Day assigned: November 23, 10:00 am
Due date: November 24, 10:00 am

- The take home examination is strictly individual. Submissions that bear signs of being collective efforts will be disregarded.
- Students are supposed to give a precise description of the model used to solve the problem and rigorous explanations to the solution.
- Correct answers without explanations will be disregarded.

Problem 1. Let $\{N(t), t \geq 0\}$ be the Poisson process with rate $\lambda$.
(a) Fix the point $t>0$ and denote by $X$ the time distance between the last arrival of the process before $t$ to the first arrival after $t$, when $N(t)>0$, and the distance from zero to the first arrival, when $N(t)=0$. What is true: $E[X]<\frac{1}{\lambda} ; \quad E[X]=\frac{1}{\lambda} ; \quad E[X]>\frac{1}{\lambda}$ ?
Explain your answer.
(b) For $t \geq 0$, define the random process

$$
Y(t)=(-1)^{N(t)}
$$

Compute the distribution and the expected value of $Y(t)$ for $t>0$. 3p
(c) Are the increments of $Y(t)$ independent? Are they stationary? Prove your answers.

Problem 2. Passengers arrive at a bus stop according to a Poisson process with rate $\lambda$. Buses depart from the stop according to a renewal process with interdeparture times $A_{1}, A_{2}, \ldots$. We assume that the buses have ample capacity so that all waiting passengers get in the bus that departs. Use a proper renewalreward process to prove that the long-run average waiting time per passenger equals $\frac{E\left[A_{1}^{2}\right]}{2 E\left[A_{1}\right]}$. Can you give a heuristic explanation of why the answer for the average waiting time is the same as the average residual life in the renewal process?

Problem 3. A system consists of $N$ identical machines maintained by a single repairman. The machines operate independently of each other and each machine has an exponential life time with mean value $1 / \mu$. The system fails when the number of failed machines has reached a given critical level $R$, where $1 \leq R<N$. Then all failed machines are repaired simultaneously.
(a) Compute the average time until the system fails.
(b) The system is started up immediately after the failed machines have been repaired. Assume that any repair takes a negligible time and a repaired machine is again as good as new. The cost of the simultaneous repair of $R$ machines is $K+c R$, where $K$ and $c$ are positive constants. Also there is an idle-time cost of $\alpha>0$ per time unit for each failed machine. In the long run, what is the average total cost per time unit?

2 p

