
MVE190-MSG500 Linear Statistical Models, 25/04/2019

Solutions

Question 1

(i) Clearly gender is a categorical variable. Here I set baseline gender=male. We have the
linear model E(income|gender) = β0 + β1 ·Xfemale with dummy variable Xfemale = 1 for
female subjects and 0 otherwise, β0 the expected income for a male employee and β0+β1 the
expected income for a female employee. Therefore β1 represents the difference in income
between genders. It is therefore sufficient to check the hypothesis H0 : β1 = 0 vs the
alternative hypothesis H1 : β1 6= 0. We can use a t-test for this task at some significance
level α. If we turn out failing to accept H0 then we conclude that there is a significant
difference (at the specified level α).
Notice: the following hasn’t been treated in the course. But for your personal knowledge,
you can also test H0 vs the “one-tailed” hypothesis H1 : β1 < 0 if it is clear from the
data that a female employee can’t earn more than a male. Lookup for “one-tailed” and
“two-tailed” tests (the latter is the type we have treated in the course, where H1 : β1 6= 0).

(ii) Here I choose the following baselines: baseline gender=male and baseline experience=junior.
The model with main effects only is E(income|gender, experience) = β0 + β1 · Xfemale +
β2 ·Xintermediate + β3 ·Xsenior. We have that β0 is the expected income for a junior male
(all introduced dummy variables are zero in this case). β0 + β1 + β3 is the expected income
for a senior female.

(iii) This means that, marginally with respect to gender (i.e. regardless of the gender), employees
with intermediate experience and senior experience are earning on average more than junior
employees. Also, marginally with respect to the experience level, there is no difference in
income between different genders.

(iv) The intercept says that, for lifevents=0 (which is a positive thing), the expected mental
impairment index equals 23.3. Then, for each additional unit in the lifeevent score, we
expect an increase of about 0.09 in the mental impairment index.

Then we have

T =
β̂1

SE(β̂1)
=

0.08983

0.03633
= 2.473.

The t-quantile is t0.975,40−2 = 2.024 and |T | > 2.024 hence we fail to accept H0 : β1 = 0.
There seem to be a positive association between the response and the covariate. Overall
the model seems too simplistic, the R-squared is pretty low, meaning we fail at explaining
most of variability (unsurprisingly given the complexity of the studied phenomenon).

Question 2

First of all, this question was not made up. Rather astonishingly, that research has been per-
formed and (unfortunately) has even been published on the most prestigious medical journal in
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the world1, which says a lot...anyhow:

(i) Quite simply, some of the covariates that is correlated with chocolate consumption (gdp or
gdponrd) is perhaps affecting a further variable (which is not necessarily in the dataset)
and the latter really influences the number of Nobel prizes. It makes sense to assume that
countries having a large economy and investing a lot on research can produce better edu-
cation which, in turn, might help brilliant thinkers to emerge. Or might attract promising
scientists from abroad, who then take the citizenship of the country where they performed
research, and there you go. If such countries also are large consumers of chocolate, this
creates a “circular” effect that can easily confuse the naive reader. Notice that prizes has
non negligible positive correlation with gdp and gdponrd, and that chocolate consumption
is positive correlated with the latter two.

(ii) We have p=8 parameters (including the intercept) and n=23 observations.

dof SS MS=SS/dof F
Regression 8-1 1579.17 225.59 5.12
Error 23-8 661 44.07

Total 23-1 2240.17

SS(Regression) is easy to find by difference, since SS(Tot) = SS(Regression)+SS(Error).

Then F= MS(Regression)/MS(Error) = 5.12.

This F is the Global-F-test, named this way because it tests H0 : β1 = β2 = · · · = βp−1 = 0,
that is it tests that all the parameters (but the intercept) are null, against the hypothesis
that H1 : βj 6= 0 for at least one j = 1, ..., p− 1.

Under H0 true, we fail to accept H0 if F > Fp−1,n−p,1−α. Let’s take α = 0.05 and we have
F7,15,0.95 = 2.70, hence we fail to accept H0. There is at least a covariate having a significant
effect on the response.

(iii) We can compute both R2 and the adjusted R2. We have R2 = SS(Regr)/SS(Tot) = 0.705
or 70.5%. The adjusted R2 is 1−MS(Error)/MS(tot) = 1− (1−R2)(n− 1)/(n− p− 1) =
1− (1− 0.705)22/14 = 0.536 or 53.6%.

(iv) Having a good R2 and a test that tells us that “at least a parameter is significant”, is abso-
lutely not enough to stop our enquiry. In fact the following things can happen (individually
or simultaneously): (a) in some specific cases the presence of some outlier can “pull” the
regression fit, thus inflating the value of the R2; (b) We could have a spurious association,
that is an association that exists numerically but not in reality, such as what we described in
(i). This would make the global-F test happy, but not make us happy. (c) Some covariates
could be unnecessary and should be removed, and here the battery of variable selection
tools can be employed. (d) 5 model assumptions should be checked and the influence of
outliers assessed, to see if some specific outliers are influencing the fit. (e)...

Question 3

(i) Potentially influential observations are those cases in the dataset that have high leverage
values hi. The leverage hi is the i-th entry on the diagonal of the matrix X(X ′X)−1X ′ and
geometrically it represents a distance from the point x̄ = (x̄1, ..., x̄p−1), the point having
coordinates given by the sample means of the columns of X. Therefore high leverage values
identify outliers in the space spanned by the columns of X. These are cases to keep an

1”Chocolate Consumption, Cognitive Function, and Nobel Laureates”, New England Journal of Medicine, 2012,
367:1562-1564.
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eye on as they can (though not necessarily, hence the ”potential”) affect the regression
coefficient estimates, the RSS (hence s2) and hence the R2, and their own fitted values
as ŷi = · · · + hiyi + · · · . These cases can be spotted by plotting their leverage values vs
i. Leverage values larger than 2p/n are considered potentially influential, though more in
general it is best to keep an eye on those cases that have dramatically large leverage values
compared to other cases.

(ii) we have p − 1 covariates at disposal, we want to fit all M = 2p−1 models while avoiding
under/overfitting. This way we have a variable selection procedure.

We divide the data into training and testing datasets. We fit each of the M models on the
training dataset, obtaining corresponding β̂(m) for m = 1, ...,M . Then construct predic-
tions ŷi(m) = xtesti (m)β̂(m), where the xtesti (m) are covariates for model m based on testing
data. We compare those predictions with the responses ytesti from the testing data, via the
pMSE(m):

pMSE(m) =
1

ntest

ntest∑
i=1

(ytesti − ŷi(m))2

where ntest is the size of the testing data.

We iterate the above for all m = 1, ...,M . Finally we plot pMSE(m) vs m and choose as
best model the one returning the smallest pMSE.

The procedure is useful for model selection as it considers the problem of overfitting/underfitting
the data: the parameter estimates are obtained on a fraction of the data, and this way we
can monitor the ability for each model to generalize to unseen observations (test data) that
are not involved in the estimation of the coefficients. The pMSE indeed measures the quality
of the model fit in predicting unseen data. See also the answer to the next question.

(iii) Figure 3 is the output of the all-subsets-regression and the six circles for models of size 2
are due to the 6 pMSEs : there are six models of size 2, that is models with an intercept
and one covariate. Since we have a total of 6 possible covariates in the dataset, the result
follows. Similarly, we have only one model of size 7 (intercept plus all six covariates).

As such, the purpose of the figure is, as given in the previous question, to point to a model
having the best ability to predict unseen data without underfitting/overfitting (models that
underfit data are those on the left of the smallest pMSE, those overfitting are the ones on
the right of the minimal pMSE). The best model here has size 2. The figure itself does
not tell exactly which model it is, but the other R output shows that this is a model with
intercept and the fourth covariate.

Question 4

(i) we require responses to be all distributed according to the same member of the exponential
family (in the course we only considered iid responses). If this is the case, then the following
also follows: (a) we define a linear predictor η = Xβ; (b) we have a monotonous and
differentiable (hence invertible) function g(·) such that g(µ) = η, for µ = E(Y ). This g
is called link-function as it links the linear prediction to a transformation of the expected
response. φ > 0 is called dispersion parameter, the wi are “weights” for each observation
Yi.

(ii) We use maximum likelihood. Therefore we first need to construct the likelihood function.
This means that for regression parameters β we wish to construct L(β) = p(Y1, ..., Yn|β) for
data of size n and p(·) the joint density of the data. In the course we have worked under
the assumption that the Yi are independent, hence L(β) = p(Y1, ..., Yn|β) =

∏n
i=1 p(Yi|β),

and p(Yi|β) is a known density or probability mass function (it’s known because we decided
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to pick a specific member of the exponential family). Then we can use Newton-Raphson to
efficiently find a the β̂ maximising the likelihood, or equivalently minimizing the negative-
loglikelihood

β̂ = arg min
β
− logL(β).

This is the maximum-likelihood estimate and is asymptotically Gaussian (as n → ∞) and
unbiased

β̂ ∼n→∞ N(β,H−1)

where H is the Hessian matrix, the matrix of the second derivatives of the negative log-
likelihood, evaluated at β̂.

(iii) For Yi ∼ Po(µi) we have lnµi = β0+β1x0,i, where µi = E(Yi|x0). Then µ̂i = eβ̂0+β̂1·x0,i . The

required confidence interval is asymptotically given by Iµi = e
Iβ0+β1x0,i = = e(β̂0+β̂1x0,i±zα/2·S.E.(β̂0+β̂1x0,i)),

where zα is the α- quantile of the standard Gaussian distribution. Then we have S.E.(β̂0 +

β̂1x0,i) =
√
S.E.2(β̂0) + x20,iS.E.

2(β̂1) + 2x0,iCov(β̂0, β̂1), where the standard errors and

other elements of the covariance matrix of the regression estimates are obtained from the
entries of H−1 in (ii), the asymptotic covariance matrix of the estimates.
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