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = WtGain ~ as.factor(Treat), data = anorexia)

$`as.factor(Treat)`

diff lwr upr p adj

2-1 3.456897 -1.413483 8.327276 0.2124428

3-1 7.714706 2.090124 13.339288 0.0045127

3-2 4.257809 -1.250554 9.766173 0.1607461

Note, in contrast to the above, the regression summary does not test the pair comparison CBT versus
FT. Of course, you can do that in regression by using one of the treatments as baseline instead of the
control, or specifically test that the coefficients of CBT and FT are equal, etc. Note that the Tukey
test adjust for making three comparisons, whereas the regression coefficient t-tests do not (as we have
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discussed previously). (Compare the regression p-values to the Tukey p-values. What if you adjust by a
factor of 3 (Bonferroni correction) for the coefficients?)

We don’t have to code up dummy variables manually as above since the as.factor() command also
works with the regression commands:

> regmod <- lm(WtGain ~ as.factor(Treat), data = anorexia)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4500 1.4764 -0.30 0.7614

as.factor(Treat)2 3.4569 2.0333 1.70 0.0936
as.factor(Treat)3 7.7147 2.3482 3.29 0.0016

Table 4: Regression summary - factor command

Res.Df RSS Df Sum of Sq F Pr(>F)
1 69 3910.74
2 71 4525.39 -2 -614.64 5.42 0.0065

Table 5: Regression summary - factor command

Comparing Tables 4 and 5 to Tables 2 and 3 you see that the results are identical.

3 Interactions with numerical variables

The anorexia data set also contains pre-study weight data.

> plot(anorexia$Prewt, anorexia$WtGain, pch = anorexia$Treat, col = anorexia$Treat)

> abline(h = 0, lty = 2)

> legend(91, 20, c("Ctrl", "CBT", "FT"), pch = c(1, 2, 3), col = c(1,

+ 2, 3))
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Figure 2: Weight gain as a function of pre-study weight and treatment (Control, Cognitive behavior
treatment, and Family treatment).
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In Figure 2 I depict the Weight gain as a function of the pre-study weight and the treatment. In the
control group it seems clear that the lower pre-study weight individuals tend to gain more weight during
the study, whereas the women with slightly higher pre-study weight even go on to lose some weight. In
the treatment groups the pattern is less clear. The family treatment group appear to gain weight on
average, and the amount of weight gain seems to be independent of the pre-study weight. For the CBT
group, we appear to have one group of patients that don’t lose or gain weight, and some patients who
gain quite a lot of weight (these were the ’outliers’ in the boxplot above).

Let us try some modeling. The first model I will use is a so-called additive model. An additive model
assumes that both pre-study weight and treatment may affect weight gain. In addition, an additive model
assumes that the relationship between pre-study weight and weight gain is the same for all treatment
groups - the treatment merely changes the intercept of the model.

> regmod <- lm(WtGain ~ Prewt + as.factor(Treat), data = anorexia)

> plot(anorexia$Prewt, anorexia$WtGain, pch = anorexia$Treat, col = anorexia$Treat)

> abline(h = 0, lty = 2)

> legend(91, 20, c("Ctrl", "CBT", "FT"), pch = c(1, 2, 3), col = c(1,

+ 2, 3))

> lines(c(30, 100), regmod$coef[1] + regmod$coef[2] * c(30, 100))

> lines(c(30, 100), regmod$coef[1] + regmod$coef[3] + regmod$coef[2] *

+ c(30, 100), col = 2)

> lines(c(30, 100), regmod$coef[1] + regmod$coef[4] + regmod$coef[2] *

+ c(30, 100), col = 3)
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Figure 3: Additive model fit.

In Figure 3 I depict the additive model fit.

> xtable(summary(regmod), caption = "Additive model", label = "tab:addfit")

Tables 6 and 7 summarize the additive fit. As you can see, both the pre-study weight and the treatment
have significant impact on the weight gain. However, we need to perform some diagnostics to assess the
overall suitability of the model.

In Figure 4 we can clearly see that the error variance is larger in the two treatment groups compared
with control. We will come back to this is a later lecture (Weighted Least Squares). For now, we will
go ahead despite this problem. Do see see any trends in the residuals? In Figure 5 we compare look at
the residuals more closely. There is some indication that there is a trend in the residuals for the control
group. Now, the scatter plot above we saw a strong linear trend in the data for the control group but
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.6740 13.2167 3.46 0.0009

Prewt -0.5655 0.1612 -3.51 0.0008
as.factor(Treat)2 4.0971 1.8935 2.16 0.0340
as.factor(Treat)3 8.6601 2.1931 3.95 0.0002

Table 6: Additive model

Res.Df RSS Df Sum of Sq F Pr(>F)
1 68 3311.26
2 71 4525.39 -3 -1214.12 8.31 0.0001

Table 7: Additive model - F-test

not for the treatment groups. It is possible that because we forced this model to use the same slope for
all treatment groups, the estimated slope is insufficient to capture the relationship between pre-study
weight and the weight gain for the control group. We will address this using interactions. We will thus
allow for a separate slope parameter for each treatment group, meaning that the relationship between
pre-study weight and weight gain is different for the three treatment groups.

To fit interaction models to the data we create new variables that are products of dummy variables
and the numerical variable. This gives as an adjustment to the slope between treatment groups.

> intctrl <- dctrl * anorexia$Prewt

> intcbt <- dcbt * anorexia$Prewt

> intft <- dft * anorexia$Prewt

> anorexia3 <- cbind(anorexia2, intctrl, intcbt, intft)

> names(anorexia3) <- c(names(anorexia2), "intctrl", "intCBT",

+ "intFT")

> regmod <- lm(WtGain ~ CBT + FT + intctrl + intCBT + intFT, data = anorexia3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 92.0515 18.8085 4.89 0.0000

CBT -76.4742 28.3470 -2.70 0.0089
FT -77.2317 33.1328 -2.33 0.0228

intctrl -1.1342 0.2301 -4.93 0.0000
intCBT -0.1520 0.2561 -0.59 0.5547

intFT -0.0908 0.3272 -0.28 0.7823

Table 8: Regression summary - Interaction model

In Tables 8 and 9 I summarize the interaction model results. As you can see, the slope parameter is
only significant for the control group. In the above, the intercept plays the role of the baseline control
group. However, I fit a separate slope parameter to each group. An alternative model formulation is
to let the control group slope be the baseline slope and fit the contrast slope parameters for the other
groups. This is what the *as.factor() does as default (* is how R denotes interactions):

> regmodb <- lm(WtGain ~ as.factor(Treat) * Prewt, data = anorexia)

Compare the entries in Table 10 for the slope estimates to those of Table 8. The slope parameters for the
CBT and FT groups in Table 8 are equal to Prewt slope plus the contrasts as.factor(Treat)2:Prewt

and as.factor(Treat)3:Prewt in Table 10. Table 8 is good for analyzing the groups separately, whereas
the model formulation of Table 10 is best for making group comparisons.

We plot the interaction model fits:

> plot(anorexia$Prewt, anorexia$WtGain, pch = anorexia$Treat, col = anorexia$Treat)

> abline(h = 0, lty = 2)
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Figure 4: Diagnostics of additive model.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 66 2844.78
2 71 4525.39 -5 -1680.60 7.80 0.0000

Table 9: Regression summary - Interaction model

> legend(91, 20, c("Ctrl", "CBT", "FT"), pch = c(1, 2, 3), col = c(1,

+ 2, 3))

> lines(c(30, 100), regmod$coef[1] + regmod$coef[4] * c(30, 100))

> lines(c(30, 100), regmod$coef[2] + regmod$coef[1] + regmod$coef[5] *

+ c(30, 100), col = 2)

> lines(c(30, 100), regmod$coef[3] + regmod$coef[1] + regmod$coef[6] *

+ c(30, 100), col = 3)

In Figure 6 we see that the slopes for the two treatment groups are almost 0, whereas the control group
slope is negative. We look at the model diagnostics: In Figure 7 we see that the trends in the residuals
are no longer present, but of course we still have the problem with higher error variance in the treatment
groups. There are also at least two outliers present in the data (one in each treatment group). (Repeat
the above analysis without the outliers - use code from previous lecture to help you identify them.)

I will repeat the analysis with a slight reformulation of my variables:

> anorexia4 <- anorexia3

> anorexia4$CBT <- anorexia3$CBT + anorexia3$FT

> anorexia4$intCBT <- anorexia3$intCBT + anorexia3$intFT

> names(anorexia4) <- c(names(anorexia), c("ctrl", "Therapy", "FTvCBT",

+ "intctrl", "intTherapy", "intFTvCBT"))

Here, I create a dummy variable Therapy that stands for either CBT or FT, and similarly for the
interaction variable intTherapy. The variable FTvCBT is now a contrast between CBT and FT. The
estimated coefficient for this variable will tell us about the expected excess weight gain using family
therapy over cognitive behavior therapy. Similarly, intFTvCBT will tell us how the relationship between
pre-study weight and weight gain differs between family therapy and CBT. This model formulation is
good for testing both a) treatment effect compared with control and b) differences between treatments.
We fit this model to the data:
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Figure 5: Residual plot -additive fit

Estimate Std. Error t value Pr(>|t|)
(Intercept) 92.0515 18.8085 4.89 0.0000

as.factor(Treat)2 -76.4742 28.3470 -2.70 0.0089
as.factor(Treat)3 -77.2317 33.1328 -2.33 0.0228

Prewt -1.1342 0.2301 -4.93 0.0000
as.factor(Treat)2:Prewt 0.9822 0.3442 2.85 0.0058
as.factor(Treat)3:Prewt 1.0434 0.4000 2.61 0.0112

Table 10: Regression summary - Interaction model - contrasts

> regmodc <- lm(WtGain ~ Therapy + FTvCBT + intctrl + intTherapy +

+ intFTvCBT, data = anorexia4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 92.0515 18.8085 4.89 0.0000

Therapy -76.4742 28.3470 -2.70 0.0089
FTvCBT -0.7575 34.5516 -0.02 0.9826

intctrl -1.1342 0.2301 -4.93 0.0000
intTherapy -0.1520 0.2561 -0.59 0.5547

intFTvCBT 0.0612 0.4155 0.15 0.8833

Table 11: Regression summary - FT vs CBT

In Tables 11 and 12 this new model is summarized. As you can see, there is a Therapy effect on Weight
Gain, but this effect is not different between the two treatment groups (p-value for FTvCBT is 0.98). The
slope parameter is only significant for the control group.

4 Cautionary remarks

Let us try stepwise model selection on this last model:

> selectmodel <- step(regmodc, trace = F)

> summary(selectmodel)
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Figure 6: Interaction model fit

Res.Df RSS Df Sum of Sq F Pr(>F)
1 66 2844.78
2 71 4525.39 -5 -1680.60 7.80 0.0000

Table 12: Regression summary - FT vs CBT

Call:

lm(formula = WtGain ~ Therapy + intctrl + intFTvCBT, data = anorexia4)

Residuals:

Min 1Q Median 3Q Max

-12.3870 -3.7554 -0.9766 3.8224 17.8696

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 92.05147 18.60548 4.948 5.21e-06 ***

Therapy -89.02102 18.64445 -4.775 9.96e-06 ***

intctrl -1.13418 0.22759 -4.983 4.55e-06 ***

intFTvCBT 0.05039 0.02377 2.120 0.0377 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.494 on 68 degrees of freedom

Multiple R-squared: 0.3662, Adjusted R-squared: 0.3383

F-statistic: 13.1 on 3 and 68 DF, p-value: 7.6e-07

> plot(anorexia$Prewt, anorexia$WtGain, pch = anorexia$Treat, col = anorexia$Treat)

> abline(h = 0, lty = 2)

> legend(90, 20, c("Ctrl", "Therapy", "FTvCBT"), pch = c(1, 2,

+ 3), col = c(1, 2, 3))

> lines(c(30, 100), selectmodel$coef[1] + selectmodel$coef[3] *

+ c(30, 100))

> lines(c(30, 100), selectmodel$coef[2] + selectmodel$coef[1] +

+ 0 * c(30, 100), col = 2)

> lines(c(30, 100), selectmodel$coef[2] + selectmodel$coef[1] +
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Figure 7: Diagnostics of interaction model.
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Figure 8: Backward selection model.

The backward selection includes; intercept (control group), therapy effect, control group’s relationship
between pre-study weight and weight gain and a separate slope for the family therapy group (see Figure 8).

What conclusions can we draw? For the control group, we see a significant dependency of weight
gain on pre-study weight, where women whose weight was lower tended to gain more. For both therapy
groups we saw an increased expected weight gain compared with the control group. In addition, for the
the family therapy group there is some indication that there is a positive correlation between pre-study
weight and weight gain. However, this is not significant if one adjust for multiple comparison.
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Was the above selection step reasonable? We have to be very careful not to read too much into
an interaction term when its so-called main effect is not present (here FTvCBT). First of all, the main
effects variable and the interaction variable are often highly correlated, and especially if there is no
strong relationship between the numerical variable and the outcome. We know that such collinearities
often result in weird fits. It is common, in fact, common practise to only include interaction variables
if their main effects are also in the model. Instead of automating the model selection, we therefore try
to eliminate interaction terms first. If we proceed in this fashion, using backward F (first eliminating
intFTvCBT, the intTherapy and finally trying to eliminate FTvCBT which is rejected at level α = 5%
(p-value 0.35), we arrive at the model:

> regmodd <- lm(WtGain ~ Therapy + FTvCBT + intctrl, data = anorexia4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 92.0515 18.5901 4.95 0.0000

Therapy -89.0446 18.6291 -4.78 0.0000
FTvCBT 4.2578 1.9821 2.15 0.0353

intctrl -1.1342 0.2274 -4.99 0.0000

Table 13: Regression summary - FT vs CBT - selected

Res.Df RSS Df Sum of Sq F Pr(>F)
1 68 2863.29
2 71 4525.39 -3 -1662.09 13.16 0.0000

Table 14: Regression summary - FT vs CBT - selected

From Tables 13 and 14 we conclude that both treatments have an effect on weight gain. Note, the
intercept for the CBT group is now obtained from the intercept (control) plus the contrast Therapy

whereas the intercept for the family therapy group is obtained from the intercept (control) plus the
Therapy effect plus the contrastFTvsCBT. The weight gain is therefore larger in the family group than
the CBT. In addition, there is no relationship between pre-study weight and weight gain in either of the
treatment groups. We summarize the fit in a graph:

> plot(anorexia$Prewt, anorexia$WtGain, pch = anorexia$Treat, col = anorexia$Treat)

> abline(h = 0, lty = 2)

> legend(91, 20, c("Ctrl", "CBT", "FT"), pch = c(1, 2, 3), col = c(1,

+ 2, 3))

> lines(c(30, 100), regmodd$coef[1] + regmodd$coef[4] * c(30, 100))

> lines(c(30, 100), regmodd$coef[2] + regmodd$coef[1] + 0 * c(30,

+ 100), col = 2)

> lines(c(30, 100), regmodd$coef[3] + regmodd$coef[2] + regmodd$coef[1] +

+ 0 * c(30, 100), col = 3)

In Figure 9 I depict the model from Table 13.

5 Polynomial regression, Interactions between numerical vari-
ables

You can now generalize the above to other settings. For example, you can create interactions between
numerical variables by including products of these variables in the model. Similarly, you can model
second- or third-order models by including products of the variables themselves.

Creating product variables is easy enough, and in R you include them in your models as you did above
the dummy variables or interaction variables. You can also use the * in the model formulation to include
interactions between numerical variables. There are two things we have to discuss before concluding this
segment of the lectures; (1) how can we detect the need for an interaction? and (2) how do we deal with
the collinearities that might show up?
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Figure 9: Final fitted model.

5.1 Detecting interactions

Above we saw that we can detect interactions between an outcome and numerical variable and a cat-
egorical variable by coloring the scatter plot using the levels of the categorical variable. If the colored
points seem to capture a different x-y relationship (above: negative slope for control group, slope equal
to zero for the treatment group), an interaction should be included in the model.

When we have two numerical variables we use so-called conditioning plots coplot(). Here is an
example:

> x1 <- rnorm(mean = 2, 250)

> x2 <- rnorm(mean = 1, 250)

> x3 <- rnorm(mean = 1, 250)

> y <- 2 + 3 * x1 - 2 * x2 + 4 * x1 * x2 + rnorm(250, sd = 3)

I create a data set with an interaction term x1*x2. Let us first look at some pairwise plots:

> par(mfrow = c(1, 1))

> plot(x1, y)

> par(mfrow = c(1, 1))

> plot(x2, y)

In Figure 10 you see that both x-variables are related to y.

The conditional plots proceeds as follow: we pick one variable to condition on (below it’s x2). We
bin the data into groups corresponding to different ranges of x2 and plot a scatter plots of y versus x2
for each bin of data. If these scatter plots look the same for all bins, then we don’t need the interaction
x1 ∗ x2 since the relationship between y and x1 is independent of x2, and vice versa.

> coplot(y ~ x1 | x2)

The panels of Figure 11 are read as follows: as you see there are 6 bins of x2. The smallest values
for x2 are used to form the bin whose y ∼ x1 plot is in the lower left panel. The top right panel is
the scatter plots for x1 and y when x2 is in the largest value bin. You read the panels from left to
right, bottom to top as corresponding to bins of increasing values of x2. If you compare the panels you
see a clear alteration in the relationship between x1 and y. In fact, the relationship is stronger for large x2.

You can also compare multiple variables at a time:

12
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Figure 10: Scatter plots y vs x1 and y vs x2.
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Figure 11: coplot of y on x1, conditioning on levels of x2.

> coplot(y ~ x1 | x2 * x3)

The panels of Figure 12 I condition on both x2 and x3. As you see, going from left to right, the relation-
ship between x1 and y changes, meaning the levels of x2 matter (suggests interaction x1 ∗ x2). Going
from top to bottom, however, we see almost no change in the relationship, suggesting we don’t need
to include an interaction x1 ∗ x3. If all the panels looked different this would suggest a model with a
third-order interaction (x1 ∗ x2 ∗ x3).

Try at home: simulate some more models with or without interactions and use coplots to try to
identify them.

5.2 Fitting models with interaction

As above, we can create interaction variables and use our standard least squares fit to estimate the
parameters. There are two things to be wary of; (1) it is best to only include interaction terms if you also
include the main effects; and (2) to reduce the collinearity problem, it is best to center all the variables
first. Centering means that you subtract the mean from each variable prior to including them in the
model, and prior to creating the interaction variables. To see why this is the case, compare the following:

> mod1 <- lm(y ~ x1 * x2)
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Figure 12: coplot of y on x1, conditioning on levels of x2 and x3.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8772 0.5875 3.20 0.0016

x1 3.0001 0.2659 11.28 0.0000
x2 -1.3050 0.4333 -3.01 0.0029

x1:x2 3.6455 0.1957 18.63 0.0000

Table 15: Regression summary - no centering

and

> mod2 <- lm(y ~ I(x1 - mean(x1)) * I(x2 - mean(x2)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.4216 0.1882 71.32 0.0000

I(x1 - mean(x1)) 6.3701 0.1889 33.72 0.0000
I(x2 - mean(x2)) 5.9921 0.1767 33.91 0.0000

I(x1 - mean(x1)):I(x2 - mean(x2)) 3.6455 0.1957 18.63 0.0000

Table 16: Regression summary - centering

In Tables 15 and 16 I compare the regression summaries without and with centering, respectively. Note
that the significance of the coefficients is improved after centering, demonstrating that the collinearity
has been reduced by centering the data prior to modeling.

To guarantee that the main effects are included if the interactions are you have to be careful about
using automated model selection schemes like step() above.

Try at home: play around with weaker/stronger interactions using simulated data. Try to detect
interactions in some of the Demo data we have used.

14


	Dummy variables, Polynomial regression and Interactions
	Categorical covariates
	Interactions with numerical variables
	Cautionary remarks
	Polynomial regression, Interactions between numerical variables
	Detecting interactions
	Fitting models with interaction


