
MVE190/MSG500 Solutions to Final 2018-01-11

Examiner: Rebecka Jörnsten, 0760-491949

Remember: To pass this course you also have to hand
in a final project to the examiner.
You can use the text book and the MVE190/MSG500
lecture notes - but no calculators, computers or old
exams allowed

Make sure to give detailed and specific answers. Avoid yes/no answers. You should also
provide a motivation. Good Luck!

Question 1 (25p=5+5+5+5+5)

a) A data set (x, y) is collected in a lab. Two pieces of equipment is used to save time and
money, the same number of observations collected from each. From a calibration study it is
known that equipment A has twice the level of measurement error compared to equipment
B but equipment B has an offset problem for measuring y (adds bias B to each y value)
when x-values exceed a level L. Explain how you would utilize the data set from both sets
of equipment to obtain unbiased and efficient estimates for the linear model coefficients for
y given x.
Since you know which equipment each observation comes from you can simply align the B
data by subtracting the offset for observations over level L in x. To get the most efficient
estimates you can use weighted least squares where observations from data A are weighted
half of the observations in B. You could also use a dummy variable 1{x > L} for the B data.
This would estimate the bias via regression.
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Figure 1: Question 1a solution. Triangles are equip B observations
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b) A sloppy graduate student messes up the log-book and it is no longer known which
observations were obtained from which equipment nor what their calibration settings were.
Draw a sketch of what the data set looks like when the A/B information is unknown. What
if instead it was B that also had the higher level of measurement noise?
Now bias B, level L and equipment label are unknown. Depending on the sample size, the
size of the bias and the noiselevel, this problem may be easy or hard to detect. It can give
the appearance of a skewed error distribution if the bias is not big but instead produces a
long-tailed behaviour above level L. It can also give the appearance of nonlinear dependency.
If the equipment B also has a larger noise level it makes for the appearance of skewed errors.
Without knowing about the problem it would not be easy to spot it without a huge bias.
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Figure 2: Question 1b solution: top left-right:less bias. bottom left: more
noise and less bias, bottom right: more noise
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Figure 3: Question 1b solution, with equipment B more noise: top left-
right:less bias. bottom left: more noise and less bias, bottom right: more
noise
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c) How would you go about analyzing the data under these circumstances? What is the
impact of not knowing the A/B information on the model fit - can you recover the true
model when A/B is unknown?
If you ignore the problem it will tend to lead to bias in the estimate of β (the coefficient for x)
in the direction of the bias B. Also, ignoring the differing variance of the data sets leads to
higher variance estimate of the regression coefficient. Without knowing what the problem is
you cannot easily fix it. However, if you knew there was a level L and bias B and two sets of
equipment, you’re just missing the precise information, you could look at models for groups
in data. You could try to identify the group above above the level L via residual diagnostics
and then use dummy variable coding as in a).
d) What if the offset bias B occurs not for fixed levels of x but randomly with probability p.
A clever graduate student in the lab has rigged an alarm that detects if a biased recording has
occurred. Draw what the data might look like. Explain how you would go about modelling
the data in this case.
This is just like a). You can subtract the bias from the B data and use weighted least squares
otherwise.
e) Same as d) but now the sloppy graduate has lost the log-book again so you don’t know the
A/B information or when the biased offset occurred. What is the impact of the modelling
when A/B information is unknown?
This will give the appearance of skewed errors (in the direction of the bias) and will lead to
a biased estimate of the intercept mainly.
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Question 2 (25p=5+10+10)

a) Data is generated from a linear model y = α + βx + ε. One statistician models the data
with values (y, x) and the other decides to round off the values of the x prior to modeling
(see Figure 1 for one example of such data). Discuss the impact of this strategy on average:
effect on estimated coefficients, estimated noise level, R-squared, significance, etc.
From the figure and thinking about the effect of rounding, the impact is that the noise level
around the regression model now appears larger than it is. That is because several points
on the true regression line are now forced to be located at the same x-location so in fact
comes from different mean-distributions which results in a bigger spread. The impact on
the regression coefficient estimate is minor, but the R-squared decreases as the noiselevel
increases, p-values are larger since the noiselevel increases. In general, the strategy can
produce problems with leverage as the extremes of x might comprise very few observations.

49 50 51 52

96
0

98
0

10
00

10
20

10
40

xx

yy

48 49 50 51 52

96
0

98
0

10
00

10
20

10
40

round(xx)

yy

Figure 4: Question 2a: top=raw data, bottom=rounded x-values
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b) A group of 10 international researchers collect data to study the relationship between
variables x and y. Each of the 10 researchers conduct a subset of the study in their country,
collecting a set of 10 data points each, and they plan to then aggregate the data for a full
analysis. Unfortunately, they have very poor computer skills on their team so they decide to
summarize each of the individual studies with the average x and y for a total of 10 average
values to be jointly analyzed. Illustrate by drawing least 3 examples of the impact of such
an aggregation (changing(how)/not changing the detected x-y relationship).
Groups in data is a big problem, and aggregating group-level data can obscure important
information. Lots of things can go wrong. In the figure below I illustrate a couple of cases.
Each ellipse represents the data cloud of 10 points from each study. A: there is a trend in
each of the data sets, but the strength of the association is exaggerated by the aggregation.
The noiselevel will appear to be tiny. B: Here, the trend is the same in each data set and
there is an offset in x and y that is group specific. Aggregation will lead to about the same
trend conclusion as each separate data set and the aggregate noise level will be about the
same as the noiselevel of each data. C: Here, the association between x and y is group-
specific (interaction) and aggregation obscures this. I this example, it will also produce a
downward trend instead of the various upward trends we see for each data set. D: There is
no association between x and y. By aggregating the data we create a trend due to the offset in
x and y that is group specific. E: Here, all groups have an upward trend but the aggregation
produces a downward trend instead. F: The assumption made by the people in the example:
that each data is generated from the same distribution so there are no groups in the data.
Even so, it may not be the best way to handle the data. There are alternatives in terms of
repeated-measures, mixed effects models (see experimental design classes if you want to learn
more).
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c) For the data sets in Figure 2 and regression trees in Figure 3 - couple each data set with
the corresponding tree and draw what the tree model looks like in the scatter plot.
The way to go about this is try to work through an elimination process. The easiest is to
look at the various scales first. Figure iv) shows a data with range 0-25 and the only tree
with that range is IV. Double check by looking at the effect of x and z: For z=0, we have a
constant y-level of 7 (matches the data iv) and oterhwise we have repeated splits on x, i.e. a
slope, which also matches the data. iv=IV established. Data iii has a range -30 to 40 with
z=1 having a weaker slope than z=0, z=1 values below z=0 values for the same value of x.
Range-wise, tree I looks like a good candidate. Verify: whenever there is a split on z, the z=1
has smaller values in the leaf-node. iii=I. The two remaining dat sets, i and ii, are similar
in range but for i we see a strong trend for z=1, weaker for z=0 and y-values overlapping for
low values of x and then moving apart, for ii we see the same trend for both but z=1 have
higher y-values that z=0 for the same x. Looking at the two trees II and III: in tree III z is
present everywhere in the tree, for the full range of x, producing lower fitted values for z=0
than z=1 in each split. In tree II, z appears in the tree only for larger x-values and producing
lower values for z=0 data in that range. Conclusion: ii=III, i=II
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Figure 6: Question 2c: data sets. z=1 triangles, z=0 circles
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Figure 7: Question 2c: Regression trees
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Figure 8: Question 2c: Trees in scatter plot
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Question 3 25p=(5+5+5+5+5)

A data set on risk factors for low birthweight comprises 188 women. The outcome variable
is birthweight (bwt) in grams. Other variables include;

age mother’s age in years.

lwt mother’s weight in pounds at last menstrual period.

race mother’s race (1 = white, 2 = black, 3 = other).

smoke smoking status during pregnancy.

ptl previous premature labours (0 = no, 1 = yes)

ht history of hypertension (0 = no, 1 = yes)

ui presence of uterine irritability.

ftv number of physician visits during the first trimester (0,1 or 2+).

In figures 4 and 5, scatter plots of birthweight on the other variables are shown.
a) In figure 6 the residuals diagnostics from a linear model fit of bwt on the other
variables are shown. Below is the summary of the fit. Comment and interpret. I treated
race and ftv as a 3-level factor. Comment. ptl and ftv were actually numerical vari-
ables with observed range 0-4 (number of previous premature births) and 0-6 (number of
visits) respectively, with about 10-20 observations in the range ptl 2+ and ftv 2+. Comment.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2981.972 311.186 9.583 < 2e-16 ***

age -10.842 9.960 -1.089 0.277791

lwt 4.752 1.701 2.794 0.005786 **

as.factor(race)2 -474.094 147.035 -3.224 0.001504 **

as.factor(race)3 -305.417 115.492 -2.644 0.008917 **

smoke -290.415 107.833 -2.693 0.007757 **

ptl -202.771 136.045 -1.490 0.137880

ht -591.350 197.760 -2.990 0.003185 **

ui -483.091 134.935 -3.580 0.000443 ***

as.factor(ftv)1 96.414 121.012 0.797 0.426673

as.factor(ftv)2 -33.473 121.368 -0.276 0.783027

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 635.1 on 177 degrees of freedom

Multiple R-squared: 0.2545,Adjusted R-squared: 0.2124

F-statistic: 6.043 on 10 and 177 DF, p-value: 7.049e-08
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tom: bwt on race and smoke
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First, some general comments about the fit. The R-squared is not very high 20-25%. It is
pretty clear from the scatter plots that the noiselevel is high. In terms of the model: based
on the summary table it suggests that race is an important factor with bwt being lower for
both black and other. In addition, smoking is associated with a lower bwt as is hypertension
and uterine irritability. Previous premature labor is not significant and neither is age. A
higher weight for the mother (lwt) is associated with a higher bwt. We might wonder if this
is correlated with another variable. ftv is not significant. The boxplot shows that no visits is
associated with a slightly lower bwt as is more than 2 visits. Perhaps many visits is due to
a high-risk pregnancy? The residual diagnostics do not look too bad. No obvious problems.
Race as a 3-level factor makes sense - there is no ordering. One could consider having a
non-white factor and then an additional difference between black and other. ftv as a 3-level
factor might be based on having about the same number of observations in each group or
also can be argued as above. There is a risk factor with no doctor’s visits (a socio-economic
factor) but also with many visits since this is probably due to complications. Turning ftv and
ptl into factors was perhaps necessary since very few observations were in the upper range
and that might lead to extreme leverage if treating these variables as numerical.

b) I removed one observation from the data set prior to modeling: a 45-year old white
woman, non-smoker, with lwt 123, ftv 1 and whose baby weighed 4990grams. Comment.
This observation is an extreme x in age and an extreme y, high bwt. A clear outlier.
The data set above contained 188 observations. A larger data set is available (1000 women)
but for this data we have many missing values for lwt and ftv. Discuss how you would
proceed.
We might first want to assess how important lwt is in the model for the 188 women. How
much lower is Rsquared without lwt. fvt was not significant, but had also been rounded off
due to few observations with more than 2 visits. In general, we would expect to be able to
fit a better model with 1000 observations, especially if lwt does not contribute much in the
188 data. However, you should try to figure out why this information is missing. Are high
risk groups linked to few doctor’s visits and less likely to know lwt? How might this then
influence the results? You don’t have any variables here that are proxies for fvt and lwt at
first glance. You could code missingness and a dummy variable and see if that is predictive
of bwt.
I run backward selection using AIC and end up with the following model. Comment and
discuss.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2821.281 240.775 11.717 < 2e-16 ***

lwt 4.188 1.649 2.540 0.011938 *

as.factor(race)2 -447.115 143.118 -3.124 0.002079 **

as.factor(race)3 -307.309 111.055 -2.767 0.006245 **

smoke -302.706 103.731 -2.918 0.003970 **

ptl -204.432 131.491 -1.555 0.121769
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ht -569.665 195.960 -2.907 0.004107 **

ui -482.883 133.913 -3.606 0.000403 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 633.6 on 180 degrees of freedom

Multiple R-squared: 0.2455,Adjusted R-squared: 0.2162

F-statistic: 8.367 on 7 and 180 DF, p-value: 7.699e-09

AIC selection removed fvt, age as one might expect from the result in a). The p-values here
are not ”honest” - selection bias - so too good to be true.

c) I create dummy variables for race and for the 3-level ftv variable. I split the data into 150
observations for training and 38 for testing and obtain the following model selection results
(see also Figure 7):

R.sq test age lwt smoke ptl ht ui ftv ftv2 black other

cvmod 0.116 1 1 1 1 1 1 1 0 1 1

cpmod 0.134 0 1 1 1 1 1 1 0 1 1

aicmod 0.134 0 1 1 1 1 1 1 0 1 1

bicmod 0.045 0 0 1 0 1 1 0 0 1 0

Comment and discuss.
The selected models are quite big. The R-squared on the test data is really low! The best
result (and that’s a pretty unimpressive result) is AIC and CP models that use lwt, smoke,
ptl, ht, ut ftv and race.
I also use modelaveraging, aggregating the top-10 models based on each selection criterion
and obtain the following results;

R.sq test age lwt smoke ptl ht ui ftv ftv2 black other

[1,] "CV" "0.172" "0.4" "1" "1" "0.2" "1" "1" "0.6" "0.5" "1" "1"

[2,] "CP" "0.187" "0.4" "1" "1" "0.5" "1" "1" "0.4" "0.2" "1" "1"

[3,] "AIC" "0.18" "0.4" "1" "1" "0.6" "1" "1" "0.5" "0.2" "1" "1"

[4,] "BIC" "0.11" "0" "0.5" "0.4" "0.3" "1" "1" "0.3" "0" "0.3" "0.2"

Comment and discuss.
Modelaveraging improved the R-squared on the test data (i.e. the prediction performance) by
5%. It appears top models that are aggregated use either age or ptl or ftv.
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d) I repeat the above 100 times, repeatedly splitting the data into 150 for training and 38
for testing. I obtain the following results;

Model selection - best model

R.sq test age lwt smoke ptl ht ui ftv ftv2 black other

cvmod 0.10976 0.41 0.93 0.94 0.38 0.84 1 0.11 0.05 0.94 1.00

cpmod 0.11881 0.36 0.97 0.97 0.48 0.97 1 0.09 0.05 0.97 0.99

aicmod 0.11958 0.41 0.97 0.99 0.51 0.97 1 0.12 0.05 0.99 0.99

bicmod 0.03583 0.00 0.52 0.59 0.25 0.60 1 0.02 0.00 0.53 0.56

Model selection - average of top-10 models

R.sq test age lwt smoke ptl ht ui ftv ftv2 black other

CV 0.12161 0.384 0.909 0.916 0.525 0.844 0.989 0.311 0.243 0.891 0.982

CP 0.13161 0.395 0.929 0.949 0.571 0.938 0.998 0.315 0.228 0.939 0.982

AIC 0.13357 0.412 0.936 0.956 0.578 0.948 0.998 0.324 0.253 0.953 0.986

BIC 0.07396 0.046 0.541 0.589 0.346 0.611 0.962 0.058 0.016 0.500 0.594

In Figure 8 I depict the rank-statistics based on the Rsq on the test data for each of the
selection criteria across the 100 runs. That is, if a criteria was always producing the best
results it would have rank 8 (comparing 8 strategies: CV, CP, AIC, BIC and top-10 average
of models chosen by CV, CP, AIC and BIC).
Comment and discuss. What about the stability of modelselection? Is it easy to identify the
most important predictors. Write a few sentences that would be like a ”press release” about
the main risk factors for low birth weight in babies.
Modelaveraging does improve the prediction. CP and AIC are the best models in terms of
prediction and for those criteria the averaging boosted their performance the most. BIC
performs the worst. lwt, smoke, ht, ui and race are important predictors.
The model selection stability is not great. lwt, smoke, ht, ui and race are almost always in
the AIC models, but there are also other variables that appear quite frequently (age, ptl).
”Smoking, history of hypertension and uterine irritability is associated with an increased risk
of having a low birthweight baby, but race is a factor as well.”
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e) I model the birth weight data using lasso-regression. Figure 9 shows the CV-results. In
the table below I summarize the least-squares fit, the fit from the CV-minimum lasso model
and the solution with penalty factor λ within 1SE of the CV-minimum result (as indicated
in Figure 9).

Least-Squares minCV minCV+1SE

(Intercept) 2981.972423 2948.265478 2857.982191

age -10.842488 -8.804754 .

lwt 4.752387 4.449404 1.961779

smoke -290.415145 -273.643514 -117.575155

ptl -202.771088 -197.943166 -127.251988

ht -591.349894 -557.483330 -247.282353

ui -483.091350 -469.321486 -339.387835

ftv 96.414074 89.387151 .

ftv2 -33.472787 -19.357551 .

black -305.416814 -282.651668 -79.592859

other -474.093767 -439.380726 -128.211904

I apply lasso 10 times on random 150 training and 38 testing observations. I obtain the
follow results;

"R.sq" "R.sq" "age" "lwt" "smoke" "ptl" "ht" "ui" "ftv" "ftv2" "black" "other"

test debiased

Lasso - min CV lambda

"0.1184" "0.1131" "0.7" "1" "1" "0.9" "1" "1" "0.7" "0.4" "1" "1"

Lasso - min CV+1SE lambda

"0.0721" "0.0934" "0.2" "0.8" "0.9" "0.8" "0.9" "1" "0.5" "0" "0.7" "0.7"

Comment and discuss. Compare with the results using least squares and modelselection in
question 3a-3d above.
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Figure 14: Question 3e: Modelselection results

The minCV performance is on par with AIC and the minCV+1SE model is on par with
BIC. From the summary table for the coefficients we see the effect of the l1-penalty on the
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coefficients, shrinking them toward 0. But as with the selection criteria, the CV-based lasso
model is quite big, with age and ftv the only variables being removed by the selection. With
repeated selection we see that as well and that the selection is not very stable.
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Question 4 (25p=(10+10+5)

In this question you will discuss building a predictive model for ozone exposure. Ozone
exposure in the population is a major health concern. High levels of ozone have been linked to
e.g. respiratory illnesses such as asthma. To estimate the risk for the population researchers
have come up with predictive models for personal ozone exposure. Predictors have to include
”activity type” and ”risk behavior” information of individuals, such as outdoor occupation,
outdoors during the day, where you live, etc. Many studies have been conducted to assess
population risk and come up with predictive models for personal exposure.
Here we will discuss a data set from a study conducted in the summer of 1991. Our personal
exposure to ozone is difficult to predict because it is lifestyle specific. If you spend a lot of
time outdoors, especially during midday, you can be highly exposed. But you can also be
exposed if the ozone penetration of your house is high. Your exposure depends on where you
live as well, altitude, rural/urban etc. For practical purposes, goal being risk assessment,
it’s not feasible to equip every single person with an ozone sampler. The study in 1991 used
personal ozone samplers on a set of 19 children, and tried to relate these personal measures
to more easily obtainable measures such as indoor and outdoor ozone measurements near
the home of the children. The passive personal ozone samplers were little badge clips that
were put on the children’s backpacks. The children also turned in activity sheets stating
how much time they had spent indoors at home, outdoors.
The data: Ozone concentrations were measured in State College, PA Aug 7 - Aug 27 1991.
Ozone samples were collected on days with very varied levels of ozone concentration, to see
the full range of possible exposure. Personal samples were collected for 19 children (ages 10-
11), living in non-smoking homes is six different residential regions. Personal exposures were
measured during the day (8am-8pm). Regions 1, 2, 4 and 5 are densely populated, whereas
regions 3 and 6 are less developed. Outdoor concentrations were measured a one stationary
site (State College National Dry Deposition Net- work site, 6 km west of downtown State
College). At this stationary site 12 hr average samples were collected twice daily (day:
8am-8pm, night: 8pm-8am). In addition, indoor samples (home) were taken with passive
samplers twice daily (12 hr averages, for day and night). Outdoor sam- ples were collected
near the homes (24 hr averages, beginning 8am).
Let’s introduce some notation. For a given day and child (sid = id number (1-19) for each
child), y is the personal exposure mea- surement, x1:d and x1:n are the stationary site
measurements, day and night time. x1:o is the outdoor measurement near the home. x1:di
and x1:ni are the indoor measurements in the individual homes, day and night time averages.
We denote by x2:o and x2:i the fraction of time a child spent anywhere outdoors and at home
indoors on a given day, and this may sum to less than 1 if the child spent a lot of time indoors
but not at home. The number of observations in total is 69 with 1-6 measurements obtained
for each of the 19 children. Scatterplots of the measurements data are shown on the next
page.
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Figure 15: Question 4: Scatterplots
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Figure 16: Question 4: Scatterplots

26



a) Discuss how you would go about modeling this data and how the outcome from such a
model might be interpreted; concerns you might have regarding assumptions, how you would
consider incorporating the information from the stationary site, the individual measurements
and the activity information.
The scatter plots show that the daytime indoor is most closely linked to the personal exposure
- this makes sense if the children spend most of their time at home and indoors. You also
see a correlation between y and the daytime ozone levels at the stationary site and with the
outdoor levels outside the home. The outdoor levels are 24hr averages though so not daytime
only. What these suggest though is that the stationary site levels, while the same for all kids,
are related to the personal exposure and overall day+night near the home is as well. That
probably means that there is a strong day-to-day variation in overall ozone levels correlates
with personal exposure. The day-to-day variation is confirmed by the boxplots. Now, to come
up with a good predictor for personal exposure we might want to way the time spent outdoors
with the outdoor measurements. Similarly, we may want to look at the time spent indoor
at home and see if we can by weighing enhance the correlation between the indoor measure-
ments and the personal exposure this way. The region variable seems to be related to y (not
linearly of course). Where you live could impact your exposure if there is a pollution effect.
However, I am a bit concerned with the apparent link between region and the stationary site
measurements: this could only happen if kids from different regions participated in the study
on different days, region 3 and 6 on particulary high ozone level days. That the kids were
not randomly assessed over the days in the study period is clear from the boxplots on sid.
This is a huge concern. Another concern is that we are following the same kids over a few
days. This means that the errors are not uncorrelated and you should probably look into a
mixed effects model. Another concern; The sampler is attached to their backpack - there is
a risk that the kids don’t keep the backpack always with them, e.g. when playing outdoors or
even in a different location in the home.
b) There are a lot of missing values in the data set, especially for the indoor measurements at
the children’s houses (x1.di, x1.ni). 3 strategies were considered for imputing data for these
missing values; (i) Replacing the missing values with the stationary site data, (ii) Replacing
the missing values with the average measurements taken at the child’s home, (iii) Replacing
the missing values with the average indoor and outdoor values respectively measured at other
children’s homes in the same region on the same day. Comment on these strategies and what
assumptions are implicitly made in each case. Propose one more strategy and motivate why
you think that’s a reasonable approach.
i) Assume that there is not much variation between regions and houses and day-to-day vari-
ation dominates instead. ii) Assumes that the house is the most importance factor and that
this variation dominates over day-to-day variation. iii) assumes day-to-day variation domi-
nates but that region can also have an effect and that this variation dominates the variation
between individual houses in the region. iv) You could use a regression model for the indoor
and outdoor temperatures from the other variables (excluding y) to fill in the missing values.
A good candidate for a variable to use for imputation is the outdoor ozone at the home for
example - based on the correlations in the scatter plot.
c) What if you could collect more data; of a similar kind or perhaps collecting additional in-
formation? Construct a short proposal - motivate why you think this additional information
would be helpful. Also comment on how costly/complex your proposed study would be/not
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be compared to the original study. Why is your proposal possibly improving/assisting model
building for predicting individual ozone exposure.
It would be useful to have information about ozone levels indoors where the kids spend a lot
of time that’s not at home. Measuring ozone at the school should be relatively cheap. You
could collect both outdoor and indoor measurement.
Weather data would also be helpful: sunny, rainy, windy: these data already exist so just
need to be joined with the current data set.
A more expensive, but probably needed, improvement to the study is to increase the number
of kids. An increased sample size would allow us to construct a predictive model with more
confidence and we would want a better overlap of multiple kids on multiple days so that we
see the personal exposure for both high and low ozone level days for each kid.
The activity report is rather limited and probably not that accurate - outdoor where? indoor
where? This is an older data set. Now we could probably use GPS and mobile apps to get a
better accuracy of reporting.

28


