
Solutions MVE190-MSG500 Linear Statistical Models, 17/01/2019

1. (notice, the following are based on computations made using 3 decimal digits as provided
in the exam script, hence results are approximate compared to using a software)

(i) An unbiased estimator is s2 =
∑n

i=1 e
2
i /(n− p). Here p = 3 and n = 12 and the sum

of residuals is given in Table 1, hence s2 = 139.913/(12− 3) = 15.547.

(ii) SE(β̂j) = s
√

(X′X)−1jj . Where j = 1, 2, 3. Hence by taking the square root of the

second and third element on the diagonal of (X ′X)−1, we have SE(β̂2) = 3.943 ∗√
0.008 = 0.353 and SE(β̂3) = 3.943 ∗

√
0.002 = 0.176.

Confidence intervals (CI) are given by [β̂j±tα/2,n−pSE(β̂j)] = [β̂j±t1−α/2,n−pSE(β̂j)].
We have that the 95% CI for β2 is [0.196± 2.262 · 0.353] = [−0.602, 0.994]. Similarly
for β3 we have [0.191 ± 2.262 · 0.176] = [−0.207, 0.589]. Both intervals include the
zero. The model does not consider the effect of height and weight jointly significant
in explaining the response. It might be that one or the other are separately relevant,
but not when they are jointly in the model. To be discussed in later questions.

(iii) Let’s call “raw residuals” the usual ei. The plot of raw residuals vs i only points
to two observations that seem to be outliers, though this can better be diagnosed
via studentised residuals; otherwise the plot does not point to anything problematic.
The plot of raw residuals vs the fitted responses seem to show a larger variation for
observations having a smaller fitted response. However the small size of the dataset
is not helping in deciding whether there is any systematic trend to fix.

Leverage values show two observations that stand out (2 and 6), these being large
according to the empirical criterion hii > 2p/n, likely because child 2 has large height
and child 6 because it is tall compared to the weight. Other three observations are also
standing out (8, 10, and 12), but given that the dataset is small we should perhaps
not to try to over-interpret this too much.

Studentised residuals shows that there are two observations that are fitted badly,
namely observations 8 and 11 standing outside the values [-2,2]. Child 8 has consid-
erably low weight, low height and low “length” (compared to the others) and child 11
also has low weight, compared to other kids having the same height and “length”.

All in all the Cook’s distance (that depends on leverage and standardised residuals)
shows that the observations that are most influential are child 6 and 8.

Finally, from the pairs plot we observe a worringly high correlation among the predic-
tors. One of the two has to go away. These are causing the large standard errors that
are making the two effects of the covariates not-significant (as seen in ii). Clearly, by
looking at the plot, both are separately informative for the response.

(iv) We run a partial F test. All ingredients are available, since we need to compute
Q = (SS(Error)reduced − SS(Error)full)/k/(SS(Error)full/(n − p)). The reduced
model is the one with height and intercept, while the full model has also the weight
covariate. So SS(Error)reduced = 160.665 and SS(Error)full = 139.913. Here k = 1
and hence Q = 1.335 which has to be compared with the quantile Fk,n−p = F1,9 =
161.448 and Q < F1,9. We thus fail to reject the smaller model (corresponding to
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testing H0 : β3 = 0), that is we do not need the information carried by weight, when
the height is already in the model. This was expected because the pairs plot show
that each of those is highly informative for the response, but also that the covariates
are highly correlated. Therefore one of the two is redundant.

2. (i) The hourly wage is 67 cents (0.67 dollars) higher per year of education, conditionally
on all other variables kept as constant. Work experience is associated with an increase
of 9 cents in the hourly wage per year of experience, everything else being the same.
Union members earn $1.52 more per hour than non-union members, everything else
being the same.

(ii) There is a quite strong gender gap unfortunately. Female workers earn on average
$1.85 per hour less than males with the same education, work experience, union mem-
bership, region of residence and occupation. This figure is highly significant. Regard-
ing occupation: all estimated coefficients are to be interpreted in terms of comparison
with occupations of type “managerial”. For example, compared to managerial posi-
tions, those working into sales earn about 4 dollars less per hour (significant figure);
those working as clerks earn about 3.3 dollars less per hour (significant), etc. Those
having a job of type “professional” we cannot say they earn significantly less than
managers as the coefficient is not significant at 5% level. That is, data do not suggest
that there is a statistically significant difference in hourly wage between professional
and management jobs.

(iii) There appears to be the “trumpet” shape denoting heteroskedasticity. That is the
assumption of costant variance of the error term is markedly violated, with larger
variance corresponding to larger estimated wages. This has consequences on OLS
inference (which relies on the assumption of homoscedasticity), thus making the stan-
dard errors wrong, the estimated SE is wrong. Because of this, confidence intervals
and hypotheses tests cannot be relied on, which means results discussed in (ii) could
be false. In addition, we notice a quite large outlier.

(iv) we are fitting E(log(wages)) = β0 + β1 · education + · · ·+ β10 · female.

Regarding the effect of education: all other variables held constant, we have that,
when we increase the education by 1 year, we have E(log(wages)|education + 1) =
β0 + β1 · (education + 1) + · · ·+ β10 · female, which means that

E(wages|education+ 1) = eβ1 · eβ0+β1·education+···+β10·female

= eβ1 · E(wages|education).

Therefore
E(wages|education+ 1)

E(wages|education)
= eβ1

Hence, since β̂1 = 0.069474 and exp(0.069474) = 1.072 we conclude that each addi-
tional year of education increases the hourly wage by about 7.2%. A similar reasoning
shows that each additional year of work experience increases the hourly wage by
exp(0.0106) = 1.0106, i.e. by about 1.06%.

3. (i) We conduct a Wald test (we could also construct a confidence interval) at significance
level of 0.05 to test H0 : βblack = 0 versus H1 : βblack 6= 0. So we have that, under
H0 assumed true, Z = (β̂black − 0)/SE(β̂black) ≈ N(0, 1). The observed value of Z is
−0.306/0.099 = −3.091. Since |Z| is larger than the quantile |zα/2| = 1.96 we reject
H0. This implies that there exists a difference in the number of visits to the doctor
for people of black ethnicity compared to white ones. Namely black subjects visit the
doctor less often (negative coefficient) and specifically exp(−0.306) = 0.736 implying
that they report 27% fewer visits than white subjects.
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(ii) We construct a likelihood ratio test for comparing a reduced vs a larger model (the
concerned model are nested).The likelihood ratio test is based on a difference between
deviances. The summary functions for both models report that 2 logL = −1.9658.633
for the larger model and 2 logL = −19681.19 for the smaller one. We take the differ-
ence of the two deviances and we obtain Ddiff = 19681.19− 19658.633 = 22.577. The
two models differ by one parameter hence Ddiff ∼ χ2

1 (asymptotically as n goes to
infinity), which has quantile χ2

1−α,1 = χ2
0.95,1 = 3.841. We have 22.577 > 3.841 hence

we reject H0 : βincome = 0 and the income covariate is a useful addition to a model
having the stated covariates.

(iii) By using the provided definition of negative binomial pmf, we have that when y = 0
(zero doctor visits) we obtain

P (Y = 0) =
Γ(θ)

Γ(1)Γ(θ)
· 1

(1 + µ/θ)θ
= (1 + µ/θ)−θ

since for x integer we have Γ(x) = (x− 1)! and since we assume 0! = 1. Therefore we
just need to evaluate µ = exp(β0 +βprivate +βfemale + 10 ·βincome), which after fitting
becomes µ̂ = exp(−0.201 + 0.809 + 0.544 + 10 · 0.0037) = 3.284.

Since θ̂ = 0.588 we finally have that the estimated probability evaluates to (1 +
3.284/0.588)−0.588 = 0.330, that is 33%.
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